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Abstract: This paper presents an equivalent consumption minimization strategy (ECMS) based on
model predictive control for series hybrid electric mine trucks (SHE-MTs), the objective of which is to
minimize fuel consumption. Two critical works are presented to achieve the goal. Firstly, to gain the
real-time speed trajectory on-line, a speed prediction model is established by utilizing a recurrent
neural network (RNN). Specifically, a hybrid optimization algorithm based on the genetic algorithm
(GA) and the particle swarm optimization algorithm (PSOA) is used to enhance the prediction
precision of the speed prediction model. Then, on this basis, an ECMS based on MPC (ECMS-MPC) is
proposed. In this process, to improve the real-time and working condition adaptability of the ECMS-
MPC, the power-optimal fuel consumption mapping model of the range extender is established, and
the equivalent factor (EF) is real-time adjusted by means of the PSOA. Finally, taking a cement mining
road as the research object, the proposed strategy is simulated with the collected actual vehicle data.
The experimental results indicate that the prediction precision of the proposed speed prediction
model is over 98%, realizing on-line speed prediction effectively. Furthermore, compared to the
existing real-time EMSs, its fuel-saving rate had an increase of more than 13%. This indicates that the
designed ECMS-MPC is able to offer a novel and effective method for the on-line energy management
of the SHE-MTs.

Keywords: series hybrid electric mine trucks; equivalent consumption minimization strategy;
recurrent neural network; model predictive control

1. Introduction

Under the traction of the double carbon policy, series hybrid electric mine trucks
(SHE-MTs) have become one of the important ways to realize the green and sustainable
development of mine trucks [1,2]. To make full use of the fuel-saving and emission-reducing
performance of the SHE-MTs, it is very essential to adopt appropriate energy management
strategies (EMSs) to allocate the output power of the range extender and battery [3,4].
At present, the existing EMSs are capable of dividing into the following main categories:
rule-based (RB) EMSs and optimization-based EMSs [5].

RB EMSs [6–9] mainly include charge-depleting and charge-sustaining (CDCS) [6],
deterministic RB (DRB) [7], and fuzzy RB (FRB) [8] EMSs, which are primitively presented
on-line EMSs. In general, RB EMSs can quickly match the corresponding rules in accor-
dance with the driving conditions, possessing excellent real-time and implementation
performance. In [10], a tunable RB EMS was proposed by means of adjusting the mixed
weight factor. On the basis of this, the engine operating state could be dynamically adjusted,
and the optimal operation points of the engine were chosen in accordance with its map.
Lastly, it achieved fuel savings of 18.9% in comparison to the hydrostatic loader. Zhao
et al. [11] proposed a fuzzy logic control strategy, taking the demand torque and state of
charge (SoC) of the supercapacitor as inputs, and outputting the torque of the engine and
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motor as outputs. Finally, compared to the conventional loader, the strategy could decrease
fuel consumption by about 16.6%. Nevertheless, the fuel-saving performance of RB EMSs
not only relies on experts’ experience but also is constrained by the fixed parameters of
the rule base, resulting in poor fuel-saving robustness and driving condition adaptability.
Therefore, many scholars have proposed optimization-based EMSs, mainly containing
global and instantaneous optimization EMSs [12]. Among them, the global optimization
EMSs can realize the globally optimal solution of the fuel consumption when the priori
information (speed, acceleration, slope angle, etc.) of the driving cycle is known [13,14].
However, in terms of SHE-MTs, the priori information of the driving cycle is difficult to
be accurately obtained in advance in practical situations. In addition, global optimization
EMSs, with a large amount of calculation, can only be used for offline optimization and are
not suitable for on-line energy management.

In contrast, instantaneous optimization EMSs are capable of achieving fuel consump-
tion optimization instantly or in a short duration, which mainly contain the equivalent
consumption minimization strategy (ECMS) [15–18], model predictive control (MPC)
EMSs [19–22], and intelligent control EMSs [23–25]. The critical principle of the ECMS [15]
is to transform the global optimization problem into an instantaneous optimization problem
that minimizes the real-time equivalent fuel consumption by adjusting an equivalent factor
(EF) at each moment [18,26]. The references [15,16] utilized the ECMS optimization idea to
achieve real-time on-line energy management. The multi-objective overall optimization
method was used to improve the ECMS [17]. However, in terms of the random driving
states and complex working conditions of SHE-MTs, it is very difficult to correctively obtain
the future driving condition information in advance. In this case, the ECMS is not able to
obtain the optimally instantaneous equivalent fuel consumption at every time according to
the unchanging fuel–electricity EF. For this reason, to make the ECMS adapt to complex
and time-varying working conditions, Zhang et al. [18] and Sun et al. [26] respectively
proposed a driving-condition recognition-based adaptive ECMS, which can adjust the
EF on-line according to the changes in the working condition. In [27], the EF boundary
of the ECMS was studied by means of the Hamilton equation of Pontryagin’s minimum
principle (PMP). On this basis, a novel fusion-adaptive ECMS was proposed, which was
more suitable for on-line applications. Gu et al. [28] developed an optimized ECMS, the EF
of which was adjusted by considering the identification of the driving pattern information.
In [29,30], adaptive adjustment of the optimal EF on the basis of the proportional integral
controller was described regarding the reference SoC error and its feedback. Although the
ECMS has the advantage of instantaneous optimization, its energy consumption optimiza-
tion effect is limited because of not considering the global or local information of future
driving conditions.

Different from the ECMS, MPC [31] EMSs and intelligent control [32] EMSs solve
the energy consumption optimization problem by taking into account the future state
information. Among them, the optimization target of MPC EMSs is to obtain a real-time
optimal control strategy by minimizing the local energy consumption of the preview
window [19,33]. In order to achieve the goal, the driving information of the preview
window is necessary to be predicted by MPC EMSs first. Then, on the basis of this, the
optimization algorithms [13] are utilized to compute the optimal control strategy on-
line. As the vehicle continues to drive, the predicted condition information continuously
updates. Meanwhile, the optimal control sequence is obtained by rolling optimization
in the prediction time horizon. Liu et al. [14] proposed a dynamic programming (DP)-
based MPC EMS, further reducing the fuel consumption and emissions of the vehicle.
Han et al. [20] presented an MPC EMS based on PMP to reduce operating costs while
assuring that the electromagnetic temperature is lower than the limit value, achieving
real-time energy management. In [21], taking the hybrid loader as the research object, a
predictive control strategy on the basis of stochastic DP was proposed. Contrasting with
non-predictive EMSs, it could save fuel consumption by about 5%. However, the calculation
amounts for the DP and PMP algorithms also increase with the increase in the preview
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window size, and the solution of the PMP covariate variable is difficult, making them not
suitable for real-time optimization. The references [22,34] described stochastic predictive
control EMSs based on the Markov Chain according to the driving behavior of the driver.
Vadamalu et al. [35] presented an MPC EMS utilizing the Markov Chain. In this strategy, an
explicit MPC algorithm was used to solve the constrained energy consumption optimization
problem. However, the probability transfer matrices of the Markov Chain increased faster
as the driving time became longer, causing a larger computational burden and bad on-line
performance of the EMS. For this purpose, intelligent control [32] EMSs were proposed,
which solved the energy consumption optimization problem by reinforcement learning
(RL), avoiding the computing burden, and having better on-line application potential.
In [23], an EMS based on a deep Q-learning algorithm was proposed, which had less
training time and faster convergence speed than the general Q-learning strategy, without
reducing the optimization effect. Liu et al. [24] proposed a heuristic planning EMS based
on dynamic RL, which can overcome the computational burden of the general Q-learning
algorithms and the probability transition matrices of the Markov decision process. Wu
et al. [25] proposed an EMS based on depth RL, which used a depth gradient algorithm
to conduct parameter learning, and its energy optimization effect was better than the
discrete Q-learning strategy. However, the optimization effect of the intelligent control
EMSs depends on the experience knowledge and learning methods of the parameters and
completeness of the sample data, restricting its on-line application.

To further reduce the algorithm computational amount and improve the working
condition adaptability of the above on-line EMSs, this paper fully integrates the advantages
of the ECMS instantaneous optimization and MPC rolling optimization, designing a novel
ECMS based on MPC (ECMS-MPC). Compared to the existing on-line EMSs, the proposed
EMS can realize better real-time performance and condition adaptability, with strong
fuel-saving robustness.

For achieving the above objectives, the contributions in this paper are as follows. First,
to achieve the real-time speed trajectory on-line, a speed prediction model is built using a
recurrent neural network (RNN) [36–38]. Specifically, the hybrid optimization method of
the genetic algorithm (GA) [39,40] and particle swarm optimization algorithm (PSOA) [41]
are utilized to optimize the initial parameters of the prediction model to enhance the speed
prediction precision of the model. Then, an ECMS-MPC is proposed. In this process,
to improve the calculation speed and real-time performance of the proposed EMS, the
power-optimal fuel consumption mapping model of the range extender is established. In
addition, to further improve the adaptability to random conditions of the SHE-MT, the EF
is real-time adjusted by means of the PSOA [41]. Lastly, simulation research is carried out
for using the designed ECMS-MPC on a practical cement mine road.

The structures of the paper are as follows. The SHE-MT model and the fuel con-
sumption optimization problem are described in Section 2. Section 3 establishes the speed
prediction model. The ECMS-MPC is described in Section 4. Next, the speed prediction
effect and the ECMS-MPC performance are discussed and analyzed in Section 5. Lastly, the
conclusions and prospects are given in Section 6.

2. Problem Description and Formulation

In this section, the SHE-MT is described, and its power topology is shown in Figure 1.
The dynamics model of the SHE-MT and its fuel consumption optimization problem are
represented, respectively. Specifically, all problems in this paper are analyzed in the discrete
time domain, and the discrete time step is assumed to be 1 (s).
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Figure 1. Power topology of the SHE-MT. 
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Figure 1. Power topology of the SHE-MT.

2.1. Dynamics Model

According to vehicle dynamics, the demand torque Twh(t), speed nwh(t), and power
Pwh(t) of the wheel at discrete time t can be expressed as

Twh(t) =
[

mv · g · sin θ(t) + mv · g · cos θ(t) · ρf

+δ ·mv(t) · a(t) + 0.5 · CD · A · ρa · v(t)2

]
· rwh

nwh(t) = 30 · v(t)/[π · rwh]
Pwh(t) = Twh(t) · nwh(t)/9550

(1)

where mv, g, θ, ρf, δ, a, CD, A, ρa, v, and rwh denote the vehicle mass, gravity acceler-
ation, slope angle, rolling resistance coefficient, rotational mass conversion coefficient,
acceleration, air resistance coefficient, frontal area, air density, vehicle speed, and wheel
radius, respectively.

The range extender consists of the engine and generator, which can provide energy
to the driving motor and battery pack in the meantime. The output power of the range
extender Pre is equal to the electric power of the generator Pg. In addition, the fuel con-
sumption features of the range extender can be characterized by that of the engine. In other
words, we can regard the engine fuel consumption rate

.
me as the fuel consumption rate

of the range extender. The operation process and fuel consumption features of the range
extender are described as (assuming the discrete time step is 1(s))

Pre(t) = Tre(t) · nre(t)/9550 = Pg(t)
Pe(t) = Te(t) · ne(t)/9550

me(t) =
Pe(t)·

.
me(Te(t),ne(t))

3600
Pg(t) = Ug(t) · Ig(t) = Tg(t) · ng(t) · ig(Tg(t), ng(t))/9550

= Te(t) · ieg · ne(t) · ig(Tg(t), ng(t))/9550 = Pe(t) · ieg · ig(Tg(t), ng(t))
= Pe(t) · ire(Tre(t), nre(t))

(2)

where Tre and nre denote the torque and speed of the range extender, respectively. Pe, Te,
and ne represent the output mechanical power, output torque, and output speed of the
engine, respectively. me is the fuel consumption of the range extender. Ug and Ig represent
the voltage and current of the generator, respectively. Tg and ng respectively denote the
input torque and speed of the generator. ieg is the mechanical transmission efficiency
between the engine and generator. ig and ire are the generating efficiency of the generator
and the efficiency of the range extender, respectively. The maps of

.
me and ire are presented

in Figure 2a,b, respectively.
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Figure 2. The mapping characteristics. (a) The fuel map of range extender. (b) The efficiency map 
of range extender. (c) The motor map. 
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where bI , chi , and disi  are the loop current, charging efficiency, and discharging effi-
ciency of the battery pack, respectively. 
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Figure 2. The mapping characteristics. (a) The fuel map of range extender. (b) The efficiency map of
range extender. (c) The motor map.

The battery pack can not only drive the driving motor but also recover the kinetic
energy of the driving motor. The battery pack model is expressed as follows:

∆SoC =
−Ub +

√
Ub

2 − 4 · Pb(t) · Rb
2 · CAh · Rb

(3)

where Ub, Rb, and CAh denote the terminal voltage, internal resistance, and capacity of the
battery pack, respectively. Pb represents the output electric power of the battery pack. It is
further denoted as

Pb(t) =

{
Ub(t) · Ib(t) · idis(t), Pb(t) ≥ 0
Ub(t)·Ib(t)

ich(t)
, Pb(t) < 0

(4)

where Ib, ich, and idis are the loop current, charging efficiency, and discharging efficiency of
the battery pack, respectively.

The driving motor can be powered by the battery pack or range extender alone or
together. The operating characteristics of the driving motor are shown as

Pm(t) =
Tm(t) · nm(t)

9550
=

{
Um(t) · Im(t) · im(Tm(t), nm(t)), Pm(t) ≥ 0

Um(t)·Im(t)
im(Tm(t),nm(t)) , Pm(t) < 0

(5)

where Pm, Tm, nm, Um, and Im describe the output mechanical power, output torque, output
speed, voltage, and current of the driving motor, respectively. im is the convert efficiency of
driving motor between the mechanical and electric energy. The relationships among im,
Tm, and nm are characterized by the map in Figure 2c. In addition, the relationships among
Pm, Pb, and Pre follow the power balance principle.{

Pm(t) = (Pb(t) + Pre(t)) · im(Tm(t), nm(t)), Pm(t) ≥ 0
Pb(t) = Pm(t) · im(Tm(t), nm(t))− Pre(t), Pm(t) < 0

(6)

The drive assembly is able to achieve the speed reduction and torque increase of the
driving motor, whose model is obtained by (1) and (5).

Pwh(t) =
{

Pm(t) · id, Pm(t) ≥ 0
Pm(t)/id, Pm(t) < 0

Twh(t) =
{

Tm(t) · id · if, Tm(t) ≥ 0
Tm(t) · if/id, Tm(t) < 0

nwh(t) = nm(t)/if

(7)
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where id and if are the driving efficiency and speed ratio of the drive assembly, respectively.

2.2. Fuel Consumption Optimization Problem

On the basis of the established dynamics model of the SHE-MT, the fuel consumption
optimization problem is described in this subsection.

According to [13], on the premise of ensuring dynamic performance, the goals of the
fuel consumption optimization problem mainly include four things: (1) minimizing the
equivalent fuel consumption; (2) minimizing the fuel consumption; (3) minimizing the
fuel consumption and emissions; (4) minimizing the energy consumption costs. In this
paper, minimizing the equivalent fuel consumption was adopted as the optimization goal
of the fuel consumption optimization problem. Correspondingly, the fuel consumption
optimization problem in the discrete time domain is as follows: J =

tf
∑

t=t0

.
mf_eqv(t)

.
mf_eqv(t) =

.
me(Te(t),ne(t))·Pre(t)
ire(Tre(t),nre(t))·3600 + s · p Pb(t)

Qlhv

(8)

where J presents the total fuel consumption of whole trip.
.

mf_eqv and Qlhv indicate the
equivalent fuel consumption ratio and fuel calorific value, respectively. t0 and tf describe
the start moment and end moment of the driving conditions, respectively. s is the EF and is
used to convert the electricity into the equivalent fuel consumption. p denotes the penalty
factor, which is related to the SoC and makes it change within the allowable range. s · p is
the total equivalent coefficient, and its value has a significant impact on the vehicle system
performance. The determination processes of s and p are described in detail in Section 4.

Different from the torque-coupling parallel hybrid system, for the power-coupling
series hybrid system, nre is not related to v. In other words, Tre and nre are both changeable
under the same Pre. Meanwhile, when Pm is determined for the SHE-MT, there are diverse
power allocation approaches to distribute Pm to Pre and Pb under the restraint (6). Different
combinations of Pre and Pb can bring different fuel and electricity consumption rates for an
identical v. For this purpose, the fuel consumption optimization goal is to determine the
optimal allocation solutions of Pre and Pb for min(J) in (8).

However, for the complicated and transient working condition of the SHE-MT, the
vehicle future condition information is difficult to accurately achieve in advance. Therefore,
we transformed the global optimization problem in (8) into the local optimization problem
to solve by adopting the MPC method. The MPC [31] method aims to obtain an optimal
control strategy via minimizing the fuel consumption of the preview window. To achieve
this objective, the condition information of preview window is necessary to be predicted
using the MPC method first. On the basis of this, the optimal control strategy is computed
on-line by means of optimal algorithms. With the vehicle driving, the predictive condition
information continuously updates. Meanwhile, the optimal control sequence is obtained by
rolling optimization in the prediction horizon. The specific principle is shown in Figure 3a.
Correspondingly, the detailed expression is shown in (9).
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min

{
J(t) =

τ−1
∑

q=0

.
mf_eqv(t + q), t ∈ [t0, tf − τ]

}

s.t. :



Te(t) ∈ [Te_min(ne(t)), Te_max(ne(t))]
Tre(t) ∈ [Tre_min(nre(t)), Tre_max(nre(t))]
ne(t) ∈ [ne_min, ne_max]
nre(t) ∈ [nre_min, nre_max]
SoC(t) ∈ [SoCmin, SoCmax]
v(t) ∈ [vmin, vmax]
Pb(t) ∈ [Pb_min, Pb_max]

(9)

where τ represents the preview window size. The variable subscripts of min and max in
the formula indicate the minimum and maximum values of the variables.

In this case, the MPC aims at determining the optimal control sequence u∗(t) to
min(J(t)) in each preview window, namely

u∗(t) = argmin
u(t)

{
J(t) =

τ−1
∑

q=0

.
mf_eqv(t + q)

}
= {u∗(t), . . . , u∗(t + τ − 1)}

=
{
(P∗re(t), P∗b (t)), · · ·, (P∗re(t + τ − 1), P∗b (t + τ − 1))

} (10)

where u∗ represents the optimal power combination of the range extender and battery pack
at each discrete moment. P∗re and P∗b denote the optimal power of the range extender and
the optimal power of the battery pack at each discrete time, respectively.

Accordingly, an ECMS-MPC method is proposed to solve u∗(t). According to Figure 3,
the vehicle speed of the SHE-MT should be known in advance to realize the ECMS-MPC
on-line. A prediction model of the vehicle speed is presented to obtain the priori vehicle
speed in Section 3.

3. On-Line Speed Prediction

In this section, to obtain the real-time speed trajectory, the speed prediction model
needs to be established. Considering that the vehicle driving process on the actual road
has strong uncertainty and nonlinearity, it is difficult for the traditional analytical model to
effectively characterize the process. In other words, the speed prediction model should have
the ability to adjust itself according to the road environment, that is, the parameters of the
speed prediction model can be learned and updated [42]. With the help of its information
inheritance and real-time prediction advantages, an RNN [36–38] can not only have an
excellent fitting effect on the nonlinear mapping relationship between the input and output
of uncertain systems, but it also can learn by itself by means of data. Therefore, an RNN is
applied to build the speed prediction model in this subsection. Specifically, for improving
the predictive precision of the RNN, with the help of an off-line database, we utilize the
hybrid optimization method of the PSOA-GA to optimize the initial parameters of the
prediction model. On this basis, the framework and implementation process of on-line
speed prediction based on an RNN are described in detail.

3.1. Vehicle Speed Prediction Problem

First, the prediction principle of the vehicle speed is analyzed. In general, the speed
prediction uses the history states information to predict the future speed information in
limited space or time, and its process is described in Figure 3b. According to vehicle theory,
the kinematic equation of a vehicle under ideal conditions is described as (assuming the
discrete time step is 1(s))

v(t + 1) = v(t) + a(t) (11)

However, in practical conditions, the variation of the vehicle speed, not only relating
to its motion state but also affected by the driver habits and road slope, is a highly nonlinear
change process. Considering that the driver’s driving habits are strongly related to a(t),
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we use a(t) to characterize the driver’s habits. In addition, it can be seen from (1) that slope
angle θ(t) can directly affect the longitudinal motion state of the vehicle. For this reason,
the state space equation of the vehicle speed in practical conditions can be denoted as

v(t + 1) = ξ(v(t), a(t), θ(t), t) (12)

where ξ denotes the v(t) to v(t + 1) evolution model. Obviously, the key to solving the
speed prediction problem is to determine the ξ specific form in (12). Considering the
continuity and nonlinearity of speed variation, an RNN [36–38] has inherent advantages in
solving this problem. Thus, the speed prediction model is established based on RNN in the
next subsection.

3.2. Speed Prediction Model Based on RNN

An RNN [36] is a special artificial neural network that is usually used to solve time
series problems [43]. It is composed of a series of neurons with the same structure. The
neurons of an RNN have a memory state. When processing sequence data, the input not
only contains sequence data but also the memory state of the previous moment [44]. The
general structure of an RNN is shown in Figure 4a, whose networks include the input layer,
hidden layer, and output layer. In the discrete time series k̂, the information transmission
relation of the nodes in each layer network at discrete time t can be expressed as

st = U× xt + W× }t−1
}t = g(st)
ot = V× }t
yt = σ(ot)

(13)

where xt and yt indicate the input and output vectors of the RNN, respectively. st and
}t describe the input and output vectors of the hidden-layer nodes, respectively. ot is
the input vector of the output-layer nodes. g and σ represent the activation functions of
the hidden-layer nodes and output-layer nodes [38], here selecting the tanh and purelin
functions, respectively. U, W, and V express the weight matrixes of the input-layer nodes
to the hidden-layer nodes, the hidden-layer nodes to the hidden-layer nodes, and the
hidden-layer nodes to the output-layer nodes, respectively.
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Figure 4. RNN structure. (a) General structure of RNN. (b) Speed prediction model topology
of RNN.

According to (13), }t not only relates to xt but also to }t−1. In other words, the network
outputs at discrete time t inherit the network state information at discrete time t− 1. The
inheritance relationship has inherent advantages for representing the speed prediction
model via the time series evolution in (12). Hence, a speed prediction model is established
using an RNN, which takes the speed, acceleration, and slope angle as the inputs and the
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prediction speed as the output. The node numbers of the input layer, hidden layer, and
output layer satisfy the following empirical expression [38]:

m =
√

i + n + λ, λ ∈ [1, 2, . . . , 10] (14)

where i, m, and n denote the node numbers of the input layer, hidden layer, and output
layer, respectively. In this paper, the RNN structure of the speed prediction model is 3-5-1,
as described in Figure 4b.

Then, the speed prediction process of the model is analyzed. It can be seen in
Figure 4b that the specific expression form of the speed prediction model at discrete
time t is as follows: 

st = U5×3 × [vt, at, θt]
T + W5×5 × }t−1

}t = tanh(st)
ot = V1×5 × }t
v̂t+1 = ot

(15)

where vt, at, and θt show the speed, acceleration, and slope angle at discrete time t, respec-
tively. v̂t+1 represents the prediction speed at discrete time t + 1. The specific forms of U,
W, V and }t can be further described as

U : U5×3 =


U11 U12 U13
U21 U22 U23
U31 U32 U33
U41 U42 U43
U51 U52 U53

 (16)

W : W5×5 =

W11 . . . W15
. . . . . . . . .

W51 . . . W55

T

(17)

V : V1×5 =
[
V11 V12 V13 V14 V15

]
(18)

}t : }t =
[
}1

t }2
t }3

t }4
t }5

t
]T (19)

Obviously, once }t, U, W, and V at t = 0 are determined, we can utilize (15) to predict
the speed on-line. In addition, in order to ensure the speed prediction accuracy of the
model, U, W, and V are continually learned through the supervised learning method until
the model prediction error L satisfies the set target value:

L =
k̂

∑
j=1

(
1
2
‖v̂t+j − vt+j‖2

)
≤ ε (20)

where ε→ 0 is a target error.
Next, we continue to analyze the parameter learning process. The gradient descent

method was adopted to update U, W and V. The variation of V can be expressed as

∆V1×5 = −η · ∂L
∂V1×5

= −η ·
k̂

∑
j=1

(
v̂t+j − vt+j

)
· }T

t+j (21)

where η ∈ (0, 1] is the learning factor.
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As known from (15), the variation of W can influence the outputs of the hidden-layer
nodes at the current and next moments. Therefore, the variation of }t is defined as

δt+j =
∂L

∂}t+j
= ∂L

∂ot+j

(
∂ot+j
∂}t+j

)T
+ ∂L

∂}t+j+1

(
∂}t+j+1

∂}t+j

)T

=

{ (
v̂t+j − vt+j

)
· VT

1×5 +
[
WT

5×5 × diag
(

1−
(
}t+j+1

)2
)]
× δt+j+1, j < k̂(

v̂t+j − vt+j
)
· VT

1×5, j = k̂

(22)

Further, the variation of W can be obtained as

∆W5×5 = −η · ∂L
∂W5×5

= −η ·
k̂
∑

j=1

(
∂L

∂}t+j

∂}t+j
∂W5×5

)
= −η ·

k̂
∑

j=1

(
diag

(
1−

(
}t+j

)2
)
× δt+j × }T

t+j−1

) (23)

The variation of U can be obtained by means of the analysis scheme of W.

∆U5×3 = −η · ∂L
∂U5×3

= −η ·
k̂
∑

j=1

(
∂L

∂}t+j

∂}t+j
∂U5×3

)
= −η ·

k̂
∑

j=1

(
diag

(
1−

(
}t+j

)2
)
× δt+j × xT

t+j

) (24)

Therefore, U, W, and V can be updated using the following equation:
Ut+k̂

5×3 = Ut
5×3 + ∆U5×3

Wt+k̂
5×5 = Wt

5×5 + ∆W5×5

Vt+k̂
1×5 = Vt

1×5 + ∆V1×5

(25)

Based on the above analysis, to complete the speed prediction and parameter training
of the prediction model, }0, U, W and V of the RNN are required to be initially assigned.
However, in this process, different initial values can directly affect the training effect and
prediction accuracy of the RNN. Accordingly, to further improve the model prediction
accuracy, the hybrid optimization method of the GA-PSOA proposed in our previous
work [14] is selected to determine the optimally initial parameters of the RNN. The specific
algorithm details refer to the previous work in [14], not mentioned here. The training
process of the RNN speed prediction method based on the GA-PSOA is expressed in
Figure 5. Correspondingly, its implementation procedures are indicated as follows.

Step 1: The parameters of U, W, V and }0 need to be sequentially encoded, producing
individuals and populations. By means of (17) in [14], S individuals and populations
consisting of S individuals of the GA and PSOA are initialized, respectively. Namely, the
GA and PSOA have populations consisting of S individuals, respectively.

Step 2: Equation (20) is taken as the fitness function to calculate the fitness value of
each individual.

Step 3: Each individual of the two populations assigns its own parameters to U, W, V,
and }0. In the meantime, the fitness values of the 2 · S individuals are calculated by (15)
and (20). By comparing the individual fitness values of the GA and PSOA sequentially, the
S individuals whose fitness values are the smaller are chosen from the 2 · S individuals as
the collective parent population of the GA and PSOA.

Step 4: According to the collective parent population, the GA and PSOA generate their
own child populations by means of their respective population-updating mechanisms.
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Step 5: The fitness values of the 2 · S child individuals of the two child populations
are calculated by (15) and (20). By comparing the individual fitness values of the two child
populations sequentially, we select the S individuals with smaller fitness values from the
2 · S child individuals, forming a new child population. By comparing the individual fitness
values of the new child population and collective parent population sequentially, the S
individuals with smaller fitness values are selected from the 2 · S individuals as the new
population for the next iteration of the GA and PSOA.

Step 6: The optimal individual of the new population in Step 5 is selected as the new
parent individual for next iteration of the GA and PSOA.

Step 7: Judge whether the iteration reaches the set value or L meets (20). If it satisfies
these conditions, the new parent individual in Step 6 is taken as the optimal initial parame-
ters of the RNN, and its values are sequentially assigned to U, W, V, and }0 in (15), going
to Step 8. Otherwise, taking the new population obtained in Step 5 as the collective parent
population, the algorithm goes back to Step 4.

Step 8: The RNN uses the offline database to continuously train (15) and updates U,
W and V using (21)–(25) until L meets (20).

On the basis of the above-established model, we can predict the speed. However,
for achieving speed prediction on-line, the acceleration â and slope angle θ̂ in the predic-
tion window need to be obtained in advance. Here, â can be determined based on (11)
when the vehicle speeds at adjacent times are known. A backpropagation neural network
(BPNN) [45] is employed to build the prediction model of θ̂, and the prediction principle
and execution process of the BPNN is referred to in our previous work [14], so the details
are not shared here. An offline database is used to train the BPNN. Based on the above work,
the framework of speed prediction on-line is established in Figure 6. The vehicle speed
prediction layer predicts speed on-line by using the trained RNN model. The information
update layer updates v̂, â and θ̂. Its specific implementation process is as follows.
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(11) when the vehicle speeds at adjacent times are known. A backpropagation neural 
network (BPNN) [45] is employed to build the prediction model of θ̂ , and the predic-
tion principle and execution process of the BPNN is referred to in our previous work 
[14], so the details are not shared here. An offline database is used to train the BPNN. 
Based on the above work, the framework of speed prediction on-line is established in 
Figure 6. The vehicle speed prediction layer predicts speed on-line by using the trained 
RNN model. The information update layer updates v̂ , â  and θ̂ . Its specific imple-
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Step 1: τ is determined.
Step 2: The vehicle speed prediction layer uses v(t), a(t), and θ(t) to predict v̂(t + 1).
Step 3: The information update layer utilizes a(t) and θ(t) to predict â(t + 1) and

θ̂(t + 1), and updates the input information of the vehicle speed prediction layer in the
next moment.

Step 4: If t < τ, then go back to Step 2. Otherwise, go back to Step 1 until the trip
is over.

In addition, as the vehicle continues to drive, new driving cycle data are continuously
generated. To ensure the adaptability of the model to the random working conditions
of the mine truck, the speed prediction model is updated using data obtained on-line,
taking the k̂ of the RNN as the training window size, that is, the model is only trained
at k̂ · l time, l ∈

{
1, 2, · · ·, N̂

}
, as shown in Figure 7. By means of the process, the model

parameters in Figure 6 are continuously updated. With the help of the obtained speed
trajectory, the ECMS-MPC can achieve the on-line optimization of fuel consumption, the
detailed description of which is shown in the next section.
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4. ECMS Based on Model Predictive Control

Based on the above analysis, while the vehicle velocity of the preview window is
obtained on-line, it is very necessary for MPC to select a rational optimization algorithm
to calculate (10) on-line. This paper fully integrates the ECMS instantaneous optimization
advantage and MPC optimization idea, designing a novel ECMS based on MPC. In this pro-
cess, for improving the calculation speed and real-time performance of the proposed EMS,
the power-optimal fuel consumption mapping model of the range extender is established.
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In addition, to further improve the adaptability to random conditions of the SHE-MT, the
EF is dynamically adjusted using the PSOA.

4.1. Pre −
.

m∗e Mapping Model

According to the range extender model in Section 2, the relationship between the
power and fuel consumption of the range extender is a highly nonlinear system. For
the same Pre, there exist various combinations of Tre and nre, producing different fuel
consumption rates. Therefore, the power Pre—optimal fuel consumption

.
m∗e (Pre −

.
m∗e)

mapping model of the range extender needs to be determined in advance. The specific
steps of the implementation process are as follows.

First, we need to find the optimal fuel consumption point for each power point of the
range extender, obtaining the Pre −

.
m∗e points set. This is usually determined through two

methods at present. One is based on the range extender map data using the (2) and (26)
traversal search; the other is based on a bench test, which is directly measured.{

Pre = Te·ne
9550 · ire(Tre, nre)

.
m∗e = min(

.
me(Te, ne))

(26)

Here, we adopted the bench test to obtain the Pre −
.

m∗e points set. Then, considering
the highly nonlinear relationship between Pre and

.
m∗e , the BPNN [45] was used to establish

the Pre −
.

m∗e mapping model. According to (14), the BPNN with a 1-5-1 structure was
selected. The specific training process of the BPNN was also described in our former
research [14], so the details are not shared here. Based on the above analysis, the Pre −

.
m∗e

mapping model of the range extender was determined.

4.2. The Realization Process of ECMS-MPC

Combining the speed trajectory obtained on-line and the established Pre −
.

m∗e mapping
model, the realization framework of the proposed ECMS-MPC is described in Figure 8,
whose specific implementation process is as follows, assuming that the current time is
the tth(s).
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Step 1: Based on v(t), a(t), and θ(t), the RNN speed prediction model outputs the
speed sequence v̂(t) = {v̂(t + 1), . . . , v̂(t + τ)} in the future τ.

Step 2: The demand power sequence of the driving motor Pm = {Pm(t + 1), · · ·, Pm(t + τ)}
in τ is calculated using v̂(t), (1), and (7).
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Step 3: Based on Pm and the obtained Pre −
.

m∗e mapping model, the optimal EF set s∗

in the current τ is solved using the PSOA. The detailed process of the s∗ solution is shown
in Algorithm 1. p is given by:

p = 1−
SoC− SoCtarget

SoCmax − SoCmin
(27)

where SoCtarget, SoCmax, and SoCmin are the target, maximum, and minimum values of the
SoC, respectively. Here, we set SoCmin as SoCtarget.

Step 4: According to the obtained s∗ and p in Step 3, the optimal output power combina-
tion sequence u∗(t) =

{
(P∗re(t), P∗b (t)), · · ·, (P∗re(t + τ − 1), P∗b (t + τ − 1))

}
of the range ex-

tender and battery pack is calculated using (8) and (9), and sends u∗(t) to
the vehicle.

Step 5: After the SHE-MT runs forward by executing u∗(t), v, a, and θ will be instantly
updated. When t = t + τ(s), the ECMS-MPC goes back to Step 1 and enters the next round
of MPC regulation. In this process, the vehicle will always collect the condition information
on-line, and the speed prediction model can be trained real-time and updated at k̂ · l time.

Based on the above analysis, with the vehicle driving continually, the above-mentioned
control process can be continuously conducted in a rolling way until the SHE-MT reaches
its destination.

Algorithm 1: The s∗ solution on the basis of PSOA.

// Step 1: The initialization of parameters:
ϑ, c1, c2, ψ, r1 and r2 of (22) in [14]; Gmax,S in [14],τ;
// Step 2: Fitness function determination:
Executing (9); // Initializing fitness function
// Step 3: Initializing individual and population:
G= 1; // Generating Gth population
for ζ= 1,ζ <= S, ζ ++ // Generating individual of PSOA
Conducting (17) in [14]; // Encoding individual
Conducting (9); // Calculating fitness value
end for
IG ← Conducting (17) in [14]; // Generating the Gth population as the parent population of PSOA
JPSOA ← Fitness values of S individuals;
// Step 4: Reforming child population on the basis of PSOA:
IChild ← IG ; // PSOA’s population regeneration
for ζ= 1, ζ <= S, ζ ++ // Reforming child population for PSOA
Conducting (22) in [14]; // Updating individual
Conducting (9); // Calculating Fitness
end for
IChild ← Conducting (17) in [14];
Jchild ← Fitness values of S individuals;
// Step 5: Generating new parent population of PSOA:
G ← G + 1 ; // Updating G
IG ← Selecting the individuals with smaller fitness values sequentially to form a population from
{IG−1, IChild};
// Forming the new parent population
// Step 6: Judging stopping conditions:
Iopt ← Choosing the optimal individual in IG;
if G >= Gmax // Satisfying stopping conditions
Going back Iopt; // Outputting Iopt
Producing Step 7;
else
Returning to Step 4; // Forming new population
end if
// Step 7: TakingIopt as s∗.
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5. Results and Discussion

A cement mine road was adopted as the research route, as shown in Figure 9. First, to
verify the speed prediction effect of the RNN, the speed prediction model was simulated
and analyzed carefully, including the initial parameter determination of the RNN model,
prediction and training window selection, and speed prediction effect. Then, the perfor-
mances of the DRB EMS, FRB EMS, ECMS, and the proposed ECMS-MPC are compared
and discussed in detail.
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5.1. Experimental Setup
5.1.1. Cycle Selection

As shown in Figure 9, the distance of the cement mine road was 7.9 km. Correspond-
ingly, the speed, acceleration, and slope angle information of 30 cycles of a SHE-MT were
collected, as shown in Figure 10.
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5.1.2. Model Training Parameters

In order to ensure the training effect, the training and test samples accounted for 70%
and 30%, respectively. Meanwhile, for ensuring the learning speed and accuracy of the
model, we took η = 0.1 and ε = 0.0001, respectively. In addition, to eliminate calculation
deviation, we normalized the samples according to the following formula.

r = (R− Rmin)/(Rmax − Rmin) (28)

where R, Rmin and Rmax represent the real value and lower and upper limits of the samples,
respectively. r denotes the normalized value of R, R ∈ [Rmin, Rmax].

5.1.3. Simulation Platform Establishment

In order to fully verify the effectiveness and real-time performance of the proposed
EMS, the experimental simulation platform was established by using a hardware-in-loop
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(HIL) bench, as shown in Figure 11. The vehicle parameters of the SHE-MT are indicated
in Table 1.
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Table 1. The parameters of SHE-MT.

Type Description

Vehicle body mv = 43, 000 kg; A = 16 m2; CD = 0.8; rwh = 0.737 m; id = 0.9; ρf = 0.02;
Engine 2100 rpm@1695 Nm
Motor 3500 rpm@3000 Nm

Generator 2200 rpm@2000 Nm
Battery Cah = 300 Ah; Ub = 600 V; Rb = 0.2 ohm; idis = ich = 0.96
Other g = 9.81m/s2; ρa = 1.2kg/m3; SoCmin= 0.3; SoCmax = 0.8;

5.1.4. Error Evaluation Methods

The prediction results were evaluated by four errors, namely the absolute error AE,
the mean absolute error MAE, the root mean square error RMSE, and the mean relative
error MRE. The detailed expressions of the four errors are illustrated by (26) in [14].

5.2. Analysis of the Speed Prediction
5.2.1. The Initial Parameter Setting

As described above, different initial values can directly affect the training effect and
prediction accuracy of the RNN. To verify the optimal effect of the hybrid optimization
method, the GA, PSOA, and hybrid optimization method based on the GA-PSOA were
used to find the optimal initial parameters of U, W, V, and }0, respectively.

It can be seen from (20) that the individual’s fitness value can characterize the merits
and demerits of its initial parameters. In general, the algorithm optimization effect can be
evaluated by the average fitness value of the population. In other words, the algorithm
optimization effect is better when the population’s average fitness value is smaller. Accord-
ing to the collected vehicle condition information described in Figure 10, we achieve the
changing relationships of the average fitness values of the three algorithms with iterations,
as described in Figure 12. The convergence speed of the average fitness value of the hybrid
optimization algorithm is faster than that of the GA and PSOA under the same optimiza-
tion conditions. Furthermore, while satisfying the stopping conditions, its average fitness
value is smaller than that of the other two algorithms. Correspondingly, the optimal initial
network parameters of the RNN are shown in Table 2.
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Table 2. The initial parameters of RNN model.

Parameters Initial Values

UT
−1.62 −2.30 −1.69 0.31 1.00
2.40 1.13 0.80 0.82 1.76
−1.91 −0.61 0.09 −2.61 1.72

W

−3.32 −0.76 −1.68 −1.42 −3.87
−2.23 0.84 1.80 −0.22 −2.46
−2.16 −0.23 1.15 −2.20 −1.14
1.84 2.80 1.30 0.86 −1.63
0.25 −1.44 −2.95 1.72 2.85

V −1.39 −1.63 −1.17 2.76 3.17

}0
T 0.34 −1.86 1.30 1.37 −2.36

5.2.2. Selection of τ and k̂

First of all, as shown in Figure 3, τ characterizes the preview window size, which can
influence the prediction accuracy of the speed. Therefore, it is very essential to select the
appropriate τ to ensure the accuracy of the predicted speed trajectory. The relationship of
the speed prediction MAE with τ is shown in Figure 13a. Considering the speed prediction
effect, we set τ = 20.
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Secondly, based on Section 3, k̂ not only characterizes the time series of the RNN but
is also used to characterize the size of the training window. For this purpose, to ensure
the real-time performance of the prediction and parameter training, selecting a rational k̂
is also significant. The relationship of the training time with k̂ is displayed in Figure 13b.
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Considering that the single running time of the vehicle control unit (VCU) on the actual
vehicle is 20 ms, to complete the training process in 20 ms, k̂ was set to 200.

5.2.3. Speed Prediction Analysis

For covering the generality of the working conditions, the heavy-duty transportation
cycle and empty-vehicle going-down-mine cycle were selected as the experimental simula-
tion conditions. On this basis, the kinematics analysis method (KAM), the BPNN speed
prediction method (BPNN-SPM), and the RNN speed prediction method based on the
GA-PSOA (RNN-SPM) were utilized to predict the speed. Accordingly, the relationships
and AE between the predictive and actual speed trajectories of the three methods are
represented in Figure 14. Table 3 gives the MAE, RMSE and MRE of the three methods.
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First, according to Figure 14a, the changing trends of the speed prediction trajectories
obtained by the three methods followed the changing trend of the actual speed, but their
corresponding ranges of AE were different. Specifically, the AE ranges of the KAM, BPNN-
SPM, and RNN-SPM under the two conditions were [−4.259 km/h, 3.078 km/h] and
[−4.246 km/h, 4.522 km/h], [−1.043 km/h, 1.089 km/h] and [−2.127 km/h, 1.838 km/h],
and [−0.755 km/h, 0.589 km/h] and [−1.388 km/h, 0.617 km/h], respectively. It is
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thus clear that the AE changing range of the RNN-SPM was less than that of the other
two methods.

Table 3. MAE, RMSE and MRE of the three methods.

Cycle Prediction
Methods MAE RMSE MRE

Heavy-duty
transportation cycle

KAM 0.2611 0.0153 0.0381
BPNN-SPM 0.2143 0.0085 0.0316
RNN-SPM 0.06 0.0041 0.0095

Empty-vehicle
going-down-mine cycle

KAM 0.2647 0.0167 0.0480
BPNN-SPM 0.2016 0.0108 0.0351
RNN-SPM 0.0618 0.0045 0.0105

Secondly, as shown in Table 3, the MAE, RMSE and MRE of the proposed RNN-SPM
ere the smallest among the three methods. Specifically, in comparison to the KAM and
BPNN-SPM, the MAE, RMSE and MRE of the RNN-SPM respectively decreased by 77.0%,
73.2%, and 75.1% and 72.0%, 51.8%, and 69.9% under the heavy-duty transportation cycle.
Compared to the KAM and BPNN-SPM, under the empty-vehicle going-down-mine cycle,
the MAE, RMSE and MRE of the RNN-SPM were reduced by 76.7%, 73.1%, and 78.1%
and 69.3%, 58.3%, and 70.1%, respectively. In addition, the speed prediction accuracies of
the RNN-SPM under the two working cycles both exceeded 98% (namely, speed prediction
precision = 1−MRE).

Based on the above analysis, on the premise of assuring real-time performance, the
designed RNN-SPM effectively improved the speed prediction accuracy and better adapted
to the stochastic conditions of the SHE-MT.

5.3. Performance Analysis of EMS
5.3.1. Parameter Determination of the ECMS-MPC

In the analysis part of the speed prediction model, τ was preliminarily selected to
ensure the accuracy of the speed prediction. Nevertheless, the fuel consumption and
calculation time of the ECMS-MPC are also related to τ. For this reason, the relationships
between the calculation time and the fuel consumption of the ECMS-MPC with τ are
described in Figure 15. Based on Figures 13a and 15, with the increase in τ, although the
fuel consumption optimization effect of the proposed EMS became better, its real-time
performance and speed prediction accuracy became worse. Therefore, comprehensively
considering the speed prediction accuracy, real-time performance, and fuel consumption
optimization effect, τ was still set to 20 in this paper.
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5.3.2. Performance Analysis

After confirming the τ and k̂, the ECMS-MPC was used to optimize the fuel consump-
tion on-line. For verifying the effectiveness of the proposed EMS, the performances of
the DRB EMS, FRB EMS, ECMS and ECMS-MPC were comparatively analyzed under the
same simulation environment and vehicle parameters. The heavy-duty transportation and
empty-vehicle going-down-mine cycle in Figure 14 were regarded as a whole working
cycle, and we selected four cycles to simulate on the HIL platform. Considering the capacity
and characteristics of the lithium iron phosphate battery for the SHE-MT studied in this
paper, the SoC initial value SoCmax and its expectantly terminal value SoCmin were set to
0.8 and 0.3, respectively. Through the simulation experiments, the real-time s∗ and p curve
of the proposed ECMS-MPC are displayed in Figure 16. The assigned P∗re and P∗b profiles of
the four EMSs are indicated in Figure 17.
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First, when the vehicle respectively produced the assigned P∗re and P∗b of the four EMSs,
as shown in Figure 17, the speed-following effects of the four EMSs were determined, as
shown in Figure 18. It can be seen that the speed changing trends of the four EMSs can
effectively follow the changing trend of the desired speed.
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Then, as shown in Figure 17, the four EMSs, due to adopting different optimization
methods, made the variations in P∗re and P∗b curves different. Correspondingly, the operat-
ing points distributions of the range extender were also different, as shown in Figure 19.
Compared to the other three EMSs, the operation points of the proposed ECMS-MPC
can be more focused on the high-efficiency zone. Accordingly, the SoC and fuel con-
sumption curves of the four EMSs are shown in Figure 20. It can be seen that though
the SoC thresholds of the four strategies were capable up to the set terminal value of 0.3,
due to the different optimization methods, they resulted in significant differences in the
fuel-saving effect.
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Figure 19. The operating point distributions of the range extender of the four EMSs.
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Specifically, as shown in Figure 20, before the time of 4579 s, compared to the proposed
ECMS-MPC, the DRB EMS, FRB EMS, and ECMS were more inclined to use electric
energy, making their fuel consumption less than that of the ECMS-MPC. However, with
the increase in the vehicle running time, because the proposed ECMS-MPC was solved by
local optimization method, its fuel-saving effect was gradually better than that of the other
three EMSs. The cumulative fuel consumption rates of the four EMSs are shown in Table 4.
Meanwhile, the cumulative fuel consumption rates of the internal combustion engine mine
truck (ICE-MT) was also considered. Contrasting with the ICE-MT, DRB, FRB and ECMS,
the fuel consumption of the ECMS-MPC was reduced by 38.36%, 23.15%, 19.96%, and
13.63%, respectively.

Table 4. The fuel consumption of the ICE-MT and four EMSs.

EMSs ICE-MT DRB FRB ECMS ECMS-MPC

Initial SoC - 0.8 0.8 0.8 0.8
Final SoC - 0.3 0.3 0.3 0.3
Fuel (L) 72.55 58.19 55.87 51.78 44.72

As mentioned above, on the premise of ensuring the real-time performance and speed-
tracking effect, the proposed ECMS-MPC can real-time adjust the EF by means of the
MPC method. Compared to the existing real-time EMSs, it had better energy management
performance, providing a new solution for the on-line optimization of energy consumption
of SHE-MTs.

6. Conclusions

This paper proposes an ECMS-MPC for the minimum fuel consumption of SHE-MTs.
First of all, for achieving the on-line speed trajectory, the proposed EMS built an RNN
speed prediction model based on the GA-PSOA. Then, combining the obtained on-line
speed trajectory and establishing a power-optimal fuel consumption mapping model of the
range extender, we used the rolling optimization idea of MPC to design the ECMS-MPC,
and achieved the optimal EF solution on-line by means of the PSOA. Finally, with the help
of the condition data of the cement mine road, experimental research was carried out for
the presented ECMS-MPC on the HIL platform.

According to the experimental results analysis, the designed RNN-SPM effectively
achieved speed on-line prediction exceeding 98% prediction precision. In comparison to
the existing real-time EMSs, while ensuring real-time performance, the ECMS-MPC can
further decreased the fuel consumption rate by adopting the rolling optimization method.
Specifically, compared to the DRB EMS, FRB EMS and ECMS, it achieved fuel savings of
23.15%, 19.96%, and 13.63%, respectively. This indicates that the designed ECMS-MPC is
capable of offering an effective method for the on-line energy management of SHE-MTs.
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In the future, we will conduct more in-depth research on our work. At present, the
influence of the stochastic factors to the vehicle state has not been considered in the process
of designing the strategy. For example, changes in the ambient temperature can influence
the battery discharge ability. In the next research step, to further improve the adaptability
of the strategy to complex environments, an adaptive EMS without relying on the analytical
model of the vehicle will be established.
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Abbreviations

ECMS equivalent consumption minimization strategy
SHE-MTs series hybrid electric mine trucks
RNN recurrent neural network
GA genetic algorithm
PSOA particle swarm optimization algorithm
MPC model predictive control
EF equivalent factor
ECMS-MPC ECMS based on MPC
EMSs energy management strategies
RB rule-based
CDCS charge-sustaining
DRB deterministic RB
FRB fuzzy RB
SoC state of charge
PMP Pontryagin’s minimum principle
DP dynamic programming
BPNN backpropagation neural network
Pre −

.
m∗e power Pre—optimal fuel consumption

.
m∗e

HIL hardware-in-loop
VCU vehicle control unit
KAM kinematics analysis method
BPNN-SPM BPNN speed prediction method
RNN-SPM RNN speed prediction method based on GA-PSOA
ICE-MT internal combustion engine mine truck
Variables Name Unit
Twh(t) demand torque of the wheel Nm
nwh(t) speed of the wheel r/min
Pwh(t) power of the wheel kW
t discrete time s
mv vehicle mass kg
g gravity acceleration m/s2

θ slope angle ◦

ρf rolling resistance coefficient –
δ rotational mass conversion coefficient –
α acceleration m/s2
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Variables and Its Unit
CD air resistance coefficient –
A frontal area m2

ρa air density kg/m3

v vehicle speed m/s
rwh wheel radius m
Pre output power of the range extender kW
Pg electric power of the generator kW
.

me engine fuel consumption rate g/kwh
Tre torque of the range extender Nm
nre speed of the range extender r/min
Pe output mechanical power of the engine kW
Te output torque of the engine Nm
ne output speed of the engine r/min
me fuel consumption of the range extender g
Ug voltage of the generator V
Ig current of the generator A
Tg input torque of the generator Nm
ng input speed of the generator r/min

ieg
mechanical transmission efficiency between the
engine and generator

–

ig generating efficiency of the generator –
ire efficiency of the range extender –
Ub terminal voltage of the battery back V
Rb internal resistance of the battery back ohm
CAh capacity of the battery back Ah
Pb output electric power of the battery pack kW
Ib loop current of the battery pack A
ich charging efficiency of the battery pack –
idis discharging efficiency of the battery pack –
Pm output mechanical power kW
Tm output torque of the driving motor Nm
nm output speed of the driving motor r/min
Um voltage of the driving motor V
Im current of the driving motor A

im
converting efficiency of driving motor between the
mechanical and electric energy

–

id driving efficiency of the drive assembly –
if speed ratio of the drive assembly –
J total fuel consumption of whole trip g
.

mf_eqv equivalent fuel consumption ratio g/s
Qlhv fuel calorific value J/g
t0 start moment of driving condition s
tf end moment of driving condition s
s EF –
p penalty factor –
τ preview window size –
u∗ optimal control sequence at discrete time t –

u∗
optimal power combination of the range extender
and battery pack at each discrete moment

–

P∗re optimal power of range extender kW
P∗b optimal power of battery pack kW
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