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Abstract: The increasing demand for electricity and the need for environmentally friendly transporta-
tion systems has resulted in the proliferation of solar photovoltaic (PV) generators and electric vehicle
(EV) charging within the low voltage (LV) distribution network. This high penetration of PV and
EV charging can cause power quality challenges, hence the need for hosting capacity (HC) studies
to estimate the maximum allowable connections. Although studies and reviews are abundant on
the HC of PV and EV charging available in the literature, there is a lack of reviews on HC studies
that cover both PV and EVs together. This paper fills this research gap by providing a detailed
review of five commonly used methods for quantifying HC including deterministic, time series,
stochastic, optimization, and streamlined methods. This paper comprehensively reviews the HC
concept, methods, and tools, covering both PV and EV charging based on a survey of state-of-the-art
literature published within the last five years (2017-2022). Voltage magnitude, thermal limit, and
loading of lines, cables, and transformers are the main performance indices considered in most
HC studies.

Keywords: hosting capacity; solar PV; electric vehicle; distribution network; deterministic; stochastic;
time series; streamlined; optimization

1. Introduction

The existing power grid in many parts of the world is overloaded due to rapid urban-
ization and a corresponding increase in the number and magnitude of grid-connected loads.
Environmental safety concerns make it imperative that alternative sources of electricity
and transportation should be clean [1,2]. These concerns are progressively being alleviated
by the rapid increase in the use of environmentally friendly solar photovoltaic (PV) sys-
tems and electric vehicles (EVs) [2,3]. The ongoing war between Russia and Ukraine has
created shortages in gas supply and an energy crisis in parts of Europe [4,5], it is expected
that the number of grid-connected PV systems will increase rapidly in the near future.
However, a large amount of grid integration of solar PV and EVs can disrupt the standard
operating condition by causing supply voltage violations, reverse power flow, transformer
and lines overloading, and an increase in electrical losses [6]. As a result, distribution
network operators perform PV and/or EV hosting capacity (HC) analysis to determine
the amount of PV generation and EV charging that can be integrated into a particular
distribution network.

Hosting capacity is defined as the amount of new production or consumption that
can be connected to a network without degrading the quality of delivered power or
reliability of service [2,7]. The HC calculation is performed using various performance
indices such as voltage magnitude and frequency variations, thermal overload, and power
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quality, and defining practical limits for the indices as specified by national or international
standards [8,9]. Using appropriate tools, an HC determination methodology can then
be formulated to guide the choice of a maximum number of PVs and EVs that can be
integrated into a distribution network without violating the operational limits of such
a network. Considering the importance of this concept for the present and future grid,
HC determination methods and tools must be well documented for ease of reference by
researchers and industry practitioners. Studies such as [10-13] are the most recent reviews
conducted on the different HC calculation methods while [14] reviewed the methods
and tools. However, none of these studies have presented the five major HC calculation
methods separately nor reviewed the HC of EV charging.

Considering the foregoing concerns, this paper provides the literature survey of the
five commonly used HC calculation methods which include deterministic, time series,
probabilistic, optimization, and streamlined methods. The paper discusses the HC concept,
methods, and tools based on a survey of the state-of-the-art literature published within the
last five years (2017-2022). The key contribution of this paper that distinguish it from other
reviews is the review of solar PV and EV charging HC studies together considering how
important these technologies are to the future power system.

The paper is structured as follows: Section 2 briefly discusses the hosting capacity
concept and presents its various definitions. Section 3 examines the commonly adopted
methods for HC quantification and reviews studies that have been conducted with these
methods. Section 4 discusses EV charging HC and reviews recently published papers.
Section 5 presents the tools available for HC calculation while Section 6 is the conclusion.

2. Definition and Concept of Hosting Capacity

The term, “hosting capacity” has already been used in other contexts such as the
capacity of web servers, watermarking of images, and settlement of refugees [13,15], before
its adoption as a term in distributed generation (DG). Hosting capacity (HC) as a concept in
DG was first introduced by André Even in March 2004 during the integrated European EU-
DEEP project discussion to examine the effects of high distributed generation integration in
the distribution network [13,16,17]. This concept is illustrated in Figure 1. The theoretical
application of the concept developed in [18], is now the widely adopted methodology by
network operators, regulators, and researchers to determine HC.
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Figure 1. The HC concept.

This development brought the first official definition of HC available in the literature
as the highest amount of distributed generation that can be integrated into a power system
without the performance limit being violated [18]. This definition was further refined in [19]
and subsequently, the growth in the utilization of electric vehicles (EVs) made the need
to evaluate the HC of distribution networks a very important endeavor [20,21]. Thus, the
definition of HC is further tilted to consider the amount of new production or consumption
that can be connected without compromising the reliability or quality of power supplied to
other users [15,21,22].
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Furthermore, researchers and regulators have quantified HC in different ways depend-
ing on the different references adopted for each study, such as the proportion of customers
that install PVs or the rated power from the installed PV as the percentage of the total
connected load or transformer rating, or the present peak feeder load demand [23]. Table 1
lists the varying definitions of HC that have been presented in the literature depending on
the different references adopted and a quantitative summary of various reference values
showing that peak feeder load is the most adopted reference [12].

Table 1. Definitions of HC based on different references adopted for defining HC [12].

Quantitative Summary of

Ref Reference Adopted HC Definition Various References (%)
The proportion of the PV installation’s maximum
[24-34] Peak feeder load capacity to the feeder’s peak load demand. 47
[35-43] Transformer Rating The proportion of the over,all amount of'PV output to 20
the transformer’s rated capacity.
The proportion of households in the study area that
[44-48] Customer PVs install PVs to the total number of households there. 20
[49,50] Active Power The proportion of PV output to the load’s active power. 5
prop p p
The possibilities for the connection and installation of
[51] Roof-space PVs solar PV panels on the roof space of the 2
P p P
feeder-connected households.

[52-54] Energy Consumption the proportion of the total annual PV system energy 7

production to total energy usage.

3. Hosting Capacity Determination Methodology

The general approach for HC determination is shown in Figure 2. It begins with the
selection of at least one performance index (such as overvoltage, voltage unbalance, thermal
overload, power quality, system losses, harmonics, or protection), defining a suitable limit
for the index as specified by the national or international standards, and then applying HC
determination methods to calculate the hosting capacity as a function of the amount of PV
generation or EV charging [13,14]. During the load flow calculation, the amount of PV or
EV is gradually increased until the result of a performance index exceeds the allowable limit.
There are five major methods for HC quantification in the distribution networks found in
the literature. They include; deterministic, time series, stochastic, streamlined-stochastic,
and optimization-based methods [11,14]. Although these methods are unique in terms
of actual implementation, they all use power flow calculations to find the values of the
performance indices in the network and they all follow the same general approach shown
in Figure 1. HC calculation can be handled from two viewpoints, customer-based and
utility-based. From a customer-centric viewpoint, the HC calculation problem becomes
a probabilistic one due to uncertainties since the distribution network operators do not
have control over the location, size, or number of PV installations [14,55]. In this case,
the stochastic method is mostly preferred for HC calculations. However, the utility-based
HC calculation is often characterized as an optimization problem with the objective of
maximizing PV or EV charging integration without endangering the technical operation of
the distribution grid [14]. The next subsections discuss the different HC methods in the
context of PV generation.
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Figure 2. General hosting capacity approach.
3.1. The Deterministic Method

The deterministic method is the basic method for HC determination that begins with
data collection of the distribution network followed by modeling of the network and
load flow simulation, as shown in Figure 3. The deterministic method does not consider
the uncertainty of the PV production, load consumption of consumers, and the size and
location of the PV. Instead, these parameters are assumed to be known and assigned fixed
input values before the HC calculation begins [11,14].

INPUT

[ Grid parameters Model distribution grid
and conduct load flow

PV/EV data simulations

Figure 3. Deterministic method illustration.

Output and
analyze grid
results

The deterministic method generally adopts the constant PV generation approach,
with the PV output as the independent variable assumed to be maximum and does
not vary throughout the calculation [11,14]. This method evaluates the system in a
scenario-based fashion by iteratively increasing the size of the PV unit until the first
violation of a performance index is observed [43,56—61]. The deterministic method also
considers the worst-case scenarios to determine the HC due to the extreme impact of
uncertain parameters [60-62]. In this scenario, the PV is assumed to produce its maximum
output while the load is assumed to draw a minimum amount of power. The PV size is then
increased in steps until the first violation of an operational limit. This scenario is mostly set
up to assess the voltage and overloading violations due to voltage rise and reverse power
flow in the distribution network.

There is also a variation in the deterministic method where the rule-based analysis
is applied. This approach allows iterative increment of the solar PV at the nodes of the
grid realized using a forward, backward, and forward-backward method. In the end, three
different hosting capacity values for the distribution network are obtained, and the actual
grid HC is given as a range between these values [11,63].

The deterministic method is often used to first obtain an estimated HC of a network.
For example, [61,64] selected bus voltage, line overloading, and transformer overloading
as performance indices to estimate the HC of a distribution feeder. The effect of load
variability and split-phase transformer unbalance on three LV distribution networks by
constantly increasing the PV generation is studied in [61]. In this paper, the size of the PV
is increased by 1 kW for every iteration to assess the violation of different performance
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limits. The results obtained reveal that HC differs with the load when overvoltage, line
overload, and transformer overload are the limiting factors. The authors in [64] developed
and compared HC results with and without the shunt capacitances of the lines. They
established that the HC is higher with the shunt capacitor. This is because the reactive
power injected by the shunt capacitor lowers the bus voltages in the distribution network.
In [65], the HC for a residential LV feeder is estimated using an analytical approach to the
deterministic methods. The authors studied the impact of solar PV with unity or non-unity
power factor and compared the result to that obtained using a power system software.
Their result indicates an error of less than 0.7 V for all the tested scenarios.

The impact of PV location on the HC of distribution networks is evaluated in [57].
The study presents the location of PV as the major limiting factor of HC and proposes
an index to quantify the impact of the location of PV units. In [66], the authors used
a 16-bus distribution test network to assess the effect of high DG penetration levels on
voltage rise and thermal limits. Their results show that the limit of penetration is signifi-
cantly higher for DG located at the load center compared to other locations. Additionally,
the deterministic HC method is found to be effective for performing sensitivity analy-
sis of solar PV integration into the LV distribution networks similar to results obtained
in [56,57]. Table 2 presents a summary of the studies that adopt the deterministic HC
calculation method.

Table 2. Summary of studies that adopt the deterministic method for PV Hosting capacity determination.

Ref. Performance Index Study Summary

[56] Harmonics distortion, losses Conducted HC studies with harmonic distortion as the performance limit.

proposed a new index to measure improved unit placement and generation

[57] Voltage magnitude and transformer loading  power based on HC results proposed a new index to measure improved unit

placement and generation power based on HC results

[58] Over-voltage and thermal limits Estimated the HC of a low voltage network in Yogyakarta.

[60] Over-voltage and thermal limits

Determined a distribution network’s solar PV HC while taking into account
how MV and LV networks interact at various voltage levels.

Compared probabilistic techniques of HC capacity based on solar roof

[63] Voltage magnitude and loading potential analysis with rule-based approaches at the distribution system level.
. . Investigated how different PV penetration levels would affect voltage rise and
[66] Voltage magnitude and loading cable thermal limits considering different PV locations and loading scenarios.
Proposed PV HC using a performance index that considers voltage increase
[67]  Over-voltage and Harmonic distortion and harmonic voltage distortion at the point of common coupling while

accounting for background harmonic distortion.

[68]  Voltage magnitude and current loading

Developed a technique for controlling voltage and current in sizable
distribution grids with high penetration of solar PV.

Identified and examined any potential resonance problems, harmonic

[69] Harmonic voltage and current distortion, and resonance at the LV distribution network where there is a high

penetration of various solar PVs.

Presented a straightforward approach that may be used to determine the

[70]  Voltage magnitude, loading, and losses maximum allowable PV in a radial LV network while taking phase mutual

inductance and line losses into account.

[71] Voltage magnitude and loading

Proposed three methods aimed at utilizing solar roof potential analysis to
calculate the PV HC on the MV feeder.

[72] Voltage unbalance

Assessed how single-phase photovoltaic inverters contribute to voltage
imbalance in three LV networks.

Merits and Limitations of the Deterministic HC Method

The deterministic method is very simple and useful for quick estimation and overview
of the HC of electrical distribution networks [14]. The method is preferred for a single huge
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installation that requires less computational burden since uncertainties are not accounted
for. However, for a huge number of small installations with several uncertainties that
require large computations, the deterministic method becomes insufficient for HC quan-
tification [11,73]. Additionally, the worst-case scenario often adopted in the deterministic
method can easily underestimate the HC because the minimum load demand and maxi-
mum solar PV output are overestimated and unlikely to happen simultaneously [14,74].

3.2. The Time Series Method

The time series HC calculation method is an upgrade of the deterministic method.
This method replaces the fixed values in the deterministic method with actual system
measurements of load and PV generation for HC estimation [14]. The measurement data can
be real or synthetic historical time series profiles with a long time scale and high resolution.
Average values of these data on a small time scale are used for load flow calculations.
During the load flow calculations, some uncertain parameters such as size, location, or the
number of solar PV installations are varied until at least one of the performance indices
is violated [31,40]. The time series profiles depend on the availability of requisite data,
hence it typically uses 24-h generated time series data profiles based on average demand
and generation values [31], least consumption and highest generation values [31], or some
grid-dependent scenarios of PV generation and load consumption [29,75]. Alternatively,
analytic time series data that span over a long period can be generated using techniques
such as autoregressive moving average (ARMA) and autoregressive integrated moving
average (ARIMA) [10,76-78].

Several studies have applied the time series method shown in Figure 4 to quantify
the HC of real and test LV distribution grids. In [40,75], the time series method is used to
study the effect of solar PV integration in existing electrical distribution grids. The authors
in [40] looked at how high PV penetration affected an urban LV network in Sri Lanka
considering network losses, active power flow, feeder voltage, secondary side power factor
of transformers, and voltage unbalance as limiting factors. The results show overvoltage at
the end of the feeder as the most violated performance limit. In [75], different PV placement
and size scenarios were developed utilizing solar PV profiles based on actual data collected
from a distribution network operator, as well as residential, commercial, and industrial
demand profiles. The profiles were applied to an IEEE 69 bus network to assess the impact
of solar PV integration on the current and voltage profile and the distribution network’s
system losses. Compared to residential and industrial load profiles, a higher reduction
of losses was observed in the case of PV systems supplying commercial loads. This was
mainly due to the coincidence of demand and PV generation.

INPUT

ime series load profiles Conduct time Output an_d
series load flow analyze grid
[ PVIEV time series simulations results

[ Grid parameters and
t

profiles

Figure 4. Time series method illustration.

High-resolution time series simulation was introduced in [79,80] to better account for
the stochastic nature of solar PV generation and the load demand and to capture PV varia-
tions at smaller time frames. However, these simulation techniques are computationally
complex, expensive, and time-consuming, and this has led to the development of faster
methods to speed up the time series-based HC calculation simulations [81]. For example,
Refs. [82,83] presented a fast scalable quasi-static time series (QSTS) simulation algorithm
using a linear sensitivity model to perform time series analysis on a 3-phase unbalanced,
non-radial distribution network with different discrete step control elements. The linear
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sensitivity model was further modified by [84] to assess the current-related PV impact on
the distribution network including feeder loading and losses in the line. The results of these
studies show more than a 99% reduction in computation time compared to the traditional
time series method. Table 3 presents a summary of the studies that adopt the time series
HC calculation method.

Table 3. Summary of studies that adopts the time series method for PV hosting capacity evaluation.

Ref. Performance Index Time Steps Study Summary
[75] Overvoltage and ) Studied the impact of distributed solar PV penetration using
current magnitude existing distribution network parameters and time-series analysis.
[76] Voltage mag‘mtude 0.02-s for 301 min Presented an analytic time series load flow cor}suiermg the “time
and loading sequential relation of system variables
Used PV and load profiles generated by the ARIMA simulator to
[77] Voltage magnitude 1-min for 1 year examine the implications of various levels of penetration for a
PV-wind hybrid system.
Proposed a fast scalable quasi-static time series simulation
[83] Voltage magnitude 1o for 1 vear algorithm that performs time series analysis of a 3-phase
and protection y unbalanced, non-radial network 180 times faster than the
traditional time series method.
[84] Current magnitude, 1-s for 1 vear Presented a rapid QSTS technique using a linear sensitivity model
loading, and line losses y to evaluate current-related PV impact parameters.
Developed a framework that uses extreme combinations of PV
[85] Voltage magnitude 15-min for 1 year production and loads time series data to study the HC of the
distribution network
[36] Voltage magnitude L-min for 24-h Used load profile aggregation method to construct QSTS analysis of
and loading high PV penetration on the IEEE-123 distribution feeder.
[87] Voltage magnitude 10-min for 1 week Conducted.a comparative HC study V\.nt.h storage deployment
using time series and deterministic methods
Presented a methodology to estimate the maximum PV penetration
[88] Overvoltage and losses 1-h for 1 year limit in an LV distribution network with regard to distribution
losses by gradually increasing the PV penetration level.
[89] Tap changer 10-min for one year Investigated the HC at every bus in the CIGRE medium voltage

electrical distribution grid.

Merits and Limitations of the Time Series HC Method

The time series method provides a more accurate estimate of the HC of distribution
networks because it considers the time variation in the load demand and PV generation
profiles [90]. Furthermore, the time series method can answer the when and how questions
associated with HC calculations [91]. However, the method requires the availability of
a huge amount of measurement data, which is a challenge to acquire. Additionally, the
need for high-resolution simulations in this method is time-consuming and poses a huge
computational burden [11,14].

3.3. The Stochastic Method

The stochastic method accounts for the uncertainties and unknown variables asso-
ciated with the widespread connection of customer-owned solar PV systems. A primary
uncertainty is the stochastic nature of the PV output that is heavily dependent on irradia-
tion, which is influenced by changing weather conditions [11]. Similarly, other unknown
variables include load consumption, the number of PV installations, and the location and
size of PV installation [11]. The stochastic method considers the chance of occurrence of the
unknown variables and uncertainties in the distribution network by using probabilistic
load flow (PLF). To begin the PLE, random scenarios for the number, location, and/or
size of PV are created as input in the distribution network using probability distribution
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C PV/EV PDFs

functions (PDFs) [14]. This is followed by the load flow simulation of the network and
the determination of the HC based on the performance indices whose operational limits
are violated [92]. Figure 5 shows the general process of the stochastic method of HC
determination for a distribution grid.

etwork parameters
and load PDFs Model the

Conduct PLF Output and

simulations and

distribution network analyze grid

and the uncertainties repeat for N-times results

Figure 5. Stochastic method illustration.

The key part of the stochastic method is the classification and modeling of uncertainties.
These uncertainties can be classified into two types, aleatory and epistemic uncertainties.
Aleatory uncertainties are unknown variables that occur due to variability associated
with PV generation and consumers’ load consumption while epistemic uncertainties are
unknown variables related to lack of information, such as the size of the PV or location
of the PV on the distribution grid [11,91]. Several uncertainty modeling approaches exist
in the literature including the probabilistic method, robust optimization, information
gap decision theory, interval-based analysis, and hybrid probabilistic and possibilistic
methods [11,93]. However, the probabilistic method is often used in the PLF with Monte
Carlo Simulation (MCS) as the most common technique for generating random scenarios
such as PV generation, location, size, and load profiles [55,94].

Most stochastic HC studies typically include variables from both types of uncertainties
without necessarily making a distinction between the two types of uncertainties [95-98].
However, the authors in [99] proposed a mixed aleatory-epistemic method of stochastic
HC estimation approach that includes the two types of uncertainties but considers them
distinctively. In [100], the authors presented improved modeling of PV using actual roof
data of the building for the stochastic HC calculation. The result obtained show that
the approach provides improved accuracy compared to other studies that mostly use the
same installed power of the solar PV for all simulated PVs. Apart from MCS, studies
such as [101,102] used other techniques to generate random scenarios for PLF simulation.
In [101], a binary search-based stochastic simulation is used to determine the PV HC
considering the influence of the number and location of PVs. The method is more accurate
and reduces the computation time when compared to the traditional stochastic approach.
Similarly, the authors in [102] present a risk assessment tool for determining the HC of a
distribution network using the sparse grid technique for uncertainties computation. Table 4
presents a summary of studies that adopt the stochastic method for HC calculation.

Merits and Limitations of the Stochastic HC Method

The stochastic method considers uncertainties associated with Solar PV generation
and load consumption and simulates realistic grid scenarios using appropriate PDFs.
However, the major disadvantage of the stochastic method is that the relationship be-
tween the network variables over time can be lost. Moreover, as the number of uncer-
tainties increases, the stochastic method may suffer from unrealistically too many sce-
narios. This will translate to a need for more measurement data leading to a tedious
computational process [11,91].
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Table 4. Summary of studies that adopt the stochastic method for PV hosting capacity determination.

Ref Performance Index Simulation Technique Study Summary
Presented a possibilistic method based on «-Cut that
. . . evaluates the PV HC of distribution networks while
(271 Voltage magnitude Monte Carlo Simulation accounting for aleatory uncertainty without using a
probability distribution function.
[35] \\i(c))lliaagz r;lr?g;latﬁgee’ Simplified Monte Applied risk-based analyses to 50,000 real low voltage
thermal lt?mit and loac’ling Carlo-based method systems to assess the characteristics of PV hosting capacity
Voltage magnitude and Binary search-based Proposed a stochastic approach for PV hosting capacity
[101] thermal limit stochastic simulation determination assessment based on binary search
considering the impact of the number and location of PVs.
Overvoltage and . . Presented a risk assessment tool for quantifying the HC of a
[102] thermal limit Sparse grid technique distribution grid.
Estimated the HC of an LV distribution network using the
[103] Harmonic distortion Monte Carlo Simulation stochastic method together with the transfer-impedance
matrix for harmonic frequencies.
. . Presented a stochastic HC determination method based on
[104] Overvoltage and losses Monte Carlo Simulation the Bass diffusion model customized for each customer.
Voltaze maenitude and Quasi Monte-Carlo Established a tool to enable distribution network operators
[105] & grtue . . in sizing the maximum permissible PV integration
thermal limit Simulation & P &
connections.
Monte-Carlo Simulation and Developed a probabilistic multi-objective voltage unbalance
[106] Voltage unbalance Gaussian distribution model factor to analyze the single-phase PV hosting capacity in
3-phase residential LV distribution networks.
Estimated the HC of two rural distribution networks with 6
[107] Voltage unbalance Monte Carlo Simulation and 28 customers, respectively, taking into account the
negative-sequence voltage unbalance brought on by the
integration of a single-phase PV system.
Determined the single-phase PV HC of rural distribution
[108] Voltage unbalance Monte Carlo Simulation networks considering negative-sequence voltage unbalance
and uncertainties.
The random scenario Determined the HC of PV generations on an MV
[109] Voltage magnitude . distribution network considering uncertainties in the size
& &n created in MATLAB &
and location of PV.
[110] Voltage magnitude Monte Carlo Simulation Used a stochastic planning approach to assess the impact of
upgrading service and feeder cables on the HC
. . Proposed an overvoltage risk-based PV HC assessment
[111] Overvoltage Monte Carlo Simulation approach for LV distribution networks
[112] Voltage magnitude Monte Carlo Simulation Presented a two-stage framework that combines

deterministic and stochastic methods for estimating PV HC.

3.4. The Optimization-Based Method

The optimization-based HC determination methods generally consider PV integra-
tion as an optimization problem. This method uses the optimal power flow technique
(OPF) with the objective of maximizing the PV installed capacity while meeting the grid
operational constraints. Figure 6 shows the general process of the optimization method.
The most common techniques used to solve this optimization problem are Particle Swarm
Optimization [113], Artificial Bee Colony [114], Robust optimization [115,116], and Genetic
Algorithm [117,118]. Some studies using the optimization method can define a single
objective function to maximize the HC [119,120], while other studies can set up multiple
objective functions to determine the HC that results in maximizing PV installations and
minimizing the network losses or cost [55,113].
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Figure 6. Optimization method illustration.

In [120], a simple power distance test tool based on OPF for HC assessment in a
distribution network is presented. The studies adopted a single objective of maximizing
the PV total output using voltage constraints. The results show that the developed tool
can exploit more headroom of PV HC of the network compared to the existing analytical
power distance tool. The authors in [119] proposed a two-stage approach to determine the
maximum PV HC of a distribution network using the metaheuristics algorithm optimization
technique. The method that was tested on the IEEE 123 node feeder, produced a more
conservative HC value that is 13% higher when compared to the streamlined approach.

A multi-objective function optimization problem for the size and location of aggre-
gated PV installations applied on a realistic distribution network is reported in [55]. The
objective function of the study is to minimize total energy losses, voltage deviations, and
voltage fluctuations. The study observed that for higher cumulative distribution functions,
there was no significant difference in the probability of reverse power flow occurring.
In [113], a multi-objective particle swarm optimization (PSO) algorithm with the Pareto
dominance-based approach is used to optimally place an open unified power quality
conditioner (UPQC-O) to maximize the PV HC and minimize distribution losses simultane-
ously. The results show that the addition of UPQC-O increases the PV HC and lowers the
losses. However, this approach comes with an extra investment cost when compared to
other approaches.

In a bid to tackle the challenge of the huge computational burden of the optimization
method, several studies have utilized the linear programming technique [96,121-123].
This technique solves a set of linear power flow equations in one step without iteration.
In [121], a linear power flow model which enabled a linear programming formulation was
developed for HC calculation. The method was tested using the IEEE 33-bus system and
the results obtained indicate that it can outperform traditional hosting capacity methods
in terms of computation time but with a similar hosting capacity solution. Similarly, the
authors in [122] used linear programming to determine the optimal loading capacity of a
radial distribution network.

The optimization method provides a more conservative HC result for the defined
constraints and covers several numbers of scenarios but requires several iterations to obtain
an optimal solution. Table 5 shows a summary of the studies that adopt the optimization
method. It is important to state that the deterministic, time-series or stochastic methods
can be used in the optimization process. However, Table 5 is concerned with elaborating
only on the optimization method used in the studies.
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Table 5.
capacity determination.

Summary of studies that adopt the optimization-based method for PV hosting

Ref Performance Index Objective Function Technique
[55] Voltage magnitude and Minimize energy losses, voltage deviation, and Improved particle
- reverse power flow voltage fluctuation. swarm optimization
[96] Voltage magnitude Maximize the total PV generation. Linear programming
Voltage magnitude and Maximize PV installations and minimize total . S
[113] .. Particle swarm optimization.
thermal limit network energy losses.
[114] Voltage magnitude Minimize active power loss Artificial bee colony
Voltage magnitude and S Robu§t comprehensive PV
[115] thermal limit Minimize total PV output capacity assessment model
(RC-CAM)
[116] Voltage magm.t u(j,le and Maximize the total PV output. Robust optimization
thermal limit
Voltage magnitude,
[118] harmonic distortion, and Maximize the total PV output. Genetic algorithm
thermal limit
[119] Voltage magnitude Maximize the total PV output. Metaheuristics algorithm
Voltage magnitude,
[120] voltage unbalance, and Maximize the active power generation of the PV -
thermal limit
. Minimize the power generation of PV over the
Voltage magnitude and . . . o . .
[121] - uncertain variables while maximizing it over the Linear programming
thermal limit . .
primal variables
Voltage magnitude and . rs . . .
[123] thermal limit Maximize the additional generation or load Linear programming
. o Multistage analytical
[124] Multiple DGs Maximise DG output OPF algorithm
Voltage magnitude, Repeated particle
[125] Transformer rating, and Maximise total PV output and Minimise total losses P Jpartic:
swarm optimization
reverse power flow
[126] Voltage magnitude Maximizing the PV generation Linear programming
[127] losses Maximizing the PV generation Particle swarm optimization.
[128] Voltage magnitude Maximize the total PV output. Particle swarm optimization.

3.5. The Streamlined Method

The streamlined method uses algorithms and equations derived from thorough studies
to perform HC calculations in a streamlined approach [129]. There are two types of
streamlined methods in the literature, the first was developed by Electric Power Research
Institute (EPRI) [10,130,131], while the other is the streamlined ICA (Integrated Capacity
Analysis) method [11]. EPRI’s streamlined method leverages the information taken from
detailed PV HC studies of several unique distribution feeders. The trends from the initial
set of power flow case studies are used to characterize the feeder response and derive
a conservative, optimistic, and realistic range of HC values. The algorithm of the EPRI
streamlined method is in the Distribution Resource Integration and Value Estimation
(DRIVE) [132]. On the other hand, the streamlined ICA method applies a set of equations to
assess the impact of distributed PV at each node of the distribution network without using
a modeling tool or software. Similar to the EPRI’s streamline method, the ICA method
first performs a baseline power flow analysis to obtain the initial conditions of the network
before evaluating the defined performance criteria [10]. The equations used for the HC
calculation can be found in the PG&Es DEMO A /B report [130]. The main benefits of the
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streamlined methods are computational efficiency, the use of limited resources, and the
ability to consider a wide range of possible PV locations. However, the streamlined HC
may compromise accuracy for complex feeders with branch diversity [10,14,131]. Figure 7
shows the general process of the streamlined method while Table 6 summarizes the studies
that have been conducted using the streamlined method. It is important to note that there
are few studies openly available that use the streamlined method because the algorithm
is mostly used by industries and regulators and is not open-sourced. Table 7 shows the
merits and limitations of the different HC determination methods.

INPUT
Network parameters AbDIv bower system
of diverse feeders Conduct ppcrit?eria to t{}e Qutput and
baseline power . tinated feed analyze grid
flow investigated feeder result

for HC assessment

( EV data

Figure 7. Streamlined method illustration.

Table 6. Summary of studies that adopt the streamlined method for PV hosting capacity determination.

Ref Performance Index Study Summary
oltage magnitude, thermal limit, transformer rating, utlined the streamlined method’s technique by calculatin
[131] Voltag gnitude, th 1 limit, transf ting Outlined the st lined method’s technique by calculating
protection and reverse power flow the PV HC of a distribution network.
[133] Voltage magnitude, thermal limit, transformer rating, Outlined the streamlined method’s technique by calculating
) protection, fault current, and reverse power flow the PV HC of a distribution network.
. . . Provided a summary of how to use the streamlined method
Voltage magnitude, thermal limit transformer rating, . . . .
[134] . to assess the impacts of distributed PV integration on a
protection, and fault current s
distribution network.
Table 7. Merits and limitations of the HC determination methods.
Methods Merits Limitations
° Very simple, fast, and easy to implement with
a less computational burden e  Underestimates the HC due to overestimation of the
Deterministic Requires few inputs parameters worst-case scenario

It does not consider uncertainties
Assumes fixed input values

Useful for quick estimation and overview of
the HC
e  Preferred for a single large installation

Time series

Provides a more realistic HC value because it

Considers the time variation in the load

consumption and PV generation profiles .
e Answers the ‘when” and ‘how” questions

Time-consuming due to the need for
high-resolution simulations

This poses a huge computational and
simulation burden

associated with HC calculations

A large amount of measurement data is required

Stochastic

e  Considers uncertainties associated with solar
PV generation and load consumption
Ability to simulate realistic grid scenarios
Presents a more realistic overview of grid
performance based on PDFs

Relationships between the network variables over time
can be lost.

May suffer from unrealistically too many scenarios as
the number of uncertainties increases.

The need for more measurement data leads to a
tedious computation

Analyzing and interpreting HC results is difficult
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Table 7. Cont.

Methods Merits Limitations
e  Provides a more conservative HC result for e  Requires several iterations to obtain an
Optimization the defined constraints optimal solution
o  Covers several numbers of scenarios e  Requires huge measurement data
Computational efficiency e  This poses a huge computational burden
. Uses limited resources e  Provides approximate HC values, especially with
Streamlined o . . .
Ability to consider a wide range of possible complex feeders

PV locations

4. EV Hosting Capacity Studies

The growing sales of plug-in electric vehicles (EVs) [3] imply that EV charging in
the distribution network is increasing, and this translates to a corresponding increase in
peak power consumption and changes in consumption patterns [135,136]. Large-scale
integration and simultaneous charging of multiple EVs are identified to have a high impact
on the network, creating several technical challenges for the grid. This makes the HC
a useful planning tool for estimating the amount of EV charging that is possible on a
distribution feeder. In this case, HC is defined as the amount of new consumption that
can be connected to the network without risking the reliability or power quality of other
customers [15].

The general approach for EV charging HC calculation is shown in Figure 2 only that
PV is replaced by EV and in some cases, both PV and EV are combined. There are several
unknowns and uncertainties associated with EV charging such as charging patterns (the
key determining factor of EV impact), phase connection (single-phase or three-phase), type
of charging, location of EV on the feeder, and time and duration of charging. Moreover,
connecting single-phase or three-phase EVs on the distribution network causes violations
of various performance limits including thermal limits and transformer overload due to
increased demand, harmonics, voltage magnitude, and voltage unbalance [2,137,138].

The deterministic [139], time series [140], stochastic [141], and optimization-based [142]
HC calculation methods can be used to estimate the HC of EV in the distribution network.
Similar to the PV HC calculations, the uncertainties associated with EV charging can
be addressed using the time series or stochastic method. The deterministic method is
suitable for worst-case scenarios, while utilities can also view the EV HC as an optimization
problem. A simple deterministic method is used to assess the impact of either average or
peak load consumption from survey and measurement data in [139]. The limiting factors
were applied for the charging cycle occurring between 6 p.m. and 10 p.m. Similarly, a
deterministic method is used in [143] to estimate the HC of EV charging in a real LV network
containing 13 detached single-family houses. Cable loading and voltage drop were used as
the limiting factor for four case studies. The results show that a maximum of 6-11 (46% to
85%) customers can charge their EVs with 11 kW simultaneously before a violation occurs.

In [2], a stochastic approach to single-phase and three-phase EV charging HC for two
existing distribution networks including aleatory and epistemic uncertainties is presented.
Background voltage and under-voltage are the limiting factors, with the 10th percentile
of the worst-case voltage distribution as the performance index and 90% of the nominal
voltage as a limit. The results show that EV charging HC is sensitive to the lowest back-
ground voltage and highest power consumption. The method can be used at any time
without detailed knowledge of the charging patterns. A stochastic approach to determine
the single-phase and three-phase EV charging HC considering both aleatory and epis-
temic uncertainties is developed in [2], while [15] applied a simplified MCS using limited
input data to determine the EV charging HC. To quantify the risk of overloading in the
network, [144,145] capture the uncertainty of EV and customer loading using Poisson and
Gaussian distribution models respectively.
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Furthermore, different HC determination methods can be applied to EV HC studies as
presented in [140]. The authors applied stochastic and time series methods to study the
power quality problems of electric transportation charging of EVs on distribution systems.
Stochastic measured data of EVs are used to develop stochastic harmonic analysis models
and usage scenario models. The study shows transformer loading as the most violated
performance limit. Furthermore, studies such as [7,146] assessed the combined effect of
PV and EV integration in the distribution network. In the investigative study reported
in [146], the authors used a stochastic method based on Monte Carlo simulations to assess
the unified effect of solar PV and EV connections on a Brazilian LV network. The results
show overvoltage as the most limiting factor in the distribution network.

It is necessary for key uncertainties such as charging patterns and types of charging to
be considered in EV HC. Therefore, [142] introduced a voltage-constrained-based approach
to calculate the HC of EVs under uncontrolled charging scenarios while the authors in [144]
considered both uncontrolled and controlled charging schemes. Similarly, [143] developed
an EV HC tool for extremely fast charging hosting options. Table 8 shows a summary of the
EV charging HC studies highlighting different methods and performance indices, while
Table 9 compares the different HC determination methods.

Table 8. Summary of EV charging HC studies highlighting the method and performance indices.

Ref Performance Indices HC Method Study Summary

Developed a method for single-phase and three-phase EV

[2] Voltage magnitude Stochastic charging charge HC for two existing distribution networks

including aleatory and epistemic uncertainties.

Presented a method of determining the HC of EV in an LV

[15] Voltage magnitude Stochastic distribution network using limited input data and
simplified MCS.

Voltage maenitude and Presented a mathematical model for determining a

[123] tghermgl limit Optimization distribution network node’s marginal EV charging

hosting capacity.

Harmonics, low voltage,
[140] voltage unbalance, and Stochastic
transformer loading

Studied the power quality impact of electric transportation
charging including EVs on distribution systems.

Voltage magnitude, thermal

Proposed a rule-based algorithm based on a holistic

[142] . Optimization approach to determine the EV HC of two
limits, and losses . .
interlinked systems.
[143] Voltage drop and Deterministic Estimated the HC of EV charging in a Swedish LV network
cable overloading consisting of 13 detached single-family houses.
Proposed a model that captures the EV charging and
[144] Transformer loading Stochastic customer load uncertainties with Poisson and Gaussian
distribution models respectively.
Transformer loadine and Presented a user-defined, data-driven risk assessment
[145] & Stochastic method to evaluate the impact of high levels of EV charging

Cable loading

and solar PV penetration.

Voltage magnitude, voltage
[146] unbalance, and cable and Stochastic
transformer loading.

Investigated how a Brazilian LV distribution network is
affected by a combination of both PV and EV connections.

[147]

Presented an approach to determine the HC of a distributed
resource-based generation and the number of EVs in
isolated DC grids.

Stochastic and
optimization method
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Table 8. Cont.

Ref Performance Indices HC Method Study Summary
Presented the HC result on a mixture of electric vehicles
[148] Total harmonic distortion Stochastic from diverse brands under different states of charge and
background distortion.

[149] Voltage magnitude and Time series and Formulated the EV HC assessment of two real Australian

voltage unbalance stochastic MV-LV networks by exploring multiple EV penetrations.

Voltage magnitude and e Proposed the concept of “EV chargeable region” to
[150] thermal limit Optimization determine the EV HC for each node.
Voltage magnitude, voltage Time series and Introduced a voltage-constrained-based approach to
[151] unbalance, and transformer stochastic calculate the HC EVs under an uncontrolled
loading charging scenario.
[152] Voltage magm.tu(.ie and Deterministic Developed an EV HC toql for an extremely fast charging
thermal limit hosting option.
Time series and Used additional available power (AAP) as an indicator in
[153] - . the hybrid algorithm to determine the EV HC during
stochastic ;
controlled and uncontrolled charging.
[154] Voltage magnitude, and Deterministic and Carried out a wide-scale study to estimate EV HC using
transformer and cable loading stochastic data readily available to utility engineers.

[155] Voltage magnitude Time series and Compared how much impact the different types of EV

stochastic charging can contribute to PV HC.

Table 9. Comparison of the different HC determination methods.

Features Deterministic Time Series Stochastic Optimization Streamlined
Data requirements Low Huge Moderate Moderate Moderate
Consideration of uncertainties None Few Various Various Various
Computation time Short Moderate Huge Huge Moderate
Complexity Simple Moderate Complex Complex Complex
No. of scenarios considered Few Few Many Various Various
Correctness of Results Approximate Correct Correct Precise (based on the Approximate

chosen constraint)

5. Hosting Capacity Determination Tools

This section presents software applications that offer off-the-counter HC calculation
tools and functions. The information presented in this section is primarily based on what is
available online on the website of the software providers and the user manuals. A broader
range of other power system tools that can be used for HC determination is listed in [156].

5.1. PowerFactory

PowerFactory is a power system modeling and simulation software application devel-
oped by DIgSILENT. The software application can easily be used for analyzing generation,
transmission, distribution, and industrial systems. Recent versions of the software have an
HC calculation tool for a distribution network considering voltage, thermal, protection, and
power quality limits. Moreover, there are quasi-dynamic simulation and scripting functions
that are useful for time series and stochastic impact assessment of PV and EV integration.
PowerFactory uses an iterative method (stochastic method) for HC determination and
detailed information about the software and its functions can be found in [157].
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5.2. PSS Sincal ICA

PSS Sincal ICA (Integrated Capacity Analysis) module developed by Siemens automat-
ically determines the maximum PV generation or load capacity that can be independently
installed at a respective node of the distribution network without violating user-given con-
straints. The ICA is a module for HC calculation in the PSS Sincal software. The software
has a wide variety of functions for the analysis of power system operation, planning, and
modeling of distribution, transmission, industrial, and renewable energy systems. The
ICA HC analysis uses the time series fully iterative method to evaluate criteria such as
thermal loading, protection, reverse power flow, voltage limits, voltage fluctuations, and
short-circuit persistence of network equipment. More information about the PSS Sincal and
its ICA module can be found in [158,159].

5.3. Synergi Electric

Synergi Electric is a power distribution system analysis and electrical simulation
software developed by DNV GL. The tool provided in the software uses five different
methods for HC calculation in the distribution network, which are stochastic, feeder rating,
feeder maximum demand, incremental, and sectional incremental. A detailed procedure of
how these methods work within the software and the description of the software itself can
be seen in [160,161].

5.4. NEPLAN

NEPLAN is an electrical power system analysis software tool that is used for network
planning, simulation, optimization, and analysis. It provides a module within the software
that can model PVs and EVs for stochastic evaluation of the HC of the distribution network.
The stochastic method adopted in NEPLAN is based on Monte Carlo simulation and
considers limiting factors such as voltage violations, equipment overloading, and other
performance indices [162].

5.5. CYME

CYME power engineering simulation tool developed by EATON has two modules
that use streamlined methods to determine the hosting capacity of a distribution grid: EPRI
DRIVE module and the Integration Capacity Analysis module [163]. The Distribution
Resource Integration and Value Estimation (DRIVE) module developed by the EPRI is used
in the CYME software to calculate the HC for PV and other DER technologies using perfor-
mance limits such as protection, power quality, voltage, thermal, and reliability /safety [164].
The Integration Capacity Analysis (ICA) module in CYME uses a streamlined iterative
method based on the constant source technique to determine how much generation or
load can be independently added to a distribution network node. Voltage change, thermal
loading, steady-state voltages, protection, reverse power flow, and sympathetic tripping
are the limiting criteria for the HC quantification available in the software [165]. Table 10
presents a summary of the HC evaluation software tools, their HC calculation method, and
the performance indices that can be assessed.
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Table 10. Summary of HC evaluation Software tools.

Software

Method Limits

PowerFactory

Voltage

Stochastic (Based on Standard binomial search method) Power quality

Thermal Protection

PSS Sincal ICA

Voltage
Short-circuit Thermal

Time series Protection

Voltage fluctuations
Reverse power flow

Synergi Electric

Stochastic (Based on Random placement method)
iterative time series

Overvoltage
Thermal
Reverse power flow

NEPLAN

Voltage

Stochastic (Based on Monte Carlo Simulation) Thermal

Other performance indices

CYME (ICA)

Streamlined (Iterative constant source)

Voltage

Voltage fluctuations
Thermal

Protection

Reverse power flow
Sympathetic tripping

CYME (EPRI DRIVE)

Voltage
Power quality

Streamlined Thermal

Protection
Reliability /Safety

6. Conclusions

Due to the importance of hosting capacity studies in modern electrical power systems,
this paper has conducted a comprehensive review of the HC concept, methods, and
tools based on a survey of state-of-the-art literature published within the last five years
(2017-2022). It presents five HC calculation methods; deterministic, time series, stochastic,
optimization-based, and streamlined, commonly used for PV and EV HC studies.

In summary, the deterministic HC determination method is simple, does not consider
uncertainties, and can be used to quickly estimate the HC. The time series method uses
actual system measurements of load and PV generation historical time series profiles with a
long time scale and high resolution for HC calculation. The stochastic method considers the
chance of occurrence of the unknown variables and uncertainties associated with solar PV
and EV charging integration in the distribution network by using probabilistic load flow.
The optimization-based method views the HC as an optimization problem with the goal of
maximizing PV output and EV charging through the use of optimal power flow strategies.
The streamlined method uses algorithms and equations derived from trends obtained from
thorough studies to estimate the HC in a streamlined approach. It is important to note that
no particular method or tool is most suitable for HC determination since the characteristics
of each LV network are not homogenous. This is why some studies adopt hybrid HC
determination methods for robustness and to maximize the advantages of the different
methods. It is observed from the survey that most of the HC studies of PV and EV charging
in the LV distribution network consider voltage magnitude, line loading, and transformer
loading as performance indices. The selection of the performance indices, the definition
of their acceptable limits, and the non-homogeneity of distribution networks affect the
outcome of the HC for a particular distribution grid.
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