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Abstract: Despite significant advances in distributed renewable energy systems (DRES), the technol-
ogy still faces several substantial challenges that prevent the large-scale adoption of these systems into
a country’s energy sector. The intermittency of renewables, uncertainties associated with real-time
multi-horizon weather and load forecasts, and lack of comprehensive control systems are among the
main technical and regulatory challenges for the real-world adoption of DRES. This paper outlines
the current state of knowledge in the real-world operation of DRES and also describes pathways and
methodologies that enable and facilitate the uptake of DRES in a country’s energy sector.

Keywords: renewable microgrid; high-resolution weather/energy forecasting; grid integration;
comprehensive control

1. Introduction

Due to the anticipated rapid electrification of industry and transport, and the growing
population, recent projections show a significant increase in electricity demand by 2050,
e.g., 10–60 TWh in New Zealand [1], and about 50% worldwide reaching 45 trillion kilowatt-
hours (kWh) [2]. Renewable sources will play a major role in global electric power generation,
providing about 50% of total demand by 2050 [2]. The current centralised infrastructure
will not meet this demand and building new power plants and associated transmission and
distribution lines is expensive and unsustainable. In addition, “ . . . conventional power grid
networks are obsolete due to its difficulty of control and protection when many numbers of
distributed generations are used” [3]. Thus, alternative sustainable smart technology is needed
to meet future energy demand. Microgrid (MG) technologies can viably replace conventional
electricity networks to cope with increases in energy demand while addressing the need for
dependability arising from the rapid growth of the power system [3]. The technology of the
physical components of MGs has matured in recent years, including photovoltaic systems
(PV), natural gas-fuelled combustion turbines, fuel cells and batteries, and the benefits of the
integration of MGs into energy systems have been demonstrated [3,4].

The adoption of distributed renewable energy systems (DRES) is a potentially trans-
formative solution to achieve government targets for renewable electricity generation.
DRES uses distributed micro-scale solar and wind generation to meet local energy needs
with zero emissions. However, there are vital scientific knowledge gaps about micro-scale
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renewable energy resources and the design and operation of DRES within a country’s
national grid. Despite their recognised potential benefits [4], national uptake of MGs has
been slow in the real world. The slow uptake is due to a lack of real-time implementation
and commercial use of MGs, along with concerns around MG system stability, reliability
and operational control [3].

There are considerable barriers to the real-world implementation of DRES [5–10].
This situation results from a lack of knowledge about where and how DRES would best
be located and operated for optimal integration with national grids and operated under
the full range from normal to emergency/contingency conditions [11]. Because they rely
on wind and solar generation, efficient DRES design and performance requires accurate
knowledge of large-scale and micro-scale climate conditions [12].

This review paper mainly focuses on two main areas:

(a) How to best employ/integrate high spatiotemporal resolution weather and load
forecasts in the design and real-time operation of DRES;

(b) Embedding comprehensive control systems in DRES that enhance real-world opera-
tion, resiliency, and reliability of the microgrid system under normal, emergency, and
contingency conditions.

Research in area (a) highlights the methodology and science required to determine
DRES potential and operation at microscales. This will demonstrate specifically where
and how micro-scale DRES would optimally be incorporated into the national grid. Key
components include high-resolution numerical weather prediction (NWP), bioclimate
mapping, and control algorithms. These would not only provide design and operation
specifications for DRES with various capacities and account for variations in climate and
geography settings across a country but also provide input to the control system to optimize
the real-time operation of DRES.

The second research area (b) concerns determining practical adoption pathways for
DRES in a country’s energy sector. This involves the development of a leading-edge agent-
based model (ABM) of the behaviour of regulators, technology developers, distributors,
and consumers, incorporating the physics-based model of the electricity system developed
in task (a). This advanced ABM will allow:

• The identification of optimal location-based energy system designs, considering cur-
rent regulations and future changes.

• The simulation of DRES operation within the national grid under various real-world
weather, consumer behaviour, and load scenarios and

• An undertaking of cost-benefit analysis, option-analysis and multi-criteria-analysis [13]
to qualitatively evaluate new policy and regulatory approaches to accelerate the par-
ticipation of DRES.

2. Gaps and State-of-Knowledge

To address the barriers to DRES adoption listed in Section 1, most of the recent MG
research work e.g., [14,15], has focused on the development of more robust and resilient
control systems to enable real-world MG operation, especially given the challenges of
tackling variable generation from renewables coupled with demand intermittency.

In Sections 2.1–2.5, we summarise several recent research works [3,16], that have
identified major shortcomings that presently prevent large-scale adoption of MG.

2.1. Intermittent Nature of Renewables and Demand Forecasting

Renewable energy sources such as wind and solar power are inherently variable and
uncertain, making it challenging to model and predict their behaviour. For the purpose of
electricity markets, renewable MG systems (without energy storage systems) are categorised
as non-dispatchable units because the power generation is volatile and intermittent [17]
and thus not always available for dispatch to the market. This intermittency imposes
even larger uncertainties at micro-scales. Both under and over power generation from
DRES can have a significant negative impact on reliability [18]. The high penetration
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of renewable generations over the last few decades has made forecasting and scenario
generation necessities to overcome renewables intermittency and mitigate uncertainties
in generation/demand forecasts [19]. Accurately modelling the interdependence between
renewable energy sources and electricity demand is crucial for effective microgrid planning
and operation.

One approach to improve the reliability of volatile and intermittent generation in an
MG is the design, optimisation and control of energy storage systems (ESS) [20,21]. MG
systems with high penetration of renewable sources would potentially require a very large
ESS capacity to alleviate the effects of the intermittent behaviour. This intermittency, or
in general, variability, occurs at different timescales or bandwidths. While various ESS
technologies exist (to satisfy the capacity and bandwidth requirements), the system designer
can determine the optimal ESS combination based on the local and global constraints and
specifications of the system [22]. It should be mentioned that although energy storage
systems are still relatively expensive, the cost of these systems has been decreasing as
technology advances and production scales up. As a result, energy storage is becoming
more accessible and affordable, paving the way for a more sustainable energy future [23,24].

In addition, as demonstrated in [25], there are advantages when employing both
main MG reactive and proactive operational strategies. The reactive strategy makes op-
erational decisions based on the current operation of the system and does not require
any weather/load forecasts. However, the proactive methods rely on forecasts of power
generation and demand.

Meteorological conditions determine the weather-reliant renewable resource avail-
ability as well as MG users’ demand [12]. Thus, they are essential in establishing optimal
operation strategies and energy scheduling. “Despite this, weather information plays a
secondary role in most of microgrid studies . . . because the main focus is on the electrical,
computational or economical aspects of the problem” [12]. The unrealistic assumptions in
most MG studies from 2014 to 2018 (190 works), such as perfect and determined forecasts,
are reviewed in [12]. These studies use synthetic data, historical data, local station measure-
ments and external forecasts. In addition, the lack of including extreme events (high/low
temperatures), sufficient and high spatiotemporal resolution weather/load forecasting, and
seasonal/annual variations are not assessed and is another gap in the current models.

Reference [19] presented a review of the different approaches used for modelling
variable renewable energy sources and highlights the importance of scenario generation
in capturing their complementarity and spatial-temporal dependence. These modelling
approaches include statistical models, machine learning models, and hybrid models. Al-
though these approaches can improve forecast capabilities in renewable MGs, they rely on
available historical data and relatively coarse generation NWP models that are not suitable
for capturing the high spatiotemporal variability of renewable generations and energy
demand at micro scales. In addition, as concluded in [19], the accuracy and computational
efforts of these methods have not yet been evaluated in large power systems.

Therefore, implementing accurate and detailed multi-horizon weather/load fore-
casts [26–28] into the operation of MGs will improve efficiency, and ensure reliable and
resilient performance [29]. This will require substantially increased resolution and pre-
cision over currently available forecasting methods. The large uncertainties in current
approaches are due to their reliance on synthetic climate forecasts derived from historical
climatology [12], typically using just one climate variable and, also assuming deterministic
(static weather/load patterns derived from historical series which do not change much
from day to day) demand and/or forecasts [30].

High-resolution multi-horizon weather/load forecasts have not been used in oper-
ational MG control systems and operations. Unlike previous research, both Numerical
Weather Prediction (NWP) and the electrical aspects of MGs should be brought together
(Figure 1) to maximise the real-world functionality and operability of MGs. Therefore,
novel forecast techniques, which incorporate sub-km to very coarse NWP models as well
as ensemble (probabilistic) forecast into MG operation, should be employed to minimise
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the impact of renewable intermittency on MG real-world operation. These techniques are
elaborated on in Section 3.1.
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2.2. Comprehensive Management Systems

“A significant challenge of MG implementation is developing comprehensive control
methods to ensure efficient, stable, and reliable operation” [31].

Although the MG is connected to the main grid, a specific design is required to
ensure the reliable and resilient independent operation of the system [31]. Some of the
main advantages of MGs, and which incentivise consumers/distributors/regulators to
adopt them, are that MGs can provide higher resiliency, reliability and power quality
for consumers, lower costs, and carbon-free generation [4,32]. In addition, contingen-
cies and outage causes, such as equipment failures and natural hazards, can signifi-
cantly impact reliability and resiliency by increasing the average frequency and duration
of interruptions.

Therefore, research effort has been directed towards designs for the master comprehen-
sive control, to assist with making the decision of when to switch between interconnected
and island modes to minimise the impact on users. Some available methods use short-term
linear optimisation of power-plant dispatch, but these methods have limited real-world
application because they cannot consider the strategies of boundedly rational actors, for
example, prosumers and policymakers [33].

In contrast, some other methods apply long-term optimisation algorithms to determine
the energy system dispatch strategy. However, due to a strong assumption of having perfect
forecasts of stochastic variables (such as demand or renewable energy sources), this method
is also not applicable to real cases [33,34].



Energies 2023, 16, 3477 5 of 16

2.3. Control of Voltage, Frequency and Power Quality

A growing application of voltage-sensitive loads requires higher power quality to
prevent harmonics and voltage issues in the operation of power-system-connected devices.
By enabling local control of frequency, voltage, load and rapid response from storage units,
MGs offer an efficient solution for addressing power quality concerns [4,7].

Through this aspect of MG research, several compensation techniques for power qual-
ity in MGs have been proposed, including the autonomous control method for DC MGs [35],
a control and grid-interfacing power quality compensator for single- and three-phase
MGs [36], and embedding power quality conditioning capability into voltage inverters of
MG using for instance frequency/sequence selective filters [37]. There are several harmonic
reduction methods proposed that can be generally categorised as passive (filter high-order
harmonics) and active (filter any order harmonics) power filtering techniques [3].

In this investigation it is suggested that the next breakthroughs in this research field
will come from the study of wide area harmonics control and also power quality improve-
ment units that can be implemented in real-world power systems.

2.4. Integration in National Grids, Physical Peer-to-Peer Arrangement and Real-World
Implementation and Operation

Effective grid integration and power sharing management strategies, through robust
peer-to-peer arrangements, play a decisive role in enabling the smooth functioning of MGs
either in an island or grid-tied mode [3,38]. If not engineered carefully, MG integration
with the main grid can potentially have many adverse system impacts related to protection,
control, power quality and reliability, and restoration time after an outage [16,39]. In
addition, switching from island to grid-tied mode could cause power imbalances [16].

The integration issues would prevent the otherwise significant operational advantages
that microgrids (MGs) could bring to the power sector, such as improved stability of the
power network, increased efficiency due to reduced network losses, carbon-free power
generation, operation in both grid-tied and autonomous island modes, and increased
resilience (MGs provide back-up supply should the main grid fail).

Accordingly, many studies have attempted to address the recognized MG grid integra-
tion challenges. However, there are critical simplifications and assumptions that limit the
applicability of these studies to MG implementation in real-world conditions.

These idealised and strong simplifying assumptions include neglecting: energy re-
silience design [40,41], generation analysis [42], new generation sources adaptability [42,43],
MG holistic control [44,45], system modelling [46,47] and voltage limit violations [48]. Some
of the other idealistic assumptions in previous research work include: ignoring/capping
export limits [49]; assuming deterministic demand and/or forecasts [30] and ideal peer-to-
peer arrangements by focusing only on either the generation side [50], the load side [51,52]
or the generation-demand combination without considering other elements such as bat-
teries and intermittent renewables [53]. Research into the resilient operation of a power
system, which includes distributed generation, must account for peer-to-peer transactive
arrangements, but this aspect has been missing in most research studies [48].

Thus, considering the vital importance of the real-world operation, an important
aspect of the cutting-edge research effort should be the demonstration of the performance
of developed control and peer-to-peer algorithms under real-world conditions in the island
and grid-tied modes and without idealistic assumptions. However, to date, real-world
MG case study demonstrations, such as the CERTS microgrid [54,55] and microgrid in
the Illinois Tech Campus [56], have been rare, and even these were limited in scope and
operation mode [57].

2.5. Economic Aspects

Much recent research effort, e.g., [58,59], has been directed toward a thorough assess-
ment of the economic benefits of MGs, to provide information that incentivizes consumers
and energy sectors to implement them. These studies have shown that generating energy
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in the proximity of consumers brings significant benefits in terms of eliminating transmis-
sion/distribution (T&D) payments and losses, which not only reduces the costs for users
of MGs but also could potentially benefit the entire energy sector by reducing the T&D
network congestion and enabling a better economic dispatch of available energy sources [4].
Other economic benefits of MGs are achieved through MG scheduling aiming to minimise
the operation costs of local MGs.

One aspect of the cutting-edge of research in this field is focussed on economic
evaluation and feasibility of MG operation in real-time through transactive peer-to-peer
arrangements. Although this requires further investigation, especially in market ser-
vices [60,61] and also market design [50,62–64], addressing the main technical barriers
(i.e., Sections 2.1–2.4), which enables real-world operation and large-scale adaption of MGs,
is a higher priority.

3. Potential Solutions

Novel approaches are required to transform electricity sectors to meet the Govern-
ment’s target of 100% renewable generation by 2030 [65]. This transformation requires
phasing out the electricity generation still coming from fossil fuels. Its replacement is
expected to come from growth in wind and solar. However, conventional wind/solar gen-
eration requires significant land area and the construction of expensive new transmission
lines. Moreover, present transmission and distribution losses make up a considerable frac-
tion of the total electricity generation in a country. For example, in Aotearoa-NZ these losses
amount to ~3000 GWh annually, enough to supply electricity to over 415,000 four-person
households [66].

Based on the science and technical gaps [3,4,16,67] currently preventing the large-scale
adoption of DRES in the energy sector (Section 2), this study argues that research focusing
on addressing the below topics could significantly contribute to the large-scale adaption
of DRES:

1. Intermittent nature of renewables and demand load at micro-scales.
2. Lack of efficient and novel comprehensive control systems.
3. Integration of DRES into the main grid.

Importantly, a case study demonstration of the performance of the MG system and
control algorithms in real-world conditions will contribute to the adoption of MG in both
island and grid-tied modes, considering the rarity of MG field demonstration interna-
tionally [3]. All these components and scientific advances are interconnected (Figure 1)
and are required to be considered simultaneously to achieve a solution for the real-world
implementation of DRES.

This research does not focus on the economic aspects of DRES, despite there being a
need for more studies in this area. Numerous existing studies have demonstrated significant
economic benefits of MGs, not only for the users of MG but also for the whole energy
sector. In this study, it is anticipated that by focusing on the three areas listed above, the
groundwork will be laid for future economic studies, including comparative cost/benefit
analyses of transactive agreements between users and the main network.

Figure 2 shows the layout of the energy system and its interaction with other sub-
systems. This study considers layers 1, 2 and 3 and recommends accurate analyses of
interconnected layers. However, it is vital to model and investigate the effect of other
exogenous systems, i.e., socio-economic and policy/regulations, on the electrical system in
the design and operations stages.



Energies 2023, 16, 3477 7 of 16Energies 2023, 16, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 2. Implementation layers of DRES within energy sector and main science and technical 
gaps. 

3.1. Tackle Renewables Intermittency 
Most previous renewable resource assessments have been based on observational 

data from meteorological monitoring [68] (e.g., sodar, masts, and lidar), or rely on syn-
thetic climate forecasts derived from historical records [12]. Even though meteorological 
stations usually offer valuable and reliable data, their placement is typically far apart from 
one another, leading to a lack of high-quality spatial representation. Additionally, the 
scarcity of data, the impact of local topography, and the variation of the regional climate 
can render spatial interpolation methods unreliable and diminish their significance. 

Accurate scenario generation can facilitate effective microgrid planning and opera-
tion and enable the development of optimal control strategies to maximise the use of re-
newable energy sources in the microgrid [19]. Previous approaches for scenario genera-
tion modelling rely on statistical and artificial intelligence methods, which are often ap-
plied to historical data. Reference [69] proposed a cross-correlated scenario generation 
approach using implicit generative models to capture the joint probability distribution of 
renewable energy sources and electricity demand. They emphasised the importance of 
generating correlated scenarios to capture the interdependence of renewable energy 
sources and their impact on the operation of the microgrid. Reference [70] developed a 
comprehensive tool for generating 24-h scenarios of solar irradiance profiles. They used a 
statistical approach to model solar irradiance based on historical data and employed the 
Roulette Wheel method to generate an initial set of scenarios. 

In this study, the proposed advance is to integrate forecasts from NWP models in 
DRES to significantly enhance operational performance. This would also require quanti-
fying weather forecast reliability and determining the forecast uncertainties and confi-
dence intervals of the climate variables [67]. Employing high-resolution multiscale NWP 

Figure 2. Implementation layers of DRES within energy sector and main science and technical gaps.

3.1. Tackle Renewables Intermittency

Most previous renewable resource assessments have been based on observational data
from meteorological monitoring [68] (e.g., sodar, masts, and lidar), or rely on synthetic
climate forecasts derived from historical records [12]. Even though meteorological stations
usually offer valuable and reliable data, their placement is typically far apart from one
another, leading to a lack of high-quality spatial representation. Additionally, the scarcity
of data, the impact of local topography, and the variation of the regional climate can render
spatial interpolation methods unreliable and diminish their significance.

Accurate scenario generation can facilitate effective microgrid planning and operation
and enable the development of optimal control strategies to maximise the use of renew-
able energy sources in the microgrid [19]. Previous approaches for scenario generation
modelling rely on statistical and artificial intelligence methods, which are often applied to
historical data. Reference [69] proposed a cross-correlated scenario generation approach
using implicit generative models to capture the joint probability distribution of renewable
energy sources and electricity demand. They emphasised the importance of generating
correlated scenarios to capture the interdependence of renewable energy sources and their
impact on the operation of the microgrid. Reference [70] developed a comprehensive tool
for generating 24-h scenarios of solar irradiance profiles. They used a statistical approach to
model solar irradiance based on historical data and employed the Roulette Wheel method
to generate an initial set of scenarios.

In this study, the proposed advance is to integrate forecasts from NWP models in DRES
to significantly enhance operational performance. This would also require quantifying
weather forecast reliability and determining the forecast uncertainties and confidence inter-
vals of the climate variables [67]. Employing high-resolution multiscale NWP forecast as
well as ensemble forecasting will assist with scenario generation to enhance the modelling
of the spatiotemporal variability of renewable resources.
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In New Zealand, by way of example, the national institute of water and atmospheric
research (NIWA) operates and has access to the highest, most-reliable NWP forecast models
in Aotearoa-NZ. This includes access to the Global Ensemble Forecast System (GEFS),
the UK Met Office Global Unified Model [71], the New Zealand Limited-Area Model
(NZLAM), the New Zealand Convective-Scale Model (NZCSM) [72] and Auckland’s sub-
km model [73]. These models provide forecasts from 30 min to 35 days ahead at 21 km
(31 member GEFS [74]), 13 km (Unified Model (UM) Global Atmosphere model [71]),
4.4 km, 1.5 km and 333 m spatial resolutions, respectively.

Although the coarser NWP models (generally with spatial resolutions of >4 km, and
more recently convective-scale models with resolutions of about >1.5 km) successfully
capture the large-scale climate variations and trends, they are not capable of capturing
smaller-scale variations, in particular, urban heat island (UHI) effects, which significantly
influence the energy requirements in urban areas [75,76]. Therefore, finer-scale NWP
models, such as NIWA’s 333-m Auckland model [73], are required to capture these details.
Studies have shown significant forecast improvement of near-surface temperatures [77],
wind [73] and other variables [78] when using this very high-resolution model.

The proposed research will not only couple existing NWPs to models of DRES opera-
tion (though this itself will be a significant advance), but this will also require delivering
key advances for NWP capabilities in the context of DRES operation (Figure 3) as follows:

• Heatwaves and coldwaves can put significant pressure on the energy sector. To in-
vestigate the energy requirements in cities under these extremes, coupled NWP/CFD
(Computational Fluid Dynamics) simulations need to be conducted for selected historical
extreme temperature events [79,80] and also projected future extremes under climate
change to understand the operating conditions of DRES in these extreme conditions.

• NWP dynamical downscaling techniques [73,81] with an improved surface energy-
balance scheme [82] should be implemented for other major cities. These downscaled
models will not only contribute to increasing the understanding of UHIs but also play
a crucial role in the design of DRES/storage units and the operation of the system by
providing input to the agent-based and control models described in Section 3.2.

• To determine users’ heating/cooling demand, essential for the design of DRES, bio-
climate assessments need to be conducted [83]. The bioclimate maps, apart from the
design of DRES, will be used for the first time ever in real-time (and forecasted) in the
agent-based model to optimise the performance of the generator and storage systems.
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3.2. Development of Comprehensive Control System

Comprehensive control systems are required to provide and ensure sufficient, stable
and reliable real-world operation [31,68]. However, current control methods have unreal-
istic assumptions in peer-to-peer trading and scheduling models [84,85], such as the lack
of real-time forecast horizons. Scenario-based security assessment methods (e.g., Monte
Carlo Simulation [86]) cannot be applied due to the very large number of connections and
complex behaviour of the energy system. By way of example, considering peer-to-peer
energy trade and also integrating load and generation forecasts into the control strategies.
This complexity leads to computationally-expensive calculations that thus cannot be imple-
mented in real-time. Moreover, current methods to design preventive control strategies
(such as worst conditions [87]) may lead to higher operational costs for the energy system.

Therefore, it is proposed to develop online security analysis algorithms, based on
deep reinforcement architecture [88], to guarantee energy system resiliency and reliability
under emergency and contingency conditions, including both low-probable high-impact
and high-probable low-impact events. This comprehensive control system will be the first
model with a suitable preventative control strategy for the integration of DRES opera-
tion into a wider network, which leads to a highly-connected energy system for which
risks of cascading blackouts need to be integrated into the operational costs based on
load/generation conditions. It should be noted that reinforcement learning implementa-
tion can present some challenges, such as the need for extensive computational resources
and data processing capabilities to support real-time analysis and decision-making in a
highly-connected energy system [89,90]. Moreover, there might be practical limitations
and regulatory barriers, such as the need for a large amount of data and computational
resources to train the models, which could hinder the adoption and deployment of such
systems. Advances in machine learning and computing technology have made it easier to
build accurate models and simulate complex systems [91,92]. Moreover, there is a growing
interest in developing sustainable energy solutions, which provides an opportunity for the
integration of reinforcement learning techniques. As such, with the right approach and
investment in research, it is possible to overcome these challenges and fully realize the
potential of reinforcement learning in energy systems.

To address the shortcomings in the current MG management systems, mentioned in
Section 2.2, a recommended approach in this research is to develop a multi-scale multi-
horizon ABM [93,94] to consider the short-term and long-term perspectives of the active
players in the energy system. In other words, a multi-scale model will be built to use in
different supply/demand scenarios. It is envisioned that this model will accurately and
dynamically represent agent decisions, which are usually boundedly rational and yet also
be simple enough to allow the longer-term simulations to execute with acceptably fast
run-time. It should be noted that the development and implementation of a multi-scale,
multi-horizon agent-based modelling is a highly complex computational task, which arises
from the need to model a vast range of interactions and decision-making processes between
agents at multiple scales and horizons [95]. Simulating such a model requires significant
computational power and the use of advanced algorithms to capture the heterogeneity and
dynamics of the system. Despite the computational challenges, multi-scale, multi-horizon
agent-based modelling is a powerful tool for understanding complex systems and predict-
ing their behaviour under different conditions [94]. With the advancement of computing
power, the development of parallel computing techniques, and the optimization of simula-
tion algorithms, the computational demands of agent-based modelling can be addressed to
some extent [96]. Furthermore, the use of advanced modelling techniques, such as model
reduction and surrogate modelling, can significantly reduce the computational burden of
agent-based models [97].

The mentioned studies and ABM development will be followed by a contingency
analysis to develop a state-of-the-art comprehensive contingency plan for the energy system
to maintain the availability of the energy system to required service levels and limit the
risk of cascading blackouts. Contingency analysis and multi-scale agent-based modelling
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are powerful tools for understanding complex systems and assessing their vulnerability
to disruptions. By integrating these tools, a comprehensive understanding of system
behaviour can be achieved [98]. Two methods of integration are incorporating contingency
analysis results into the agent-based model [99] and using agent-based modelling to inform
contingency analysis. The former approach models critical components identified by
contingency analysis as agents with unique decision-making processes and behaviours.
The latter approach identifies the most critical agents and interactions through simulation
and incorporates them into contingency analysis to develop effective mitigation strategies.
This integration can optimize system performance and enhance resilience by identifying
critical components and interactions and developing effective contingency plans.

3.2.1. Agent-Based Model (ABM)

ABM is a simulation technique that is well-suited for modelling complex and inter-
connected systems with adaptive agents, which are individual components of the system
with their own attributes and behaviour rules. By explicitly modelling the behaviour and
properties of these actors and how they interact with each other and their changing environ-
ment, ABM can capture the complex relationships between them [100]. The ABM approach,
therefore, allows the integration of complex decision rules into system models, which is
not given “centrally”. With enough knowledge of these rules and interactions, ABM can
help identify possible control strategies and regulation approaches for the system [101].

ABM has been applied to various research fields [102], including energy systems
analysis [103,104]. ABM has been linked to multiple benefits [105], including its capability
to simulate individual decision-making [106]. For instance, a study focused on the German
electricity market employed ABM to model the decision-making processes of different
agents, including plant operators of DRES [104]. This research aimed to model decision-
making as realistically and comprehensively as possible by representing diverse types of
agents. Reference [104] shows that the outcomes of agents’ collective decision-making can
determine the overall amount of DRES energy traded in the wholesale power market.

ABM opens the gate to building accurate multidisciplinary models-within-model
systems as it can host many different paradigms. Reference [107] shows how psycho-
logical decision models can be used when modelling the investment behaviours of solar
homeowners. Another example is [108] which proposes an ABM-based approach to create
a technology diffusion model and explore the growth of small solar systems based on
economic, ecological, and social factors.

ABM can be useful in studying various aspects of policy-making procedures. Numer-
ous policies within the energy sector focus on finding ways to encourage investment in
low-carbon technologies and flexibility options at minimal costs [109]. However, when
these policies are made and put into practice, it is essential to take the perspective of actors
into account for evaluating the effectiveness and efficiency of them [110,111]. ABM is a
valuable tool for explicitly modelling and analysing policy effects [101], particularly when
dealing with policymakers and markets such as the power market, CO2 market [112], ca-
pacity market [113], and DRES support markets [114]. This modelling is critical for creating
operational MG that can interact with these markets in the real world.

Simulating energy trading is another application of ABM in energy systems analysis
in which actors could be entities such as energy generators, retailers, or consumers. These
actors estimate the profit they could earn by participating in the market and placing
corresponding bids. To maximise their profit, actors usually learn to adjust their bidding
strategies based on past experiences and market conditions [115]. ABM can also take into
account the policy frameworks when developing models of different types of electricity
markets, treating the energy system as a complex adaptive system [116]. This leads to
identifying the interactions between different actors and factors in the energy system and
provides insights into how policies and regulations could affect the behaviour of different
agents in the market.
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ABM has additional applications in analysing the demand side of energy systems. For
instance, it can be used to portray how price-elastic consumers could benefit from demand
response [117]. ABM can also help determine the degree of price sensitivity of consumers
in a bottom-up approach.

3.3. Pathways to Grid Integration

As explained in Section 2.2, no currently available holistic technique is suitable for
real-world MG management in different applications. Offline deterministic modelling
with stochastic programming uses limited operation scenarios [118], and thus cannot cap-
ture the highly volatile load profile and time-changing conditions expected for DRES.
Worst-case condition analysis is overly conservative and uneconomic [119]. Real-time opti-
misation/scheduling is computationally expensive and has a limited look-ahead window
that prevents effective scheduling [120].

The pathway toward grid integration is to embed an ABM (Section 3.2.1) into the
operation of the DRES to simulate and manage the behaviours of players in the energy
system including regulators, technology developers [121], distributors, prosumers and
consumers, incorporating the physics-based model of the electricity system developed in
previous steps. Moreover, distributionally robust optimisation (DRO) approaches should
be developed to capture the highly volatile operating conditions of DRES.

4. Conclusions

The intermittent nature of renewables, uncertainties associated with real-time multi-
horizon weather and load forecasts, and the lack of comprehensive control systems are
identified in this paper as the main challenges for the adaptation of DRES in the real world.
This discussion paper outlines the current state of knowledge in the real-world operation
of DRES and proposes pathways to enable the uptake of DRES in a country’s energy sector.
To mitigate and minimise the uncertainties arising from the intermittency of renewables
and demand load in real-time, it is recommended to:

Dynamically downscale current operational NWP models to very fine resolutions, e.g.,
a few hundred meters, and include improved surface energy balance to capture highly
variable urban-area microclimates.
Conduct high-resolution flow modelling using CFD and coupled NWP-CFD to investigate
the effects of extreme temperatures on both energy demand and availability.
Develop and embed a machine-learning algorithm trained on fine-resolution NWP and
CFD results to bypass computationally expensive simulations in real-time and only conduct
online updating of the control system.

The lack of a holistic control system is another technical barrier that impedes the large-
scale adoption of DRES. A multi-scale agent-based model based on deep reinforcement
architecture was suggested as a viable approach to develop a comprehensive control system
for normal and contingency conditions. This will consider the short-term and long-term
perspectives of the active players in the energy system.
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