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Abstract: Globally, renewable energies are indispensable resources on account of RE100 and the
Paris Agreement. The most developed renewable energies are photovoltaics (PV) and wind energy,
and they are continuously expanding. This study aims to optimize and analyze the nuclear power
plant (NPP) load-following operation in various PV conditions in a metropolitan region. With
theoretically estimated power demand and PV power, a mixed-integer problem (MIP) with ramping
cycle constraint (RCC) was constructed for a safe load-following operation and simulated through
duck curves under various NPP load-following regions (the extreme, normal, and safe regions).
The simulation showed two major results for NPP load-following. Technically, RCC successfully
controlled the NPP ramp cycle and was assured to be an optimization tool for NPP operation.
Numerically, NPP load-following alleviated PV intermittency to almost 50%, 30%, and 15% depending
on the load-following region. However, these effects were restricted when the PV capacity rate was
high, especially when it exceeded 60%. Thus, PV system capacity is recommended to be 63% of
the maximum power demand in the metropolitan region with NPP load-following, and larger PV
systems need more flexibility.

Keywords: NPP; SMR; PV; UC plan; duck curve; load-following model

1. Introduction

The concept of the duck curve was first introduced in the California Independent
System Operator (CAISO). The demand power curve reflected by renewable energies,
which are noncontrollable, looks like a duck, so it is called the duck curve or power
netload [1]. The power netload is increasingly important, since there is rapid power change
arising from the intermittency of renewable energies. Currently, the global renewable
energy power portion has just passed over 10% [2] and a power valley problem has been
encountered.

The major component of renewable energy is the photovoltaic (PV) system. The
PV power density is increasing year by year [3]. The PV system is intermittent because
it generates power only in the daytime and is also critically influenced by the weather.
There are many types of PV systems other than the conventional land PV system, such as
floating PV (FPV) and marine PV (MPV) systems. FPV systems have additional advantages,
such as installation surface limitations and a cooling effect [4]. Therefore, their capacity
is continually increasing [5]. MPV systems, one of the FPV systems, are economically
comparable with other offshore renewable energies, with high space availability [6]. Due
to FPV’s huge potential, FPV systems play a key role in clean energy as they could avoid
conflicts with other industries and generate more power than land PV [7].
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Many studies have been conducted to increase the power density of PV systems.
Currently, tunnel oxide passivated contact (TOPCon) is becoming a major technology to
raise cell efficiency and power [8]. The high-density modules, such as the bifacial modules,
are mounted on the FPV system to increase power since the bifacial FPV module can
generate more power than the mono-facial FPV module, especially in the morning and
evening [9]. The bifacial FPV system with east–west configuration generates more power
than the south configuration because it makes it possible to install more PV modules per
area, while it diminishes the heat loss coefficient as well [10,11]. Many studies have been
conducted on increasing the power density of PV systems. However, the duck curve
deepens as the PV power density increases, and more power grid flexibility is needed.

Non-dispatchable generators such as nuclear power plants (NPPs) need to be oper-
ated flexibly since renewable energy intermittency has been increased and dispatchable
generators are not readily flexible due to economic reasons [12]. NPP load-following is
one of the solutions to cope with these challenges. As France generates their electricity
mostly with nuclear energy, the daily fluctuation of nuclear power is typically 5~10%, and
sometimes more than 20% [13]. Germany, Belgium, Finland Switzerland, and Hungary
also operate loads based on their own needs [14]. Additionally, the small modular reactor
(SMR) plays the key role in load-following because of its own modularity [15]. SMRs that
cogenerate hydrogen have been evaluated economically, and alkaline water electrolysis has
been identified as the most profitable process for hydrogen cogeneration [16].

The NPP load-following model is being continuously studied. The mechanical Shim
control strategy was applied to CPR1000 with a typical load-following scenario, the
“12-3-6-3”, and the feasibility of the load-following was demonstrated [17]. Functional
variable universe fuzzy PID control and the nonlinear controller can be utilized at different
power levels to operate the proper load-following [18,19]. As these models deal with real
NPP physical properties, there is no risk of NPP operation, and a compact NPP operation
is possible. Particularly, one model utilized the balance of the plant system of CPR1000
and described very compact NPP parameter responses during load-following [17]. An
aggregative model with a triangle membership function has been adapted and resulted
in better precision load-following in view of coolant temperatures with less equations
than the previous study [18]. A non-linear controller with 100 MWe PWR was used and
described with influences depending on the load-following method (reactor-following and
turbine-following) in view of the reactivity margin [19]. However, these models are hardly
used in the power grid operation because of their large scale and complexity. It is hard for
the system operators (SO) to check NPP parameters one-by-one.

The Unit Commitment (UC) plan is the representative tool to handle the power grid
problem [20]. Compared to previous works [17–19], the UC plan decides NPP operations
roughly but efficiently. Based on the “12-3-6-3” scenario, NPP with wind generation can
be modeled with the optimization problem [21]. The models in [22,23] consider NPP as
having very compact constraints, such as the flexibility constraint and the xenon-poisoning
constraint. However, the typical “12-3-6-3” scenario has a weak point that is not suitable
for the duck curve, and a refined “12-3-6-3” scenario for renewable energies is needed. This
paper suggests a numerical analysis of the refined “12-3-6-3” scenario for PV systems.

In consideration of the NPP load-following operation, the ramping cycle (RC) is also
crucial since it has a direct connection to the lifespan of the NPP. The RC is one cycle of
NPP power when the power output first ramps down to the minimum from the initial level,
and then returns to the initial level. The RC is designed to limit the load cycle with respect
to the minimum power [13]. In general, the RC is designed for 2 times per day, 5 times per
week, and 200 times per year. This limit is a natural result because NPP ramping typically
results in pellet-clad mechanical interaction or xenon-poisoning [12,13,24].

In this paper, the NPP load-following scenario under a metropolitan power grid
with a new optimization constraint, the ramping cycle constraint (RCC), is proposed.
The simulation model is based on three types of NPP state variables describing the NPP
operation with a nuclear flexibility constraint [22]. The nuclear flexibility constraint is
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used differently according to the NPP minimum power [23]. Finally, this paper shows
the necessity of a refined “12-3-6-3” transition and the load-smoothing effect of NPP load-
following in a metropolitan region.

The remainder of this paper is organized as follows. In Section 2, the process of
collecting data, particularly power demand and PV power data, is described. In Section 3,
the mathematical model composed of the UC plan and RCC is presented. In Section 4, the
results of simulations in terms of RCC and load variability are described. Lastly, Section 5
provides an analysis of the proposed NPP load-following model and potential avenues for
future works.

2. Data Acquisition

The data, including the power demand and PV power density, are essential in simula-
tions. The power demand was assessed from the electricity usage of Seoul in 2021 and the
relative power consumption coefficient of South Korea. Table 1 lists the electricity usage of
Seoul in 2021 [25]. The total electricity usage was 47,295,807 MWh. The dwelling usage
was about 31% of the total electricity usage, while the service usage was about 66%, and
the industry usage was the remaining 3%.

Table 1. Electricity consumption by use in 2021 in metropolitan Seoul [25].

Category Use
Power

Consumption
(MWh)

Use
Power

Consumption
(MWh)

Dwelling Dwelling 14,656,127 - -

Service General service 27,499,011 Public service 3,575,378

Industry
(Manufacture)

Clothes, Fur 310,226 Transport devices 19,758
Food 229,770 Electric devices 19,253

Printing media 204,727 Agriculture, Fishery 19,189
Other machinery 136,043 Vehicles 16,930

Textile goods 108,992 Medicine 16,638
Other products 107,280 Drinks 15,592

Electronic, Mobile 62,799 Primary metals 12,425
Metal processing 51,333 Wooden 4201

Plastic 49,867 Furniture 3520
Optical instrument 43,783 Briquette, Oil 3193

Chemistry 42,368 Mining 1902
Pulp, Paper 37,773 Industry machine 1343
Non-metal 24,756 Cigarette 88

Leather, Bag 21,502

The relative power consumption coefficient provides the hourly average deviation of
the power consumption, and the coefficients are calculated by Equations (1)–(3) [26]:

Ai,t =
∑M

k=1 HPi,k,t

M
(1)

Bi =
∑24

t=1 Ai,t

24
(2)

Ci,t =
Ai,t

Bi
(3)

where i is the usage, k is the day, and M is the number of days in a month. HPi,k,t is the
hourly power consumption in a day by use. Ai,t is the daily average power consumption
by hour and use. Then, Bi is the hourly average power consumption by use. Finally,
the relative power consumption coefficient, Ci,t, is calculated by dividing At with B. If
the coefficient is less than one, the power consumption is lower than the average power
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consumption. If the coefficient is greater than one, the power consumption is greater than
the average power consumption.

Figure 1 shows the hourly average relative power consumption coefficient for the
categories listed in Table 1. The dwelling coefficient was at its maximum in the evening, at
1.36, and at its minimum at dawn, at 0.73. The service and industry coefficients reached their
peak values in the daytime, 1.36 and 1.28, respectively, although they exhibited different
trends in the daytime. The hourly power demand, which is expressed by Equation (4),
was obtained by multiplying the relative power consumption coefficient and the hourly
average power consumption, as:

Dt = ∑
i

Ci,t ×
APi
8760

(4)

where Dt is the hourly power demand, Ci,t is the relative power consumption coefficient
by usage, and APi is the annual electricity consumption by usage. To obtain the hourly
average power consumption, the annual electricity consumption was divided by 8760. The
hourly power demand per month is shown in Figure 2a. The virtual electricity demand of
Seoul had a huge gap of almost 3300 MW between the daytime and the nighttime demand.
As Seoul is a downtown area, there is low electricity usage at night, so it is reasonable that
a large gap in demand was observed.
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A simple PV power prediction model expressed in (5) was used to predict the PV
power. Many precise prediction models using either the regression analysis or artificial
intelligence exist. The authors of [27] present various regression models, and the mean
absolute percent error of those models is almost 6%. The authors of [28] present the short-
term PV prediction based on a recurrent neural network, and its maximum accuracy is
99.1% (normalized mean absolute error). They required the various environmental hourly
data, such as the relative humidity, wind speed, and ambient temperature, in common,
which are hard to obtain without sensors.
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Figure 2. PV power supply: (a) the hourly power demand per month in Seoul 2021, (b) the theoretical
POA in Seoul, (c) the hourly module temperature using the simple energy balance model, and (d) the
hourly PV power prediction of 430 (Wp) in Seoul.

PVt = PR ×
POA

1000[W/m2]
× {1 + b(Tm − 25[°C])} (5)

where PVt is the hourly PV power, POA is the plane of array irradiation, PR is the rated
PV power, and b is the temperature coefficient tested in standard test condition (STC, Solar
Irradiance of 1000 (W/m2), module temperature of 25 °C, and air mass of 1.5). Information
about the test module used in the study is listed in Table 2.

Table 2. Information about the PV modules used in the simulation.

Type of Module PR (Wp) b (%/°C)

Si-Mono
(Solar Park LCHD G1 series) 430 −0.42

The POA was calculated by the geometric radiation model [29]. The solar constant,
longitude, latitude, slope, and azimuth angle were 1367 W/m2, 126◦ E, 37◦ N, 30◦, and 0◦,
respectively. Extraterrestrial radiation was calculated first, then the effect of atmosphere in
clear sky was applied with the direct and diffuse radiation models [30,31]. Figure 2b shows
the POA of clear sky in Seoul.

The module temperature, Tm, was calculated by the simple energy balance model [32].
This model needs various parameters, such as the heat exchange coefficient, STC module
efficiency, temperature coefficient, absorption coefficient, transmittance of module cover,
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solar irradiation, and the hourly ambient temperature. Except for the value of the ambient
temperature, the values of the other parameters were obtained from [32,33]. The hourly
ambient temperature was calculated by the synthesizing sequence model using the monthly
average minimum, maximum, and mean ambient temperatures in Seoul in 2021 [34,35].
Figure 2c shows the result of the module temperature calculation. Finally, the output of
Equation (5) is presented in Figure 2d.

A simulation was conducted with various PV capacities. The PV capacity was set from
10% to 90% (10% interval) of the maximum power demand per month. It was assumed
that the PV system always has the same power generation pattern regardless of PV system
properties. Thus, PV system power could be calculated by the linear multiplication of PVt
and the power netload is calculated by (6), as:

NDt = Dt − R× PVt

430[W p]
(6)

where NDt is the hourly power netload and R is the PV system capacity. Figure 3 shows
the partial results of Equation (6).
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3. Mathematical Model Simulation

The UC plan is a rough schedule of generation units based on power demand predic-
tion, formulated as a mixed-integer problem (MIP). The integer variables are particularly
useful as they can easily represent the state of the generated unit, which is either ON or OFF.
An efficient NPP model could be obtained from a literature [22]. Three state variables (ON,
OFF, STABLE) make NPP ensure the minimum stable time by constructing dimensional
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optimization constraints. In this paper, Reference [22] was used as the base model, and
RCC for the safe NPP load-following scenario was added to it. The simulation location is
the downtown area of Seoul, where many PV systems are already installed. NPP and the
energy storage system (ESS) were considered as the power source to evaluate the effect
of NPP load-following through simulation. The ESS is considered as an external power
grid in this study. The ESS has limitless capacity and takes charge of the residual of the
power netload. Thus, the objective function of MIP is maximizing the NPP power for NPP
economics.

3.1. Simulation of the Base Model

Simulations were run by MATLAB 2022b and its Optimization toolbox. The MIP
nomenclatures used in [22] were easily distinguishable from the original feature.
Equations (7) to (11) show the basic constraints of the NPP. However, some of these
constraints differed from the original ones.

PMINd,j ≤ pt,j ≤ PMAXj (7)

pt−1,j − pt,j ≤ RDj × Rdt,j − δ×Upt,j (8)

pt,j − pt−1,j ≤ RU j ×Upt,j − δ× Rdt,j (9)

Rdt,j + Upt,j + Stt,j == 1 (10)(
Upt,j −Upt−1,j

)
× PMINSTABLEd,j ≤∑t−1

tt=t−PMINSTABLEd,j

(
Stt,j + Upt,j

)
(11)

The nuclear power is limited from PMINd,j to PMAXj, as seen in (7). The operative
reserve was not considered. Equations (8) and (9) demonstrate ramping of nuclear power,
which are limited by RDj and RUj. The auxiliary constant, δ, exists to distinguish St states
(pt−1,j = pt,j). Equation (10) represents the complementary constraint in state variables
Rd, Up, and St. Equation (11) represents the flexibility constraint after down-ramping to
handle xenon-poisoning.(

Rdt,j − Rdt−1,j
)
× PMAXSTABLEd,j ≤∑t−1

tt=t−PMAXSTABLEd,j

(
Stt,j + Rdt,j

)
(12)

∑
j

pt,j + ESS == NDt (13)

∑
j

pt,j ≤ LDt (14)

In this study, additional constraints on the NPP load were imposed, as shown in
Equations (12)–(14). Equation (12) outlines the flexibility constraint after up-ramping to
handle xenon-poisoning, and Equation (11) is the opposite. Similar to the down-ramping,
up-ramping of the NPP also induces xenon-poisoning and requires stabilization time after
up-ramping [36]. Equation (13) represents the power balance constraint equation. The
other generation units are considered as ESS in this paper. Equation (14) represents the
load-following constraint and LDt is the hourly load-following scenario.

LDt = NDt −min(NDt) + PMINd,j (15)

Load-following reduces the risk of sudden ramping of the baseload plant and the
load variability. NDt is the power netload, and the load-following scenario is performed
using these values. LDt must be bigger than PMINd,j, as expressed in Equation (15).
Some examples of the load-following scenarios are “12-3-6-3” and “(2-10)-2-(10-18)-2” [21].
Figure 4 shows schematics of load-following scenarios. The upper plot shows the “12-3-6-3”
scenario, where NPP operates at minimum power for 12 h during the night, ramps up for
3 h, operates at maximum power for 6 h during the day, and then ramps down for 3 h.
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The lower plot of Figure 4 shows a more flexible NPP operation, which is “(2-10)-2-(10-
18)-2”. Although the fundamental structure of the scenario is the same as the upper plot,
NPP ramps faster and the stable time after ramping is not fixed. This is depicted by the
dotted line. However, faster ramping critically impacts the NPP lifespan. Additionally, the
stable time is proportional to the size of the power ramping at once, and it is dependent.
Both scenarios were used to model the general power demand without renewable energies.
Therefore, a refined load-following scenario is needed.

3.2. Ramping Cycle Constraint

In this paper, a new constraint was added, RCC. The NPP was designed to limit
the RC regarding the minimum power. The RCC is based on “per day”, as expressed in
Equations (16)–(19): (

Upt,j − Stt,j
)
−

(
Upt−1,j − Stt−1,j

)
− 1 ≤ RUSt,j (16)

RUSt,j ≤ Upt,j (17)

RUSt,j ≤ Stt−1,j (18)

∑
t

RUSt,j ≤ RCj (19)

Equation (16) is used to detect the starting point of ramping-up. RUSt,j is a binary
variable and becomes 1 when NPP ramp-up starts. Table 3 shows all cases described
by Equation (16). Not all state variables can be 1 because of Equation (10). Due to
Equations (11) and (12), state variables Up and Rd do not exist continuously. The ramping-
up starting point is detected by matching “ 1©– 5©”. As a result of Equation (16), the left side
of the equation has the following discrete values: 1 in case “ 1©– 5©”, 0 in cases “ 1©– 6©” and
“ 3©– 5©”, –1 in cases “ 1©– 4©”, “ 2©– 5©”, and “ 3©– 6©”, –2 in cases “ 2©– 6©” and “ 3©– 4©”, and –3
in case “ 2©– 4©”. The value of RUSt,j is set to 1 at the ramping-up starting point but it must be
restricted at the other points by the inequality sign, as expressed in Equations (17) and (18).
In other cases, either Upt,j or Stt−1,j is 0. All RUSt,j except for “ 1©– 5©” are 0. The total
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ramping-up start point is limited by Equation (19). RCj represents the daily load cycle of
the jth NPP, which is equivalent to “one cycle per day”.

Table 3. All the numbers of cases in Equation (16).

Index Upt,j Stt,j Index Upt−1,j Stt−1,j

1© 1 0 4© 1 0
2© 0 1 5© 0 1
3© 0 0 6© 0 0

Equations (20)–(23) were used to detect the ramping-down start point:(
Rdt,j − Stt,j

)
−

(
Rdt−1,j − Stt−1,j

)
− 1 ≤ RDSt,j (20)

RDSt,j ≤ Rdt,j (21)

RDSt,j ≤ Stt−1,j (22)

∑
t

RDSt,j ≤ RCj (23)

where RDSt,j is the binary variable and detects the ramping-down start point. Since there
must be an end if there is a beginning, the end point detection is not necessary.

4. Results

In this section, the netload deviation of residual power is evaluated, and the effective-
ness of the reactor in load-following is analyzed. Two types of simulations were conducted,
the RCC and SMR simulations. The specific simulation settings are listed in Table 4. Pr is the
NPP rated power and it was set as 1000 MW in the RCC simulation and 355 MW in the SMR
simulation. PMINd,j was divided into three parts: the safe following region (70% of Pr),
the normal following region (50% of Pr), and the extreme following region (20% of Pr). RDj
and RUj are the NPP ramping rates per minute and were set to 0.5% of Pr for secure NPP
operation [13]. PMINSTABLE had three values regarding the xenon-poisoning constraint
for the realistic simulation [23].

Table 4. Values used in the simulations.

Constant Value Reference

Pr (MW) 335, 1000 -
PMIN (MW) 0.2× Pr, 0.5× Pr, 0.7× Pr [13]
PMAX (MW) Pr -

δ (-) 0.0001 [22]
RD (MW/min) 0.005× Pr [13]
RU (MW/min) 0.005× Pr [13]

PMINSTABLE (hour) 6, 3, 1 [22,23]
PMAXSTABLE (hour) 1 [22]

RC (cycle/day) 1 [13]

4.1. RCC Simulation

RCC simulation was conducted with two 1000 MW NPPs to determine the impact of
the RCC. Consequently, RCC effectively controlled the RC, as shown in Figure 5. LD in
Figure 5 is the load-following constraint. Figure 5a is the result of the simulation without
the RCC in the normal following region. NPP #1 and #2 have two ramping start points to
follow LD, a ramping-up start point and a ramping-down start point. In Figure 5a, the total
NPP power was to be 40,747 MWh, which was 7253 MWh lower than that of the baseload.
Figure 5b is the result of the simulation with the RCC, and the total NPP power was set to
be 39,158 MWh, which was 8842 MWh lower than the baseload. The RC was limited by
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RCC and had only one start point. Although, the RCC reduced the NPP operation power
by almost 1000 MW in this case, and the safe NPP load-following was possible.
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4.2. SMR Simulation

SMR simulation, used to evaluate the NPP load-following effect, is composed of
two stages: the load-following stage and the load-variability stage. An SMR of 335 MW
was chosen in this simulation since it is reasonable to build such SMR in metropolitan
regions because of its simplicity and enhanced safety [37]. The total SMR capacity is limited
to 30% of the maximum power netload since the Korean government restricted the NPP
generation rate to 30%. In the load-following stage, the transition of “12-3-6-3”, depending
on PV system capacity by analyzing one 335 MW SMR simulation, was described. In the
load-variability stage, the SMR simulation in power netload was applied to verify how
NPP load-following affects the metropolitan region.

4.2.1. The Load-Following Stage

There was a significant change in the NPP load-following scenario with the PV system.
Figure 6 shows the average result of the extreme following region regrading PV capacity.
Each subfigure has two plots, the upper is the top view and the lower is the entire view.
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The color in plots shows the SMR power: yellow means 335 MW (maximum), blue means
67 MW (minimum), and purple shows the ramping region. Figure 6a shows the typical
“12-3-6-3” scenario with ramping starting at 0 and 6 o’clock. With an increase in the PV
capacity, the blue region moves from night to daytime, as can be seen in Figure 6b,c.
Finally, the blue region settles down at 8 to 13 o’clock, which is the time when PV power is
generated, as can be seen in Figure 6d.
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The average ramping region (purple), depending on PV capacity, is organized in
Table 5. “Ramping-down” and “ramping-up” are the average durations of the ramping-
down and ramping-up regions, respectively. The average duration of the ramping-up
region hour showed a similar trend regardless of load-following regions, increasing from
7 to 15 o’clock. In contrast, the average duration of the ramping-down region exhibited
different trends in each following region owing to Equation (11). Sharp ramp-up and
ramp-down changes were observed between 50% and 60% when the duck curve intensity
was aligned with the lowest point of the power netload, an almost three-hour transition.
Under a high PV system capacity, a revised “12-3-6-3” transition is needed for appropriate
NPP load-following.
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Table 5. Average ramping region hours.

PV

Extreme
Following Region

Normal
Following Region

Safe
Following Region

Ramping-Down
(h)

Ramping-Up
(h)

Ramping-Down
(h)

Ramping-Up
(h)

Ramping-Down
(h)

Ramping-Up
(h)

10% 23.334 7.209 1.084 7.042 2.875 6.333
20% 23.292 8.709 1.021 7.167 2.875 6.646
30% 23.334 9.750 1.230 8.021 2.855 6.750
40% 23.229 10.688 1.250 10.042 2.855 7.980
50% 23.500 11.938 2.729 11.833 4.063 11.021
60% 2.104 14.625 5.792 14.188 7.709 13.813
70% 4.479 15.083 7.688 14.604 10.229 13.958
80% 5.521 15.375 9.563 14.875 11.271 14.042
90% 6.688 15.792 9.875 14.958 11.396 14.042

4.2.2. The Load-Variability Stage

Figure 7 shows the absolute deviation of the SMR, baseload operation, and load-
following operation. The baseload operation requires continuously generating the max-
imum power of SMR. The deviation was calculated by subtracting the residual netload
with the mean residual netload. The residual netload was also calculated by subtracting
the power netload with the total SMR power. The upper plot of Figure 7 is a result for
the baseload operation, and the plot below is a result for the load-following. At a low PV
capacity, a high deviation was concentrated in the afternoon and at dawn, and successfully
mitigated by SMR load-following, as can be seen in Figure 7a. When the PV capacity
was increased, a high deviation was only concentrated in the afternoon, but it deepened
owing to the PV and was weakly mitigated, as can be seen in Figure 7b,c. Under a high PV
capacity, the high deviation appeared in the daytime and was hardly mitigated, especially
in the afternoon, as can be seen in Figure 7d.

Table 6 shows the numerical analysis of load variability. “Max” is the observed
maximum deviation and “Mean” is the observed mean deviation. The value of Max
indicates a peak-shaving effect [38]. The more the NPP operation region deepens, the more
the peak-shaving effect appeared; however, it worsened with the increase of PV capacity.

Table 6. Statistical analysis chart of the deviation.

PV
Baseload (MW)

Load-Following (MW)

Extreme
Following Region

Normal
Following Region

Safe
Following Region

Max Mean Max Mean Max Mean Max Mean

10% 1979 946 1269 451 1561 694 1680 833
20% 1885 835 1357 377 1658 581 1781 721
30% 1993 750 1438 358 1752 529 1882 645
40% 2153 737 1521 351 1889 514 2029 635
50% 2313 783 1544 367 1985 519 2165 650
60% 2473 860 1824 456 2102 621 2320 752
70% 2633 952 1893 581 2263 770 2467 890
80% 2793 1054 2556 723 2525 894 2671 1000
90% 2953 1166 3122 835 2727 1008 2863 1114
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Figure 8a shows the relative ratio of Max based on the baseload. A small relative ratio
is indicative of a superior peak-shaving effect. The deterioration first appeared at 20%,
when the duck curve started to deepen, and then at 72%, 88%, and 94% depending on
the following regions. Superior deteriorations appeared after a 60% PV capacity rate. The
relative ratios reached their maximum values, along with an increase of PV capacity, at
106%, 92%, and 97%.
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The Mean tendency had a valley, unlike the Max tendency. The Mean decreased by
40% and increased after 50%, as shown in Table 6. Figure 8b shows the relative ratio of
Mean based on the baseload. When the relative ratio is small, it shows a superior load-
smoothing effect. Good load-smoothing effects were maintained until the PV capacity
rate reached 60%. Similar to the Max, the Mean exhibited deteriorations after 60% PV
capacity. Maximum values for the relative ratios were achieved, along with an increase of
PV capacity, at 72%, 86%, and 96%. By assuming that deterioration started as 3% above the
Mean relative ratio at a 10% PV capacity rate, we could determine the PV capacity rates
where the load-following effects are still effective depending on the load-following region
using a linear approximation. These rates were: 57.7%, 65.2%, and 66.1%. Consequently,
SMR load-following experienced a limitation after a 63% (mean value) PV capacity rate in
the downtown region.

5. Conclusions

In this study, SMR modeling with the RCC in the UC plan was proposed and the effect
of SMR load-following under various duck curves in the metropolitan region of Seoul
was analyzed. The 335 MWe SMRs were considered in this study, but other sizes of SMRs
(100~500 MWe) could also be sufficiently considered with the suggested model. Different
simulations for multiple purposes can be run by increasing the size of RC or by changing the
equality constraint under conditions where renewable energy is utilized. Under “one per
day”, the transition of the NPP typical load-following scenario was observed as “12-3-6-3”.
The simulation results presented the necessity of a time shift from dawn to daytime in the
“12-3-6-3” scenario depending on the size of the PV system.

Additionally, the peak-shaving and load-smoothing effects of SMR load-following in
the downtown region were evaluated. SMR alleviated the deviation of power netload by
almost 50%, 30%, and 15%, in proportion to the size of the load-following regions. However,
these effects started to deteriorate after the PV capacity rate of 60%. Load-smoothing effects
were diminished to halves under higher capacity rates of the PV systems. Consequently,
the NPP and SMR should mitigate the impact of PV peak power by shifting the “12-3-6-3”
scenario time. These mitigations worked sufficiently until the size of the PV system reached
60% of the maximum power demand. Thus, it is recommended that the size of the PV
system in a metropolitan region would be able to meet 60% of the maximum power demand.
If it is expected to meet a higher power demand, other considerations are needed.

However, there were some supplement points in the simulation. Owing to the auxiliary
constant, δ, the simulation had an undesirable ramping outcome. In Figure 5b, NPP #2 had
an unintended longer ramp-up state. Furthermore, the simulation was assessed under an
urban area, where the power demand had a huge gap, and the duck curve was weak. The
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typical “12-3-6-3” scenario reached its limit more quickly than in the proposed simulation
when the general power demand had proper rates of power usage.

In future studies, the economic analysis of NPP and SMR load-following will be
considered to determine their economic feasibility, as they have a large construction cost
and a low power cost. Not only PV, but also wind power and other major renewable
sources such as floating PV and marine PV, will be considered for a realistic SMR power
plan. Although floating and marine PV are more affected by environmental factors than
rooftop or land PV, especially owing to waves and powerful wind, this problem could
be solved by designing floating bifacial PV with different installation azimuths [10]. In
addition, the floating PV is suitable for metropolitan regions, which have low effective
land availability [5]. With systemic methods, power demand–supply program research
with floating PV will be considered to raise the stability of the power gird. The results of
such research would inform the design of PV systems in downtown regions where there is
insufficient land to install PV systems.

NPPs and SMRs are needed in the transitional power plant because of its lower power
cost and carbon emissions compared to other power plants. In addition, the intermittency
of renewable energies causes severe risks to the power grid system operator and the NPP
baseload operation. In the near future, SMR could be connected with high-efficiency PV
systems with high power density modules, such as bifacial and shingled structures made
of TOPCON cells. The system would then be combined with different installation sites,
such as floating and marine environments, and in the building for BIPV. Finally, this study
could contribute to the optimal power planning of system operators to stabilize the power
grid as a soft landing for the complete RE100.
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