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Abstract: In the global trend towards decarbonization, peer-to-peer (P2P) energy trading is garnering
increasing attention. Furthermore, energy management on the demand side plays a crucial role
in decarbonization efforts. The authors have previously developed an automated bidding agent
that considers user preferences for renewable energy (RE), assuming users own electric vehicles
(EVs). In this study, we expand upon this work by considering users who own not only EVs but also
heat pump water heaters, and we develop an automated bidding agent that takes into account their
preferences for RE. We propose a method to control the start time and presence of daytime operation
shifts for heat pump water heaters, leveraging their daytime operation shift function. Demonstration
experiments were conducted to effectively control devices such as EVs and heat pumps using the
agent. The results of the experiments revealed that by controlling the daytime operation of heat
pumps with our method, the RE utilization rate can be improved compared to scenarios without
daytime operation shifts. Furthermore, we developed a simulator to verify the outcomes under
different scenarios of demand-side resource ownership rates, demonstrating that higher ownership
rates of EVs and heat pumps enable more effective utilization of renewable energy, and that this
effect is further enhanced through P2P trading. Based on these findings, we recommend promoting
the adoption of demand-side resources such as EVs and heat pumps and encouraging P2P energy
trading to maximize the utilization of renewable energy in future energy systems.

Keywords: P2P energy trading; electric vehicle; heat pump water heater; optimization

1. Introduction
1.1. Background

Renewable energy (RE) plays a crucial role in the global decarbonization trend, con-
tributing to the large-scale deployment of clean energy sources. In the transition towards
decarbonized energy systems, it is important to focus not only on diversifying power gener-
ation, including RE, but also on demand-side energy management, such as energy storage
and energy efficiency improvements [1]. Consequently, this study emphasizes demand-side
controls that utilize energy storage systems and heat pumps on the demand side.

Peer-to-peer (P2P) energy trading has emerged as a promising solution for enabling
dynamic demand-side energy management and coordinating a multitude of distributed
energy resources. Various studies have examined different aspects of P2P energy trading,
including optimizing trading strategies and market design [2,3], harnessing blockchain
technology for efficiency, transparency, and security [4–8], and demonstrating the effective-
ness of these systems through real-world case studies [9–13]. For instance, Liu et al. [2] and
AlSkaif et al. [3] proposed innovative P2P energy trading platforms to optimize demand
response schemes and trading preferences, respectively. These platforms aim to improve
the overall efficiency of energy management in residential systems. Blockchain technology
has been extensively explored to facilitate secure and transparent P2P energy trading, as
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evidenced by the work of Dang et al. [6] for big industrial energy users and Shukla et al. [8]
for smart grid applications. Real-world case studies further substantiate the potential of P2P
energy trading systems. For example, the Brooklyn Microgrid project, discussed by Men-
gelkamp et al. [10], illustrates how blockchain technology can be effectively implemented
to create a decentralized microgrid energy market.

Not only the technical aspects but also the social acceptability and institutional aspects
of energy management and decentralization are studied. Studies [14,15] focus on the role
of blockchain technology in the energy sector and institutional development for distributed
energy systems. Study [16] examines business models and policy interactions for micro-
grids, finding natural gas technologies as the most robust option. Study [17] evaluates
peer-to-peer energy sharing mechanisms, with supply and demand ratio mechanisms out-
performing others. Lastly, study [18] proposes a multi-stage incentive model for micro-grid
project development involving multiple stakeholders.

Furthermore, research on demand-side demand timing adjustment and energy man-
agement using energy storage systems has demonstrated the effectiveness of demand-side
energy management [19–22].

This study proposes a trading algorithm for electricity trading agents in a P2P elec-
tricity trading market for households with electric vehicles (EVs) and heat pump water
heaters, considering the subject’s preference for RE on the consumer side. The authors
proposed a trading algorithm for electricity trading agents in the P2P electricity trading
market in 2021 for households with EVs [23], but the mechanism to adjust the operating
timing of the heat pump water heater was not considered in that algorithm. In this study,
we propose a mechanism to optimize not only the charging and discharging of EVs, but
also the operating timing of heat pump water heaters according to user preferences.

1.2. Related Work

Energy management on the demand side includes the use of storage batteries and
changes in demand timing. Various studies have been conducted on the use of storage
batteries, and consumers who own EVs can be expected to enjoy cost advantages by
optimizing the recharge and discharge of their EVs, procuring more electricity from the
market when electricity prices are low, storing it in batteries, and discharging it from the
batteries when market electricity prices are high. This is expected to be a cost advantage.
Optimizing EV recharge/discharge is also important not only from a cost perspective, but
also in terms of satisfying individual users’ RE preferences by inexpensively increasing
the RE ratio by charging EVs when surplus cheap RE is generated. If users do not own
EVs or storage batteries, their own electricity demand will be a constraint on electricity
transactions, but if they own EVs or storage batteries, they can reduce costs and improve
their RE ratios by recharging and discharging them at appropriate times.

Wu et al. [19] formulated a stochastic optimization problem to optimize EV charging and
discharging plans with the goal of minimizing the cost of paying electricity bills while meet-
ing household electricity demand and PEV charging requirements. Vivekananthan et al. [20]
proposed an algorithm to control home appliances with the goal of reducing the total cost
of residential energy consumption through real-time monitoring, stochastic scheduling,
and real-time control while application combinations were considered. Langer [22] mini-
mized costs and discomfort for market participants by mixed integer linear programming,
assuming a home with a home energy management system, adjustable heat pump, and
photovoltaic power generation, combined with electrical and thermal storage systems.

In addition to the energy storage facility, another example of energy management by
changing demand timing would be to adjust the operating timing of the heat pump water
heater. For example, excess solar power generation during the daytime can be used to
operate the heat pump water heater, making effective use of surplus electricity. Studies on
adjusting the operation timing of heat pump water heaters include those by Clift et al. [24]
and the aforementioned Langer [22].
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Studies from a preference perspective include [25–27], whereby all of them take
into account the preferences of individual users while ultimately maximizing overall
utility, which is a framework in which users cooperate. Our study differs significantly
in that individual users move independently toward satisfying their own preferences.
Reis et al. [28] assess how prosumers and consumers pursuing different goals can influence
the energy self-sufficiency of a local energy community. The preferences are considered
in the modeling to represent a smart community. Yet it does not take into account the
orientation toward RE. Pena-Bello et al. [29] assessed P2P trading decisions of German
homeowners on the basis of an online experimental study and showed that P2P energy
trading based on human decision-making may lead to financial benefits for prosumers and
traditional consumers, plus reduced stress for the grid. When prosumers have not only RE
generation facilities but also demand-shifting facilities such as EVs and heat pumps, it is
possible to reduce the load on the grid even more. Therefore, in this study, we will conduct
simulations assuming that many entities own demand-shifting facilities such as EVs and
heat pumps, and we will confirm the effect of such facilities.

In summary, various studies have explored energy management on the demand side,
including the use of storage batteries, EVs, and adjusting the operation timing of heat
pump water heaters. These studies have achieved some success in optimizing energy
consumption and costs. However, there is still room for improvement in fully considering
individual users’ preferences and ensuring that renewable energy orientation and other
user-specific priorities are adequately addressed. Further research is needed to develop
more tailored energy management solutions that effectively meet the diverse preferences
of users.

Therefore, the goal is to develop an operational planning model for EVs and heat
pumps that takes into account the orientation toward RE in P2P transactions. It is also
important to establish an actual controllable mechanism in a manner that is compatible with
the standards that drive existing heat pump water heaters. In this study, the optimization
of bidding contents, charging/discharging timing, and daytime shift timing is designed by
keeping in mind the Application Programming Interface (API) for control and information
acquisition provided by the ECHONET Lite [30] standard used by heat pump water heaters
that enjoy widespread popularity in Japan.

1.3. Contribution of This Paper

In this study, we envision an electricity P2P trading market and develop an agent
system that automatically performs electricity transactions on behalf of users in the market.
The objective is to enable power trading based on individual user circumstances by not
only bidding based on user assets such as heat pump water heaters, EVs, and solar power
generation and user electricity demand, but also bidding based on user preferences for RE.
The main novelty of this study is that it proposes a mechanism for energy management that
takes into account individual preferences for RE, including the operation of heat pumps as
well as EVs, thus achieving both economic efficiency and satisfying individual preferences
for RE. In particular, this study examined how optimizing the operation of heat pumps
could benefit heat pump users.

1.4. Organization of This Paper

This paper is structured as follows. First, in Section 2, we provide an overview of the
P2P energy trading platform. Subsequently, in Section 3, we describe the functionalities
of user agents. Then, in Section 4, we elaborate on the crucial aspects of bidding and
facility operation optimization within the user agent functionalities. In Section 5, we
discuss the demonstration experiments involving actual EVs and heat pumps. Since there
are limitations to feasible settings in the demonstration experiments, we develop a P2P
energy trading simulation in Section 6 and conduct the simulation. Finally, we present our
conclusions in Section 7.
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2. P2P Energy Trading Platform

Figure 1 shows an overview of the P2P power trading platform for the demonstration
experiment in this study. The role of the user agent in this P2P electricity trading platform
is to acquire the electricity usage and generation status of each consumer and prosumer,
forecast demand and generation based on this information, plan energy procurement and
usage in consideration of the facilities owned by each consumer and prosumer, such as
EVs and heat pumps, and bid on the blockchain market. The system then submits bids
to the blockchain market. It also has the role of issuing commands for the recharge and
discharge of EVs and the daytime shift time of heat pumps based on the optimization
and execution results. In this experiment, a total of five entities (HOME1 to HOME4 as
demand entities and one PV as power generation entity) conduct transactions, with only
HOME1 having EVs and heat pumps, and HOME2 to HOME4 having none of them. The
bidding agents communicate with the Internet gateway and the Blockchain energy market
to obtain information on the demand and generation of these bidding entities and to send
control signals. HOME1 owns the EV and heat pump, but HOME1, EV, and heat pump
have different smart meters. In the experiment, they are treated as one entity in a virtual
sense. Each entity may purchase electricity from the market or from retailers. They can also
sell the electricity they generate to the market or retailers. Each entity can choose whether
to deal with the market or the retailer, whichever has better terms, but cannot purchase
RE from the retailer. If they have EVs or storage batteries, they can purchase electricity
from the market or retailers when it is cheap, store it in their batteries, and use it when the
price rises.
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3. Functions of User Agents

Figure 2 shows the processing flow of the bidding agent. In the electricity demand
forecasting function, electricity demand is forecasted based on customer demand data and
weather data, and in the PV power generation function, PV power generation is forecasted
based on historical power generation data and weather data. Here, the Meteorological
Engineering Center’s solar radiation forecasting API [31] is used to create a machine
learning model using a random forest [32] to learn the relationship between actual PV power
generation and forecasted solar radiation values. The inputs of this model are forecasted
solar radiation, plus hour and month. In heat pump electricity demand forecasting, past
electricity consumption data and schedule information on hot water demand patterns
are used to forecast heat pump electricity consumption on the target day. The hot water
demand patterns are determined in advance and are supposed to repeat itself on a two-
week cycle. The heat pump itself has a heat demand pattern learning function and operates
by predicting heat demand. The ECHONET Lite API [30] used in this project does not have
a function to acquire the heat pump operation schedule, so the average value of operation
during the same heat demand pattern in the past was used as a forecast. In the bid creation
function, the system optimizes the power usage plan based on the transaction mode (green
mode or economy mode) set by the user, demand and power generation forecast results,
EV SoC, and heat pump operation forecasts, and creates a bid specifying the contents,
time frame, amount of power, and price to be bid on the P2P market. In the bid execution
function, the created bids are submitted to the energy market. The function for acquiring
contract results gets a record of bids that have been contracted in the energy market and
re-submits the results to the function for creating bids and recalculating new bids. The
energy market trades power in 30-min increments, and bids can be submitted from 24 h
prior to the actual power meltdown to one hour prior to the meltdown, and bidding agents
change their bids for the same market every 30 min. At that time, the bid cancellation
function is a function to submit a command to the market to cancel old bids made in the
past. The series of processes from forecasting to bidding is repeated for each agent at
30-min intervals from the auction deadline of the previous day to the upcoming deadline
(one hour before the electricity supply date and time).

The device control function is used to set charging/discharging commands to EVs
and daytime boil-up shift times to heat pumps; charging/discharging commands to EVs
are performed via the EV Power Control System (PCS) API based on the calculated EV
charging/discharging plan once the target market is closed. The EV PCS API was developed
as a mechanism that enables continuous charging and discharging at a user-defined output
level for a specified duration, utilizing a REST API over HTTP. The optimal daytime shift
start time for heat pumps is calculated at 9:00 p.m. on the previous day for the following
day, and the results are then used to set the shift time via the ECHONET Lite API [30].
The optimal daytime shift start time is obtained by optimizing the daytime shift start time
k in Bid Creation. After 21:00 on the previous day, k is fixed to the value obtained by
optimization at 21:00 during the day subject to optimization.
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4. Bidding and Facility Operation Optimization

The bid creation function (bid creation) optimizes market bids and EV recharge/discharge
based on forecasted demand, forecasted generation, SoC value, expected market contract
price, and retail electricity price. The bid creation function has two modes: economy mode
and green mode. In the economy mode, the optimization process aims to minimize costs
by taking into account the revenues generated from electricity sales. It aims to maximize
profits (minimize costs) by adjusting the timing and quantity of procurement from the
market and the grid, and by controlling the shift times of its own EVs’ recharge/discharge
and its own heat pumps. In the green mode, the optimization process aims to minimize
costs, including the revenue from electricity sales, while satisfying the target RE ratio set by
the user as a constraint.

Equations (1)–(9) show the optimization equation for the economy mode. The basic
equation is similar to that of Sagawa et al. [23], with the difference that a new heat pump
electricity demand value Ah

t,k is added. This is based on the value of the heat pump
electricity demand forecast for no daytime shift, and the time of daytime operation shift is
set to k.

Here, we provide an overview of each equation used in our model. Equation (1)
represents the objective function, which aims to minimize the sum of power procure-
ment costs and penalty amounts. The penalty term is introduced to prevent wasteful
transactions that offset each other through buying and selling. For example, it serves to
prevent scenarios where 100 kWh are purchased and 90 kWh are sold to procure 10 kWh.
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Equations (2) and (3) impose constraints to ensure that the amount of energy traded in
the market does not become negative. Equations (4) and (5) are constraints to ensure that
the charging and discharging of electric vehicles (EVs) do not exceed their output limits.
Equation (6) represents an energy balance constraint, ensuring that the balance between
consumption, generation, selling, and purchasing is maintained. Equations (7) and (8)
impose upper and lower limits on the SoC for EVs. Lastly, Equation (9) is a constraint used
to determine the SoC for the next time step based on the previous time step’s SoC and the
charging/discharging amounts.

The expected operating hours and expected power consumption during daytime
shift operation obtained from the heat pump API are taken into account to calculate the
electricity consumption of the heat pump at each hour of the daytime shift operation. The
following table shows the calculation of the power consumption of the heat pumps at
different times of the day. The amount of electricity shifted during the daytime is newly
added, and at the same time, the same amount of electricity shifted during the daytime
is subtracted from the amount of electricity used during the nighttime, so that the daily
electricity consumption of the heat pumps is the same with and without the daytime shift.
This optimization is performed for each daytime shift time k of the heat pump, and the
daytime shift time k at which the objective function is minimized and the value of the
variable to be optimized at that time are adopted. This equation assumes prosumers, but
mere consumers or generators can also be expressed as special cases of this equation. For
example, to express consumers, it should always be Ap

t = 0 since they do not have PV. For
example, to represent a generator, it should always be Ad

t = 0 since it has no demand. The
penalty term C in (1) was introduced to prevent excessive transactions that would offset
each other in buying and selling activities.

Minimize.
n+48×2

∑
t=n

[
Pm

t (Bm
t − Sm

t ) + Pg
t Bg

t + C(Bm
t + Sm

t )
]

(1)

Subject to.

Bm
t ≥ 0

(2)

Sm
t ≥ 0 (3)

Cmax

2
≥ Ct ≥ 0 (4)

Dmax

2
≥ Dt ≥ 0 (5)

Ad
t + Ah

t,k − Bm
t −

(
Ap

t − Sm
t

)
+ Ct − Dt − Bg

t = 0 (6)

Et ≥ El (7)

Et ≤ Eu (8)

Et+1 =

{
EtEcap+CtRc−DtRdis

Ecap
(i f Vt = False)

Et − Ft (i f Vt = True)
(9)

Each variable is defined as follows.
Bm

t Amount of electricity to be purchased in the market at time t [kWh] (Optimiza-
tion target)

Sm
t Amount of electricity to be sold in the market at time t [kWh] (Optimization target)
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Bg
t Amount of electricity to be purchased from electricity retailers at time t [yen/kWh]

(Optimization target)
Ct Amount of charge to the battery at time t [kWh] (Optimization target)
Dt Amount of discharge from the battery at time t [kWh] (Optimization target)
Pm

t Expected price at time t [yen/kWh] (estimated by each agent based on expected
power generation)

Pg
t Retail price of electricity at time t [yen/kWh] (defined in advance)

Ad
t Expected electricity demand except heat pump at time t [kWh] (calculated by

demand forecast)
Ah

t,k Expected heat pump electricity demand with daytime shift start time k at time t
[kWh] (calculated by heat pump demand forecast)

Ap
t Expected power generation at time t [kWh] (calculated by power generation forecast)

Et Percentage of remaining charge of the battery at time t [%]
Cmax Maximum charging output of the battery [kW] (6.7 [kW])
Dmax Maximum discharge output of the battery [kW] (6.0 [kW])
El Lower limit of SoC [%] (set to 20 percent)
Eu Upper limit of SoC [%] (set to 90%)
Ecap Rated capacity of battery [kWh] (40 [kWh] was set.)
Rc Battery charging efficiency [%] (set to 86.6%, so that CHARGE_RATE × DISCHARGE_

RATE = 75%)
Rdis Discharge efficiency of the battery [%] (set to 86.6%, the same as CHARGE_RATE)
Ft Expected energy consumption by driving at time t [kWh]. This is always set to

0 because the EV is not running in this demonstration experiment.
Vt The bool value indicating whether or not the EV is running at time t. It is always

set to “false” because it is not run in this verification experiment.
m A subscript indicating that it is related to the market.
g A subscript indicating that it is related to the electricity retailers.
d A subscript indicating that it is related to the electricity demand.
p A subscript indicating that it is related to the power generation.
u A subscript indicating upper limit.
l A subscript indicating lower limit.
c A subscript indicating charge.
dis A subscript indicating discharge.
cap A subscript indicating battery capacity.
C Penalty term [yen/kWh]
Pm

t is the expected market price at time t. Similar to Sagawa et al. [23], this expected
price is calculated based on each agent’s forecast of all the PV generation in the market
on the target day based on weather information, and the expected PV generation rate pt
which is the predicted PV power generation divided by the rated maximum output. In the
experiment, parameters are set to A = 3, B = 5, C = 23 and D = 5.

Pm
t = C ∗ exp

(
−A ∗ pt

B
)
+ D (10)

Pg
t gives the price list for each time. We used “Hapi-e-time R” of Kansai Electric Power

Co., [33] as used in Sagawa et al. [23]. This price list is shown in Table 1.

Table 1. Table of Retail price of electricity.

Hour Price [Yen/kWh]

7:00–10:00 22.89
10:00–17:00 26.33
17:00–23:00 22.89
23:00–7:00 15.20
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(Equations (11)–(20)) show the optimization equation for green mode. Again, the basic
equation is the same as in Sagawa et al. [23], but a new heat pump electricity demand value,
Ah

t,k, is added. If a solution does not exist, the target RE ratio will be temporarily lowered
by 5% in stages until a solution is found.

In this paper, we have built upon our previous work [23] to enhance the modeling
and analysis of the home energy management system with RE, EVs, and heat pump water
heaters. Although the optimization problems formulated in this paper may bear some
resemblance to those in [23], we have introduced a notable modification by integrating a
water heater into the model. This integration affects the constraints (6) and (17) by adding
a constant and, more importantly, influences the overall energy consumption patterns and
optimization results. By incorporating this refinement, we contend that our current paper
presents a more comprehensive contribution to the field compared to [23], addressing the
intricate interplay between various components of home energy management systems and
their implications for energy trading strategies.

Minimize.
n+48∗2

∑
t=n

[
Pm

t (Bm
t − Sm

t ) + Pg
t Bg

t + C(Bm
t + Sm

t )
]

(11)

Subject to.

∑
t

(
Ap

t − Sm
t + Bm

t

)
≥ Rre∑

t

[
Ad

t + Ft + Ct(1 − Rc) + Dt(1 − Rd)
] (12)

Bm
t ≥ 0 (13)

Sm
t ≥ 0 (14)

Cmax

2
≥ Ct ≥ 0 (15)

Dmax

2
≥ Dt ≥ 0 (16)

Ad
t + Ah

t,k − Bm
t −

(
Ap

t − Sm
t

)
+ Ct − Dt − Bg

t = 0 (17)

Et ≥ Ell (18)

Et ≤ Ehl (19)

Et+1 =

{
EtEcap+CtRc−DtRd

Ecap
(i f Vt = False)

Et − Ft (i f Vt = True)
(20)

Each variable is defined as follows.
Rre Target RE ratio (set by user between 0~100%)
The other items are the same as in (1–9).

5. Demonstration Experiment
5.1. Configuration of the Demonstration Experiment

Table 2 lists the entities that will conduct transactions in the demonstration experiment.
The demand side consists of four entities (HOME1~HOME4) and the supply side consists
of one entity (PV1). All data used in this study are based on the actual power demand and
generation amounts originating from these respective facilities.
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Table 2. Composition of Consumers and Generators in the Demonstration Experiment.

Entities Description

HOME1 Laboratory A with EV and Heat pump

HOME2 Laboratory B

HOME3 Laboratory C

HOME4 Laboratory D

PV1 Solar power generation

Table 3 describes the settings for each experimental period. The period is divided into
phases 1~4, each of which has a different setting. By comparing the results of these phases,
we aim to show that owning both EVs and heat pumps can increase the RE ratio by having
EVs absorb excess electricity generation during the daytime and by having heat pumps
shift their operation to the daytime, and to confirm how this approach affects costs. The
goal of the project is to determine the impact on costs.

Table 3. Experimental phase and set values.

Experimental Phase Period Setting

Phase 1 2022/1/26–2022/2/1 Set only HOME1 to green mode and all
others to economy mode.

Phase 2 2022/2/2–2022/2/8 All users are set to economy mode.

Phase 3 2022/2/9–2022/2/15
The daytime shift of the heat pump of
HOME1 is not performed and set all
users to economy mode.

Phase 4 2022/2/16–2022/2/22

The daytime shift of the heat pump of
HOME1 is not performed, and only
HOME1 is set to Green Mode, while all
other users are set to Economy Mode.

5.2. Results of the Demonstration Experiment

Table 4 shows the electricity transaction volume and price for each user for each
experimental phase. For Phase 1 of the experiment, HOME1 is the only user in green
mode, so HOME1 actively purchases RE even if the price is high, with 107.3 kWh of PV1’s
111.6 kWh purchased by HOME1. This indicates that HOME1 purchased approximately
96% of the total contracted amount. In addition, in Phase 2 of the experiment, all users were
in economy mode, and in particular, the average contract price for HOME1, which owns an
EV, was lower than that of other HOME2~4. By utilizing the charging and discharging of
EVs, the trading entity can purchase power on the market when prices are low and charge
EVs and discharge the power from the EVs when prices are high. Experimental phase 3 is
the case where all users are set to economy mode without the heat pump daytime shift in
HOME 1. This phase was prepared to understand the effect of the heat pump daytime shift.
It can be seen from Tables 4 and 5 that Phase 2 and Phase 3 do not differ significantly in
their results. Phase 4 is the case where the daytime shift of the heat pump in HOME1 is not
performed, and only HOME1 is set to green mode and the rest are set to economy mode.
The average contract price of HOME1 is about 4 yen/kWh lower in Phase 4 than in Phase
1. This can be attributed to the fact that the amount of PV generation during Phase 4 was
higher than in Phase 1, and more PV generation flowed into the market. In fact, total PV
generation in Phase 4 was 91.11 kWh compared to 75.19 kWh in Phase 1. Since bidding
prices are determined by the amount of electricity generated, it is reasonable to assume that
the price difference is due to the difference in total generation rather than to the effect of
the daytime shift of the heat pump.
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Table 4. Amount and price of electricity traded by each user per experimental phase.

Phase Entities Contract Amount
[kWh]

Average Contract Price
[Yen/kWh]

1

PV1 111.6 30.46

HOME1 107.3 30.68

HOME2 2.1 24.74

HOME3 1.3 25.78

HOME4 0.9 24.28

2

PV1 85.4 22.10

HOME1 22.7 16.85

HOME2 19.6 24.01

HOME3 14.2 24.03

HOME4 28.9 23.97

3

PV1 94.5 22.32

HOME1 23.7 16.31

HOME2 22.0 24.15

HOME3 15.9 24.48

HOME4 32.9 24.38

4

PV1 139.9 25.52

HOME1 100.9 26.13

HOME2 12.1 23.97

HOME3 9.3 24.03

HOME4 17.6 23.91

Table 5 shows the total demand, market purchases, RE ratio, etc. for each demand-side
user for each experimental phase. This study focuses on an individual’s preference for
RE. Therefore, we focused on the RE ratio as an indicator for individuals, rather than for
the community as a whole. In Phase 1, only HOME1 is in green mode, so it can be seen
that its RE ratio is higher than the others at 37.68%. In Phase 2, all users are in economy
mode, but only HOME1, which owns an EV, has a smaller RE ratio. This is due to the
fact that the users only execute contracts when PV, which is even cheaper than the cheap
electricity purchased from nighttime retailers, is available in the market during the daytime.
Phase 3 did not differ significantly from Phase 2, and it was confirmed that in the case
of the economy mode, there was not much change depending on whether the customer
owned a heat pump or not. In Phase 4, it can be seen that the RE ratio of HOME 2~4 has
increased compared to Phase 1. As mentioned earlier, this can be attributed to the fact
that PV generation was higher during Phase 4 than in Phase 1. On the other hand, the RE
ratio of HOME1 has decreased. This can be attributed to the fact that the demand for the
daytime operation of the heat pump in Phase 1 was no longer met by RE due to the turning
off of the daytime shift of the heat pump.
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Table 5. RE ratio of each demand-side user per experimental phase.

Phase Entities Demand
Contract Amount in

the Market
[kWh]

Amount
Purchased from
the Grid [kWh]

RE Ratio [%]

1

HOME1 177.0 107.3 110.3 37.68

HOME2 30.4 2.1 29.0 4.61

HOME3 33.7 1.3 32.5 3.56

HOME4 86.6 0.9 85.8 0.92

2

HOME1 201.5 22.7 186.7 7.34

HOME2 35.6 19.6 25.9 27.25

HOME3 34.5 14.2 24.9 27.83

HOME4 86.6 28.9 66.8 22.86

3

HOME1 199.0 23.7 183.8 7.64

HOME2 32.9 22.0 20.7 37.08

HOME3 34.1 15.9 22.2 34.90

HOME4 86.5 32.9 61.8 28.55

4

HOME1 200.8 100.9 140.8 29.88

HOME2 33.4 12.1 26.3 21.26

HOME3 35.2 9.3 28.7 18.47

HOME4 87.2 17.6 75.3 13.65

5.3. Experimental Results of Phase 1

Figure 3 shows the execution price trends for all users in Phase 1 of the experiment.
The dotted line shows the retail price (Table 1). Many contracts are due to HOME1 in green
mode. HOME2~4 in economy mode are always executed at or below the retail price. This is
because the economy mode procures electricity from the more economically advantageous
side of the market and retail.
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Figure 3. Trends in contract prices for all users in Phase 1 of the experiment.
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Figure 4 shows the transition of electricity use by HOME1 on 28 January 2022. The blue
line represents the electricity demand excluding the heat pump, the orange line shows the
actual electricity demand of the heat pump, the green line indicates the predicted electricity
demand of the heat pump, the red line displays the contracted amount in the market, the
purple dashed line illustrates the charging amount, the brown dashed line denotes the
discharging amount, and the light blue shaded area represents the SoC. HOME1 is in green
mode, so it actively purchases electricity generated during the day to charge its batteries
and uses the charged electricity from evening to night (increase/decrease in the light blue
area). It can also be seen how the heat pump is operated during the day to provide its
power with RE (rise in the orange line during the day).
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Figure 4. Electricity usage of HOME1 on one day during Phase 1 of the experiment.

5.4. Experimental Results of Phase 2

Since all users are in economy mode, they appear to be contracting at a price lower
than the retail price. Figure 5 shows contract prices for all users in phase 2. In particular,
since HOME1 owns an EV, it can take the strategy of storing inexpensive late-night power
and using it during the daytime, so the contract price is not only lower than the retail
price at the same time but is optimized so that the contract is only executed at a price
that is economically advantageous, including charging and discharging inexpensive late-
night power, so the contract price is particularly low. This is especially true for low
contract prices.

In Figure 6, HOME1 is in economy mode, which means that the strategy is to store
inexpensive electricity at night in the battery and use it during the day, and the optimization
does not appear to result in a daytime shift of the heat pump.
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Figure 5. Trends in contract prices for all users in Phase 2 of the experiment.
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Figure 6. Electricity usage of HOME1 on one day during Phase 2 of the experiment.

5.5. Experimental Results of Phase 3

Figure 7 shows the price transition. Since all entities are in economy mode, it can be
seen that they are moving in a similar manner to Phase 2.

In this phase, all entities are in economy mode, so inexpensive power at night is
stored in batteries and used during the day. Therefore, it can be seen from Figure 8 that
the situation is basically the same as in Phase 2. In addition, since there was a lot of PV
generation on this day and inexpensive electricity was available in the market during
the day, it can be confirmed that the electricity is stored in batteries during the day as
well. In Phase 3, the heat pump is set to not shift during the daytime, but in Phase 2, the
heat pump did not shift during the daytime, so the timing of the heat pump operation is
also unchanged.
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Figure 7. Trends in contract prices for all users in Phase 3 of the experiment.
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Figure 8. Electricity usage of HOME1 on one day during Phase 3 of the experiment.

5.6. Experimental Results of Phase 4

It is similar to Phase 1 in that the heat pump is set to not shift during the day and is in
green mode, so it actively purchases RE during the day. The movement of contract price is
also similar in Figures 3 and 9 of Phase 1. The difference between Phase 4 and Phase 1 is
that the heat pump is not shifted during the daytime in Phase 4.



Energies 2023, 16, 3525 16 of 25Energies 2023, 16, x FOR PEER REVIEW  17  of  26 
 

 

 

Figure 9. Trends in contract prices for all users in Phase 4 of the experiment. 

Figure 10 shows  the electricity usage of HOME1, and  it can be seen  that  the heat 

pump is not running during the daytime. This is thought to have caused the RE ratio to 

be lower than in Phase 1. It can be said that in Phase 1, the RE ratio could be improved by 

shifting the heat pump operation to daytime compared to Phase 3. 

 

Figure 10. Electricity usage of HOME1 on one day during Phase 4 of the experiment. 

5.7. Discussions 

P2P trading allows consumers to make better use of surplus energy by proactively 

controlling  their  equipment while  taking  into  account  their  own RE  orientation. This 

2022-02-16 02-17 02-18 02-19 02-20 02-21 02-22 02-23

Datetime

P
ri

ce
 [

Ye
n

/k
W

h
]

（EV）

（EV）

（EV）

Heat pump

S
O

C
[%

]

Datetime

E
n
e
rg

y 
am

o
u
n
t 

p
e
r 

3
0
m

in
 [

kW
h
]

02-18 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00

Figure 9. Trends in contract prices for all users in Phase 4 of the experiment.

Figure 10 shows the electricity usage of HOME1, and it can be seen that the heat pump
is not running during the daytime. This is thought to have caused the RE ratio to be lower
than in Phase 1. It can be said that in Phase 1, the RE ratio could be improved by shifting
the heat pump operation to daytime compared to Phase 3.
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5.7. Discussions

P2P trading allows consumers to make better use of surplus energy by proactively
controlling their equipment while taking into account their own RE orientation. This study
aimed to enable participants to automatically and optimally control their own devices in
P2P transactions to reflect their own preferences.



Energies 2023, 16, 3525 17 of 25

In this experimental setup, the comparison of Phase 1 and Phase 4 showed that the
RE ratio can be increased during green mode by optimizing the operating timing of the
heat pumps. In the economy mode of Phase 2 and Phase 3, the benefit of optimizing the
heat pump operation timing was not confirmed, but this was due to the low amount of PV
generation in Phase 2 (the contract amount of PV in Phase 2 in Table 4 is small.) This may
be because the amount of PV generation in Phase 2 was small (the contract amount of PV
in Phase 2 in Table 4 is small), and there were not many times when the market price was
low during the day, so the heat pumps could not be operated at those times. It should be
added that in a demonstration experiment such as this, there is a limit to the comparison
between phases because the weather conditions cannot be matched between phases. The
emphasis of this experiment was on proof of concept, including the actual operation of
the equipment.

6. P2P Energy Trading Simulation

Since it was practically difficult to conduct the demonstration experiment with vari-
ous configurations in terms of the number and attributes of participants and distributed
resources owned by each participant due to constraints such as the number of participants
and procurement of resource equipment, a simulator was developed to verify various
scenarios. In addition, the heat pump operation strategy in Demonstration Experiment
2 was limited to selecting from a limited number of options concerning what time to start
heating during the daytime according to the operation plan created by the heat pump
equipment based on its own internal logic. Therefore, it was not a truly efficient operation
strategy. To solve this problem, we constructed a simulator as a mechanism to create opera-
tion plans on a zero-based basis according to the demand for hot water, and to evaluate
potentials that are not affected by manufacturers’ proprietary algorithms. Using such a
simulator, we conducted experiments with various participant and resource configurations
to simulate P2P electricity trading assuming a virtual community and evaluated differences
in results depending on the configuration of participants’ preferences and differences in
the resources they possess. The agent and market system constructed in the demonstration
experiment was reconstructed as a simulator. The bid creation function was developed
based on Equations (21)–(34).

Equation (21) represents the objective function, which, similar to the one previously in-
troduced, aims to minimize the energy procurement cost and penalty amount. Equation (22)
is a constraint related to the energy balance of consumption, generation, purchase, and
sale. Equation (23) is a constraint regarding the amount of available renewable energy
for sale. Equation (24) is a constraint that represents the amount of energy that can be
purchased when all the power in the market is derived from solar energy, preventing
plans to purchase solar-generated power during non-generation periods. Equation (25) is a
constraint related to the trading of grid-derived power. Equation (26) is a constraint used
to calculate the next time step’s state of charge (SoC) based on the previous time step’s SoC
and charging/discharging amounts. Equation (27) is a constraint used to determine the next
time step’s hot water storage amount based on the previous time step’s hot water storage
amount, additional hot water amount, and used hot water amount. Equations (28) and (29)
are constraints related to the trading amount in the market. Equation (30) sets the upper
and lower limits for the charging/discharging amount per 30 min. Equations (31) and (32)
set the upper and lower limits for the SoC. Equation (33) sets the lower limit for hot water
storage amount. Equation (34) is valid only during the RE mode and serves as a constraint
to ensure that the RE ratio exceeds the desired value.

Minimize.
n+48∗2

∑
t=n

Pmr
t (Bmr

t − Smr
t + Cmr

t ) + Pmb
t

(
Bmb

t − Smb
t + Cmb

t

)
+

Pg
buy,tB

g
t − Pg

sell,tS
g
t + C

(
Bmr

t + Smr
t + Bmb

t + Smb
t

)  (21)

Subject to.
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t + Ah

t − Bmr
t − Bmb
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t + Smr

t + Smb
t + Ct − Cmr

t − Cmb
t − Bg

t + Sg
t = 0

(22)
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Smr
t − Cmr

t ≤ Ap
t (23)

Bmr
t ≤ kRt (24)

Smb
t − Cmb

t − Bmb
t ≤ Ecap(Et − Ell) (25)

Et+1 =


EtEcap+Ct

Ecap
(i f Vt = False)

EtEcap−Ft
Ecap
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(26)

Wh
t+1 = Wh
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t ∗ KCOP ∗ KkWhtoJ
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(
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t

(
Td − Tg

)
Th − Tg (27)
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t ≥ 0 (28)
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t ≥ 0 (29)
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2
≥ Ct ≥ −Cmax

2
(30)

Et ≥ Ell (31)

Et ≤ Ehl (32)

Wh
t ≥ Wll (33)

i f RE mode
n+48∗2

∑
t=n

(
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t − Smr
t + Bmr

t + Cmr
t − Smb

t

)
≥ Rre

n+48∗2

∑
t=n

(
Ad

t + Ah
t

) (34)

Bmr
t Amount of electricity of RE origin purchased in the market at time t [kWh]

(Optimization target).
Bmb

t Grid-derived electricity purchased in the market at time t [kWh] (Optimization target).
Smr

t Electricity of RE origin sold in the market at time t [kWh] (Optimization target).
Smb

t Amount of grid-derived electricity sold in the market at time t [kWh] (Optimiza-
tion target).

Bg
t Amount of electricity purchased from electricity retailers at time t [yen/kWh]

(Optimization target).
Sg

t Amount of electricity sold to electricity retailers at time t [yen/kWh] (Optimiza-
tion target).

Ct Amount of charge/discharge to battery at time t [kWh] +: charge −: discharge
(Optimization target).

Ah
t Electricity consumption of heat pump at time t [kWh] (Optimization target).

Ad
t Estimated demand at time t [kWh] (calculated by demand forecast).

Ap
t Estimated electricity generation at time t [kWh] (calculated by electricity genera-

tion forecast).
Cmr

t Amount of electricity of RE origin purchased and sold in the market at time t that
has already been contracted through past bids [kWh] +: amount purchased, −: amount sold.

Cmb
t Amount of grid-derived electricity purchased and sold in the market at time t

that has already been contracted through past tenders [kWh] +: Purchased, −: Sold.
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Rt Predicted solar radiation [MJ/m2].
k Constant that allows the purchase of electricity derived from RE from the market

only when solar radiation is available.
Ecap Rated capacity of batteries [kWh].
Ell Lower limit of SoC [%].
Ehl Upper limit of SoC [%].
Et Remaining charge of the battery at time t (SoC).
Ft Expected energy consumption by driving at time t [kWh]. In this simulation, the

value is always set to 0 because the EV is not driving.
Vt The bool value indicating whether or not the EV is running at time t. In this

demonstration experiment, the value is always set to “false” because the EV is not driving.
Wh

t Volume of hot water stored in the heat pump thermal storage tank at Th ◦C at
time t [L].

Th Temperature of stored hot water in the heat pump storage tank [◦C].
Wd

t Hot water demand at time t [L].
Td Hot water temperature when using hot water supply [◦C].
Tg Temperature of tap water [◦C].
Ks Specific heat of water [J/L-K] 4186.
KCOP COP of heat pump (=heat quantity [J]/energy consumption [J]).
KkWhtoJ Constant for converting kWh to J. 3.6 × 106.
Pmr

t Expected price of RE-derived electricity in the market at time t [yen/kWh] (esti-
mated by each agent based on expected solar radiation).

Pmb
t Expected market price of grid-derived electricity at time t [yen/kWh].

Pg
t Retail price of electricity at time t [yen/kWh].

Cmax Maximum battery charge/discharge output [kW].
C Penalty term [yen/kWh].
In this study, we have formulated two optimization problems to model the automatic

bidding strategy for home energy management systems with RE, EVs, and heat pump
water heaters. It is important to note that both of these optimization problems are linear
programs. Linear programming is a mathematical optimization technique that is widely
used to find the best possible solution to problems that can be represented by linear
relationships. Linear programs are relatively easier to solve and have efficient algorithms,
such as the simplex method, available for finding optimal solutions. We have employed
the PuLP library, a Python-based linear programming library, to solve the linear programs
formulated for the automatic bidding strategy. For our analysis, we used the default PuLP
solver, which is the open-source COIN-OR Linear Programming (CLP) solver. The CLP
solver is a robust and high-performance linear programming solver, making it suitable for
tackling the optimization problems in our proposed approach.

Bid Creation of the Simulator

We assume a case in which a large number of houses have photovoltaic power genera-
tion facilities. This is in consideration of the fact that the Tokyo Metropolitan Government
will require new buildings with a total floor area of less than 2000 m2 to be equipped with
RE facilities such as solar power generation starting in April 2025, targeting house builders
and other businesses with a certain annual total floor area of supply in Tokyo. The purpose
of this study is to confirm the effectiveness of these distributed resources in utilizing RE in
the community under P2P transactions by varying the ownership rates of EVs and heat
pump water heaters of individual entities. Table 6 shows the resource retention scenarios
for which the resource retention rates of the entities were set. In all scenarios, the ownership
rate is set to 75%, assuming a situation where PV is widely deployed. Resource Ownership
Scenario One assumes a 20% EV/heat pump ownership rate. The current ownership rate
of EVs is 1.51%, heat pumps 19% (owner-occupied in Tokyo) and 2% (renters in Tokyo),
so a 20% ownership rate is a large value, but it is the closest to the future assumed in this
scenario. Resource Ownership Scenario Two assumes a future in which the EV/heat pump
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ownership rate is further increased to 50%. Resource Ownership Scenario Three is a future
scenario in which the EV/heat pump ownership rate is increased to 80%. These resource
ownership scenarios are applied to a community of 20 households. The demand data
utilized in this study was obtained from actual household consumption.

Table 6. Equipment ownership scenario.

Equipment
Ownership Scenario

Percentage of PV
Owned

Percentage of EV
Owned

Percentage of HP
Owned

1 75% 20% 20%
2 75% 50% 50%
3 75% 80% 80%

The agent system, which represents the individual entities, will be able to make
decisions on resource operation, taking into account the overall situation. This is expected
to enable the effective use of RE generated by the community as a whole. In this section,
we evaluate the difference in energy use by the community as a whole depending on the
presence or absence of the coordination mechanism.

Figure 11 shows the difference in the degree of load on the grid for the entire commu-
nity depending on the resource ownership scenario with and without P2P trading. The
two indicators of the community’s overall load on the grid are the rate of inflow of RE
generation into the grid and the percentage of grid-derived electricity consumed, which
are plotted on the vertical and horizontal axes, respectively. The inflow rate of renewable
electricity into the grid is defined as the amount of PV electricity sold to the grid/the total
amount of PV electricity generated, and the consumption rate of grid-derived electricity is
defined as the amount of electricity purchased from the grid/the total amount of electricity
consumed. In other words, the inflow rate of RE into the grid is the proportion of RE
generated by the community as a whole that is not fully consumed by the community and
is taken back by the power grid. Currently, the handling of RE surpluses is an issue, as RE
output is curtailed to stabilize the power system, and a small value is desirable from the per-
spective of stabilizing the power system. The consumption ratio of grid-derived electricity
is also a desirable indicator from the perspective of effectively using RE in the community.
In the figure, • represents the case with a cooperative mechanism and × represents the case
without a cooperative mechanism, and the color indicates the resource ownership scenario.
In both resource ownership scenarios, the introduction of the cooperative mechanism
reduces two indicators: the inflow rate of RE into the grid and grid-derived electricity.
In other words, the cooperative mechanism allows the community to consume more of
the RE generated within the community and to reduce the amount of electricity procured
from external sources. In addition, the two indices are smaller in the scenarios with higher
resource ownership, indicating that the proportion of resources owned by the community
has a significant impact on the differences among the ownership scenarios. The difference
between the scenarios with and without a cooperative mechanism within the ownership
scenarios shows that the difference between the scenarios with and without a cooperative
mechanism is smaller in the scenarios with higher ownership ratios. This indicates that
the higher ownership of demand-shifting resources such as storage batteries, EVs, and
heat pumps enables the individual entities to consume RE to some extent even without a
cooperative mechanism, but the introduction of a cooperative mechanism still reduces the
two indicators more. In addition, especially in Resource Ownership Scenario Three, both
the EV ownership rate and the heat pump ownership rate are extremely high at 80%, and it
is considered that it will take a considerable period of time to reach this point. In addition
to the installation of solar power generation facilities, the introduction of demand-shifting
equipment such as storage batteries, EVs, and heat pumps and their appropriate control
systems is required.
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Figure 11. Differences in the degree of load on the electricity system for the entire community with
and without P2P trading based on resource ownership scenarios.

Table 7 shows the community-wide demand and supply for the six patterns in
Figure 11. In particular, in Scenario 3 with P2P, it can be seen that only 480 kWh of the
2517 kWh of electricity generated by the PV goes to the grid, and the rest can be consumed
within the community. It can also be seen that the amount of electricity purchased from the
grid is thereby reduced.

Table 7. The supply and demand of electricity throughout the community.

Scenario with or
without P2P

PV
Generation

[kWh]

Demand
[kWh]

Amount
Sold to Grid

[kWh]

Amount
Bought from
Grid [kWh]

Amount Sold to
Grid ÷ PV

Generation [%]

Amount Bought
from Grid ÷
Demand [%]

Scenario1
With 2517 2755 1295 1533 51.5% 55.6%

Without 2517 2743 1551 1777 61.6% 64.8%

Scenario2
With 2517 2954 832 1269 33.0% 42.9%

Without 2517 2924 1065 1472 42.3% 50.3%

Scenario3
With 2517 3143 480 1105 19.1% 35.2%

Without 2517 3086 571 1140 22.7% 36.9%

The fact that the consumption rate of RE is increased and the amount of electricity
procured from the power grid can be reduced through this cooperative mechanism is
due to the fact that consumers without RE generation equipment can use RE through the
flexibility of surplus generation, and that the community as a whole can coordinate their
use of RE. This effect is due to the fact that when surpluses occur, consumers actively utilize
demand-shifting equipment to absorb the excess power. Figures 12 and 13 show the results
of electricity use by the entire community without the coordination mechanism and with
the coordination mechanism, respectively. The green line indicates PV power generation,
the yellow area indicates power consumption by heat pumps, the light blue area indicates
power consumption by non-heat pumps, the brown area indicates discharge from EVs,
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and the purple area indicates charge to EVs. The timing of the heat pump operation and
the EV recharge/discharge timing change depending on the presence or absence of the
coordination mechanism. In Figure 12, the individual entities are planning the operation
of their resources in a closed manner, so the heat pumps are often operating and the EVs
are storing electricity even when there is no surplus electricity in the community, while
in Figure 13, the individual entities are planning to procure surplus electricity through
the market. In Figure 13, we can see that the demand shift reflects the whole community
situation, such as running heat pumps and charging EVs when there is a surplus of
electricity in the community, because the individual entities plan the operation of resources
considering the procurement of surplus electricity through the market. The system is
flexible in its charging plan according to the situation.
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7. Conclusions and Future Work
7.1. Conclutions

In this study, we developed an agent system that automatically performs electricity
transactions on behalf of users, assuming an electricity P2P trading market. We developed
a bidding agent system that not only performs bidding based on the user’s assets such
as heat pump water heaters, EVs, and solar power generation plus the user’s electricity
demand, but also performs bidding based on the user’s preferences for RE, enabling power
transactions tailored to individual users. The main novelty of this study is that, in contrast
to the automatic bidding agent system proposed in the existing study [23] that takes into
account the charging and discharging of EVs and users’ preferences for RE, we proposed
a mechanism to optimize the system by including the operating timing of heat pumps as
part of controlling demand itself.

We also conducted a demonstration experiment using the proposed model. The
following results were obtained in the demonstration experiment.

• The demonstration experiment confirmed that users in economy mode who own an
EV can lower the average contract price.

• In the case of economy mode, there was no significant difference depending on whether
the user owned a heat pump or not. This is thought to be because the economic benefits
of the daytime shift did not arise due to the low power generation in Phase 2.

• In the case of green mode, it was confirmed that optimizing the daytime shift of a heat
pump can improve the RE ratio while reducing the unit cost of electricity compared to
the case where a heat pump is not shifted during the daytime.

Finally, we constructed a P2P trading simulator based on the agent algorithm de-
veloped in the demonstration experiment, and conducted a P2P transaction simulation
assuming a future in which photovoltaic power generation facilities are widely used and
showed that a cooperative mechanism of P2P transactions can improve the utilization
ratio of RE for the entire community. The results show that the P2P trading cooperative
mechanism can improve the ratio of RE use in the community as a whole. In particular, we
showed that it is important to increase the share of demand-shiftable resources such as EVs
and heat pumps in order to improve the utilization ratio of RE.

7.2. Future Work

One of the potential areas for future research is to address the uncertainty in RE gen-
eration, which is not explicitly considered in our current model. Incorporating stochastic
optimization techniques could be an effective way to handle such uncertainties. By formu-
lating the problem as a stochastic optimization, we could account for the variability and
unpredictability of RE generation, leading to more robust and adaptive bidding strategies.
Additionally, investigating the impact of various forecasting methods on the proposed
approach would provide valuable insights into the performance and reliability of the au-
tomatic bidding strategy under uncertain conditions. We believe that addressing these
aspects would significantly enhance the applicability of our work in real-world settings
with uncertain RE generation.

Although the present study demonstrates the effectiveness of our proposed algorithm
in the context of peer-to-peer energy trading with heat pumps, we have not yet assessed its
scalability. In future work, we plan to investigate the performance of our algorithm when
applied to larger-scale energy systems, involving a greater number of participants and more
diverse energy sources. This analysis will help us understand how our approach performs
in more complex energy networks and identify any potential challenges or limitations. By
addressing scalability, we aim to contribute further to the development of efficient and
sustainable energy management solutions that can be widely adopted in various energy
market scenarios.
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