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Abstract: Smart grid systems play a significant role in improving the resilience of distribution systems
(DSs). In this paper, two strategies are proposed for implementation of a smart grid application:
(a) a network reconfiguration and (b) a network reconfiguration with mobile emergency generator
(MEGs) deployment. An improved set of resilience metrics to quantify and enhance the resiliency of
distribution systems (DSs) is developed for the proposed optimization. The metrics aim to determine
a suitable strategy and the optimal number and capacity of MEGs to restore the disconnected loads
through the development of several microgrids. These metrics are then aggregated with the proposed
strategy to develop an automated solution provider. The objective is to maximize system resilience
considering the priority loads. The proposed resilience metrics are tested on the IEEE 33-Bus radial
DSs. The case studies conducted proved the performance of the proposed power outage management
strategy and resilience metrics in maximizing system resiliency for smart grids.

Keywords: distribution systems; mobile emergency generators; network reconfiguration; resilience
metrics; smart grid

1. Introduction

Catastrophic events, including cyber security attacks, natural calamities and wars,
can cause detrimental effects on the operation of distribution systems (DSs), leading to
massive damage and large-scale power outages [1]. Over the last few years, there have
been countless incidents of power interruptions due to natural calamities. For instance,
in 2012, hurricane Sandy was disastrous in the United States [2], and, in 2011, Japan
experienced the Tohoku earthquake [3]. With awareness of these difficulties, it is crucial to
strengthen the resilience of DSs [4]. The resilience of DSs can be defined as the indicator
that shows the system’s performance when facing high-impact, low probability events [5].
The resilience of DSs has tremendously improved with the advent of smart grid systems
and the incorporation of several techniques and energy resources into the systems, such as
microgrids (MGs), network reconfiguration (NR), mobile emergency resources (MEGs) and
resilience metrics.

MGs can operate in either connected or islanded modes and play a major role in
the smart grid by providing energy reserves via distributed resources. Several recent
studies in [6,7] have demonstrated that the storage capacity of MGs can be utilized to
optimize energy consumption in smart grid systems. However, more recently, there has
been considerable interest in using the storage abilities of MGs to enhance the resilience of
the smart grid against emergency events, such as natural disasters or security breaches. In
this regard, various academic, industrial and federal reports [8,9] have proposed leveraging

Energies 2023, 16, 3953. https://doi.org/10.3390/en16093953 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16093953
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-1166-1934
https://orcid.org/0000-0003-2148-5775
https://doi.org/10.3390/en16093953
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16093953?type=check_update&version=3


Energies 2023, 16, 3953 2 of 21

MG storage capacity to mitigate the effects of generation loss during emergencies by
meeting the smart grid’s most critical loads. The presence of network reconfiguration (NR)
in MG formation has played an essential role in the smart grid through the provision of
self-healing systems, and, thus, preserve several emergency operations in the United States,
such as hospitals and police stations [10].

Network reconfiguration (NR) is one of the methods considered for improving DS
resilience. An hourly NR that considers distributed energy resources, such as wind farms
and electric vehicles, is proposed in [11] to improve the system’s resiliency during normal
and emergency situations. The preventive–corrective model incorporating a two-stage
optimization technique was proposed in [12] to enhance system resilience. The initial
stage of the proposed approach involves pre-scheduling energy storage systems (ESSs) and
conducting a network reconfiguration (NR) process to minimize the anticipated cost of
load outage, based on fault forecasting data. The second stage of the proposed technique
involves network restoration after the actual event by using corrective NR to minimize the
actual cost of load outage. Based on cyber–physical–social system (CPSS) aspects, a novel
methodology is proposed in [13] that encompasses the simultaneous scheduling of RCs,
MEGs and energy resources. A mixed integer non-linear optimization model is developed
with the aim of minimizing the load outage, operation time and cost. A rapid action for
service restoration is proposed in [14], utilizing the remote-controlled switches (RCSs) and
NR during the planning and operational stage.

In addition to the NR method, various studies have been proposed on the deployment
of mobile emergency generators. Reference [15] proposed an optimization model consid-
ering the travel route, routing and deployment time of mobile resources to allow prompt
service restoration, thus enhancing resilience of DSs. A post-disaster recovery technique is
developed in [16] aimed at minimizing outage costs and customer interruption. The author
considered NR and scheduling mobile emergency storage systems during the restoration
process. To minimize the size of power failure, Ref. [17] proposed a two-stage positioning
(before and after the event) of emergency mobile resources through the formation of multi-
ple microgrids (MGs). A power outage management model of decentralized microgrids is
proposed in [18] which considers multiple stages with the aim of minimizing operating
costs and unserved energy. In this study, NR and the deployment of MEGs and an RC team
have been considered in the optimization model. Ref. [19] proposed a bi-level restoration
method that takes into account the connection between roadways and power lines. The first
stage involves pre-allocating charging and maintenance stations using a combination of
Bayesian networks and Monte Carlo simulations. During the second stage, the deployment
of MESSs and RC teams is prioritized for providing services to the affected areas based
on critical load weighting. Ref. [20] proposed a two-stage stochastic model aimed at miti-
gating the issue of superfluous MEG scheduling by establishing an optimal plan for MEG
planning. First, the investment in MEGs is determined, followed by their dispatch based
on DS damage to optimize load supply. Ref. [21] proposed a novel approach to enhance
the resilience of DSs through the integration of additional distributed energy resources
(DERs). Ref. [22] discussed the current status and history of resilient cyber-physical security,
covering its development background, current situation and perspectives on emerging
technology and energy policy. This study summarizes how optimal control strategies and
emerging technologies are used to investigate both simulations and real systems.

There are numerous definitions and methods being implemented in relation to the
resilience of power systems [23]. However, standardization and consistency in statistically
defining resilience metrics are lacking [24]. Researchers in the field of resilience are pro-
ducing their own individual concept of resilience by broadening its area and making it
more effective [25]. Ref. [26] proposed a time-dependent metric considering the ratio of
the load recovery over the loss in its performance. Ref. [27] proposed a quantitative metric
to access distribution system performance by concentrating on the effects of critical loads
under catastrophic events. Multi-stage quantitative resilience metrics are proposed in [28],
focusing on the disturbance, post-disturbance and restoration stages to provide a specific
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transition between these stages. In order to examine equipment failures and data packet
losses in depth, resilience metrics are proposed in [29]. These metrics are developed to
evaluate the stability of data and equipment systems.

According to previous literature, the stationary power sources and ESSs utilized
in [11,12] respectively, have limited load recovery, particularly when no restoration path
is provided to reach the defective area. Although [13] was capable of minimizing the
load outage, operation time and cost through the co-scheduling of RCs, MEGs and energy
resources, the model framework is not capable of analyzing the full potential of NR and
MEGs individually. Consequently, the involvement of NR and mobile MEGs is inevitable
in every case. Compared to [13], this paper emphasizes the impact of quantification metrics
in selecting the optimal approach for power outage management. The implementation of
metrics in power outage management strategies will allow the utility to deploy the MEGs
only when necessary. The proposed power classification technique (PCT) relating to MEGs
sizing will also help the utility to limit the number of MEGs deployed by utilizing the full
potential of each MEG.

In addition, although the implementation of mobile emergency resources in [15–18]
can dynamically mitigate the impact of power disruption, no methodology or set of metrics
has been developed to deploy the correct number of MEGs needed, e.g., the amount of
MEG dispatch for every scenario is always identical regardless of its actual needs. As a
result, transportation costs have grown, and the capacity of MEGs has been underutilized.
Although [19] managed to improve recovery speed and minimize the load outage using a
bi-level restoration method, there is no integration between MESSs and the model, where
MESSs will still be deployed regardless of necessity. As compared to the proposed method,
MEGs will remain at the depot whenever the NR strategy is sufficient to serve the outage
region. Despite achieving a reduction in dispatched MEGs within the specified scenario,
the quantity of MEGs required in [20] remains constrained by the initial allocation of MEG
investment. Hence, in situations where DSs encounter high-load outages, it is plausible that
certain loads may remain unattended by MEGs due to the financial constraints imposed on
MEGs. Although [21] managed to fully exploit the potential of distributed energy resources
(DERs), their immobility presents significant inflexibility during restoration processes,
particularly in cases where the outage area is geographically distant from the location of
the DERs. This may result in some areas remaining unserved, particularly during high-
load outage scenarios. Despite the efficient methods proposed in [22], operations and
decision-making capacities have greatly enhanced as a result of the ongoing advancement
of information technology. Consequently, the system’s risk management is becoming more
unstable and uncertain. As a result, there are many elements of the smart grid that need
investigation, e.g., how technology advancement can be useful for utilities by offering
a completely automated system, and how the integration of a system solver with the
DERs, such as MEGs, can provide the utility with effective power outage management and
monitoring system improvements.

Additionally, the generic metric defined in [26] is limited to quantifying the ratio of
load recovery to load loss over a specified time span, resulting in an incomplete measure-
ment of resilience efficiency at the operational level. Meanwhile, the metric in [27] only
quantifies the ratio of load loss that concentrates on critical loads in a given time. Although
a set of quantitative metrics has been proposed in [28] which consider the pre-disturbance,
disturbance and post-disturbance phases, the metrics are incapable of providing the real
time quantification for each fault occurrence during the disturbance stage. There are also
no decision-making-based metrics for selecting the optimal solution for restoration service,
e.g., how the metrics indicator in the pre-restoration stage can alert the utility and help it
choose the optimal strategy to mitigate load degradation. Thus, the metrics are limited to
quantifying these phases individually. The metrics developed in [29] are meant to evaluate
the stability of data and equipment systems. In contrast, the resilience metrics proposed
in this study strive to establish a real-time monitoring system that covers all operational
stages. Thus, the utility will benefit from a comprehensive monitoring system through



Energies 2023, 16, 3953 4 of 21

the use of these resilience indicators. Moreover, the metrics serve as automated solution
providers for selecting the most suitable solution for power outage management in smart
grid systems. As a result, metrics in [26–29] are unable to portray a comprehensive picture
of system resilience during the operational stage.

The above technical deficiencies are addressed in this paper with major contributions
as follows:

(1) A power outage management strategy is established which encompasses two potential
approaches: (1) an NR-based technique and (2) a combination of NR and MEG-based
techniques. A new power classification technique (PCT) related to the sizing capacity
of MEGs is introduced to fully maximize MEG capabilities and consequently minimize
the number of MEGs that has to be dispatched;

(2) Novel metrics are proposed to serve the utility with an effective monitoring system
by performing a systematic quantification technique and hence improve the DSs with
the power outage management strategy. Note that the metrics alone are not used to
enhance the resilience of DSs but also quantification, selection of the optimal approach
and provision of an automated solution provider for the utility. This is achieved
when the proposed metrics with a power outage management strategy are embedded
together in the system. The automated solution provider includes the following:

• Provide the utility with a continuous update of system performance during the
disturbance and restoration stages by using the proposed metrics;

• Generate an optimal approach for the utility with metrics indicators acting as an
input for the selection process.

The remainder of the paper is arranged in the following manner: The power outage
management methodology is explained in Section 2 while Section 3 describes the formu-
lation of the model framework. Section 4 discusses the empirical result, and Section 5
summarizes this paper.

2. Power Outage Management Strategy
2.1. Quantitative Metrics in Distribution System Resiliency

The improvement made to the previous resilience metrics is presented in this section.
Table 1 shows three existing metrics proposed in [26]. In [26], the metrics access the ratio
of recovery over the loss. F( tr| er) indicates the system’s ability to recover following the
disturbance. The value of F( tr| er) is equal to 1 when the system has completely recovered
from its degradation phase. Conversely, F( tr| er) is equal to 0 when there is no action taken
to recover the system. In [27], the metrics quantify the average load loss, emphasizing
the critical load. R indicates the resilience index of the system while ∆P(Xs) denotes three
distinct load classifications categorized as non-critical, semi-critical and critical loads. Xs
is the fault scenario, M is the sampling number and Po is the total weighted load prior to
the disturbance. In [28], the metrics measure resilience in three phases. In phase I, metrics
Φ and Λ are defined to access the degradation speed and the amount of load outage,
respectively. In phase II, metric E aims to quantify the time taken before the system is
restored. Meanwhile, in phase III, the ratio of load restored to the time taken to complete
the process is quantified using metric Π.
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Table 1. Quantitative resilience metrics.

Reference Phase
Covered

Metric
Symbol Metric Indicators Unit

[26] III
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A few limitations have been identified in these metrics as summarized below:

(1) Degradation (phase I): Refs. [27,28] have produced only a general time dependent
metric capable of quantifying the degradation status after the disturbance has occurred.
Meanwhile, the quantification metrics proposed in this study are used to give a
continuous update of system degradation every 30 min. This information will allow
the utility to provide prompt action during the event, e.g., remotely reconfigure the
network during the degradation phase to serve the affected region. However, the
metrics proposed in this study are used to provide a continuous quantification and no
network reconfiguration will be conducted during the degradation stage.

(2) Pre-restoration (phase II): The metrics in [28] are only capable of quantifying the total
preparation time needed before the restoration is initiated. In this regard, providing
a set of metrics that can respond to the system’s severity and equipping the utility
with an optimal solution is required. The metrics proposed in this study will not just
focus on quantifying the amount of load outage but will also be capable of selecting
the optimal approach and, thus, provide the utility with an effective power outage
management.

(3) Restoration (phase III): Although metrics in [26,28] are effective in evaluating the
degree of resilience, they are inadequate for demonstrating the transition of the
restoration processes. Thus, continuous quantification metrics are needed to provide a
real time update during the restoration process, e.g., the delay in the process could be
due to a longer traveling distance or time required for manual switching. This specific
information can be portrayed using the proposed metrics, and, thus, will benefit the
utility with future improvements.

Therefore, the above limitations of existing metrics are improved by the proposed
metrics in this paper which are presented in Table 2. To provide clarity to the reader, the
proposed metrics are further explained with the help of the flowchart in Figure 1. In phase
I, the actual system degradation is quantified using the RST

d metric at t ∈ [tdb, tde], which
encompasses its severity and interruption rate. In this paper, the quantification is made
for every 30 min and the maximum degradation time, Td, is assumed to be 8 h. Note
that the number of scenarios and the duration of the event in this study are considered a
simulation set up where Monte Carlo simulations (MCS) are used to produce the probability
of occurrence based on the data from the fragility curve. Since the selected scenarios will be
the scenarios that cause high impact of failure, it is assumed that there will only be multiple
events that occurred in the system. The proposed metrics will continuously quantify and
record the degradation status until t = tde.
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Table 2. Improved resilience metrics.

Phase Symbol Metric Indicators Unit
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∑
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In phase II, two approaches are proposed in this model. The NR technique is consid-
ered the first strategy to serve the load. Meanwhile, the second strategy for serving the
load outage considers the NR and MEG techniques. Note that the repair crews, (RC), will
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execute only the optimal solution. However, the priority is given to the first strategy (NR
technique) to restore the system. The RSNR

exp metric was developed to quantify the expected
loads served from the NR technique, while metric RSCL aims to quantify the ratio of critical
load outage. The RSCL metrics consists of three parameters which are critical load outage,
CLo,s; semi-critical load outage, SCLo,s; and initial load demand, SCLT + CLT . The RSCL
value can vary from 0 to 1. The distinction between metrics RSNR

exp and RSCL is essential to
alert the utility in advance so that adequate resources can be provided to ensure that all
critical and semi-critical loads are completely restored. Depending on the binary variable
decision, λ, the RSpr metric is developed to select the optimal solution to be executed for
service restoration. λ will be equal to 1 if all critical loads are served; RSCL = 0 with the
NR approach, thus making RSpr = RSNR

exp. Conversely, λ will be equal to 0 when all critical
loads are not served by the NR approach; hence, 0 < RSCL ≤ 1 and the second approach
is considered, making RSpr = RSMEG

exp . The RSMEG
exp metric is proposed to quantify the

anticipated load served from the second approach. The Tpr metric aims to quantify the
total pre-restoration time. As shown in Figure 1, the evaluation of the Tpr metric starts after
the first RC or the MEG teams reach the selected bus, assuming the system is ready to be
restored.

In Phase III, after the optimal solution is initiated, the RST
r metric will start to quantify

the amount of load served during the restoration period at t ∈ [trb, tre]. As soon as the
affected area begins to receive service again, the system will immediately begin quantifying
the restoration status. Note that the quantification process will be affected by the traveling
distance of MEGs and the switching time. The number of tie lines to connect will also affect
the quantification procedure, as there are only two RC teams responsible for making the
switches. After the restoration process has finished, the time taken to complete service
restoration, Tr, is quantified using the metric tre − trb. Note that the time taken for manual
switching of the tie lines is assumed to be 30 min [5]. The SR metric quantifies the total
system resilience, ranging from 0% to 100%. SR is 100% if the system has fully restored
while SR is 0% if the system has degraded to the point where it cannot mitigate the power
outage.

2.2. Resilience Performance Curve

Resilience curves presented in [26,28] are used for comparison with the improved
resilience curve demonstrated in Figure 2 below. This is intended to highlight the capability
of the proposed resilience curve to portray a comprehensive and clear transition of the
system’s performance. Resilience curve proposed in [26] consists of a few elements that
exist at each stage which can be represented as original stage, So; disturbance stage, Sd;
restoration stage, S f ; and the value of system performance corresponding to each stage,
F(t). Meanwhile, resilience curve proposed in [28] consists of pre-degradation operational
resilience, R0o; pre-degradation infrastructure resilience, Roi; post-degradation operational
resilience, Rpdo; and post-degradation infrastructure resilience, Furthermore, the improved
resilience curve depicted in Figure 2 below indicates the output produced by the metrics
indicator. Note that, in this study, the improvement made for three phases focus on the
operational stage; the evolution from the existing trapezoid curve is discussed as follows:

(1) Degradation (Phase I): The linear degradation curve employed in [26,28] indicates
that the metrics can only access the system’s degradation after the event has finished.
This approach has portrayed an incomplete picture of system resiliency during the
event, e.g., how much the system has been affected at a given point in time, and
for how long can the system adapt before facing the next event. Thus, a non-linear
degradation curve is proposed in Figure 2 to show the volatility of system resiliency
due to the unpredictable number and duration of faults;

(2) Pre-restoration (Phase II): No strategy has been presented in the existing curve to
mitigate the power outages. Thus, it is not capable of portraying a clear picture of how
the system is prepared to dynamically respond to the disturbance. References [26,28]
only highlights the time required to initiate the plan. Figure 3 shows the illustration
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made to portray the proposed decision-making process to provide the best approach
for the utility;

(3) Restoration (Phase III): The existing linear restoration curves depicted in [26,28] are
incapable of displaying the actual performance of the executed plan, i.e., the manual
switching process of tie lines and the movement of operators from the depot would
add a delay in the restoration process.
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2.3. MEGs Dispatch Strategy

This paper proposed optimal dispatch of MEGs to several buses in the distribution
network. After the ideal location for MEG placement has been determined in the pre-
restoration stage, MEGs are deployed to the respective buses. MEGs then begin to develop
several MGs that perform in the islanded mode to restore the disconnected loads weighted
to their priorities. To fully exploit MEG capabilities and, thus, reduce the number of MEGs
dispatched, the capacity of MEGs is classified into different percentages from the rated
output. To provide a comprehensive estimation of MEG travel time, three regions have
been introduced in the test system in to show the increment in the traveling distance of
MEGs from the depot to the selected buses. These regions are denoted as R1, R2 and R3 in
this paper. Microgrids powered by the MEGs are developed upon arrival to mitigate the
effect of the power outage.
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3. Problem Formulation

In this section, the proposed power outage management strategy is discussed. Addi-
tionally, the power flow formulation for DSs is described, along with MEG deployment.

3.1. Objective Function

Equation (1) is the objective function focusing on maximizing system resilience; SR
is weighted to critical loads. Lr,s indicates the amount of load restored at bus S at time t.
Meanwhile, L f

s defines the load factor at bus S. The objective function is maximized subject
to the different groups of constraints presented in the following sections.

Maximize SR = ∑
t∈T

(
∑

s∈0b

Lr,sL f
s

)
(1)

3.2. Constraints

In the NR technique, constraints (2)–(18) are to optimize the objective function (1).
Moreover, in the technique that combines NR with MEGs, the same objective function (1) is
now maximized, dependent on constraints (2)–(25) which consider MEG parameters.

• Network Reconfiguration Constraints

A fictitious substation K f
s at the bus is used in the following mathematical formulation.

The fictitious substation is a technique used in mathematical programming to conduct
network reconfiguration. The presence of K f

s is meant to keep the connection with the
non-restored part while maintaining the switch status of DSs. Additionally, every load
bus is connected to the fictitious substation by artificial branches, which transfer the
artificial power flow required by those buses in the non-restored region. It is important to
mention that the optimization technique used in the DSs during the restoration process is
also employed in fictitious substation and artificial branches. The presence of a fictitious
substation and artificial branches is required to ensure that the radial topology is achieved
in the non-restored region while maintaining its switch status. The absence of a fictitious
substation may lead to a false switch operation in the unrestored portion in order to
fulfil (10).

Equations (2) and (3) indicate the real and reactive power constraints. It should be
emphasized that when the NR technique is used, the parameter of real and reactive power
related to MEGs in (2) and (3) is inconsiderable.

∑
∀ps∈0br

Pps,t + Pg
s,t + PMEG

s,t = ∑
∀sr∈0br

(
Psr,t + Ploss

sr,t

)
+ Pd

s (1− ds,t) ∀t ∈ T, ∀s ∈ 0b (2)

∑
∀ps∈0br

Qps,t + Qg
s,t + QMEG

s,t = ∑
∀sr∈0br

(
Qsr,t + Qloss

sr,t

)
+ Qd

s (1− ds,t) ∀t ∈ T, ∀s ∈ 0b (3)

Constraints (4) and (5) denote the voltage magnitude at every bus. Constraint (6)
mentions the apparent power magnitude of the lines.

Vsqr
s,t − 2(RsrPsr,t + XsrQsr,t)−

(
R2

sr + X2
sr

)
Isqr
sr,t −Vsqr

r,t = fsr,t ∀t ∈ T, ∀sr ∈ 0br (4)

| fsr,t| ≤
(

V2
max −V2

min

)
(1− xsr,t) (5)

Vsqr
r,t Isqr

sr,t ≥ P2
sr,t + Q2

sr,t (6)
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The bus voltage at each bus is governed by constraint (7), ensuring that the values
remain within the allowable range. Constraint (8) prohibits the line currents from exceeding
the current carrying capacity.

V2
min ≤ Vsqr

s,t ≤ V2
max ∀t ∈ T, ∀s ∈ 0b (7)

∣∣∣Isqr
sr,t

∣∣∣ ≤ C2
srxsr,t ∀t ∈ T, ∀sr ∈ 0br (8)

Constraint (9) shows the network radiality constraint that each switching process
must satisfy. The MEG parameter in (9) ensures that no selected MEG is deployed to a
location served by the main grid. As a result, the upper stream will only have a single
energy source. Constraint (10) represents the artificial power flow in the non-restored bus
to ensure the connection and network radiality for the outage region. In this case, ds,t = 1
when the bus has not been restored; hence, artificial power flow supplied by fictitious
substation K f

s is required in the bus. Thus, the non-restored bus needs to be connected with
the fictitious substation via an artificial branch. This technique ensures that the unrestored
zone is connected in a radial topology and requires no switching action in that region.
However, if the bus is restored then ds,t = 0. Therefore, Equation (10) has no effect because
the artificial power flow is zero since there is no branch connection between the fictitious
substation and the node.

∑
∀sr∈0br∪0b f

xsr,t =
∣∣∣Kb
∣∣∣−Ks − ∑

∀s∈0b

YMEG
s,t ∀t ∈ T, (9)

∑
∀ps∈0br∪0b f

Aps,t− ∑
∀sr∈0br∪0b f

Asr,t + Ag
s,t = ds,t ∀s ∈ 0b, ∀t ∈ T. (10)

Constraint (11) reinforces that only the fictitious bus will generate the artificial power
flow. Constraint (12) ensures that the artificial power flow in a circuit is regulated by
monitoring the circuit’s operation status. Constraints (13) and (14) restrict the fictitious
bus from generating real and reactive power. Constraint (15) specifies that at least one
circuit must be linked to a load bus. Constraints (16) and (17) limit the real and reactive
power flow in a branch from exceeding the maximum apparent power when the branch is
connected and ensures that the value is zero if otherwise. Constraint (18) indicates the fault
occurrence with respect to time.

Ag
s,t = 0 ∀s ∈ 0b, s 6= K f

s , (11)

|Asr,t| ≤ Mxsr,t ∀sr ∈ 0br ∪0b f , (12)

Pg
f b = 0, (13)

Qg
f b = 0, (14)

∑
∀ps∈0br∪0b f

Xps,t + ∑
∀sr∈0br∪0b f

Xsr,t ≥ 1 ∀t ∈ T, (15)

|Psr,t| ≤ VmaxCsrxsr,t ∀t ∈ T, ∀sr ∈ 0br, (16)

|Qsr,t| ≤ VmaxCsrxsr,t ∀t ∈ T, ∀sr ∈ 0br, (17)

xsr,t − x f ault
sr,t ≤ 0 ∀sr ∈ 0br, ∀t ∈ T. (18)
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• MEGs Constraints

Constraints (19)–(25) are for the MEG dispatching strategy. Constraint (19) ensures that
all MEGs that have been picked at the selected bus will be counted while (20) guarantees
that the selected MEGs for each microgrid will not be the same.

∑
∀j1∈0J

∑
∀c∈PC

∑
∀dg1∈0MEG

Gs,dg1,j1,c = YMEG
s,t ∀s ∈ 0b, (19)

∑
∀j1∈0J

∑
∀c∈PC

∑
∀s∈0b

Gs,dg1,j1,c ≤ 1 ∀dg1 ∈ 0MEG. (20)

Constraint (21) determines the optimal real power fed into the selected bus. To
avoid harmful effects on the mobile generators, the proposed classification of MEG power
generation is set to operate at greater than 50% of rated capacity [30]. Nevertheless, multiple
percentage categories are introduced that vary from (50–100%) to ensure that the model
correctly matches the MEG rating capacity for each microgrid’s power demand. This
approach will restrict the model to deploy the correct number of MEGs required by fully
leveraging their capacities. Constraint (22) prohibits MEGs from selecting a capacity that
has already been selected by another MEG.

PMEG
s,t ≤ ∑

∀j1∈0J

∑
∀c∈PC

∑
∀dg1∈0MEG

Percc ∗ DGcap
j1 ∗ Gs,dg1,j1,c ∀t ∈ T, ∀s ∈ 0b, (21)

∑
∀dg1∈0MEG

∑
∀c∈PC

∑
∀s∈0b

Gs,dg1,j1,c ≤ 1 ∀j1 ∈ 0J , (22)

Constraint (23) specifies that the total amount of MEGs chosen must fall within the
allowable range. Constraint (24) limits the amount of reactive power fed into the bus from
chosen MEGs. However, the magnitude is subject to (25). Constraint (25) is the real power
injected into the selected bus as determined by the power capacity of the available MEGs.

∑
∀s∈0b

YMEG
s,t ≤ YMEG

max ∀t ∈ T, (23)

QMEG
s,t ≤

(
PMEG

s,t

)
(tan θ)

(
YMEG

s,t

)
∀t ∈ T, ∀s ∈ 0b, (24)

PMEG
s,t ≤ (j1)

(
YMEG

s,t

)
∀j1 ∈ 0J , ∀t ∈ T, ∀s ∈ 0b. (25)

4. Results and Discussion

The performance and effectiveness of the proposed power outage management strate-
gies and metrics were validated on a standard IEEE 33-bus radial DSs. The details related to
IEEE 33-bus can be obtained in [31,32] respectively. Three different load classifications, i.e.,
critical, semi-critical, and non-critical, are assigned in this system, with respective weights
of eight, five and one. The automatic line sections are presumed to be available on all lines
except the tie lines to activate prompt switching actions. Two RC teams are presumed to
be stationed at the depot, and all selected MEGs and RC teams will be deployed simul-
taneously with a preparation time of 20 min before deployment. Moreover, the traveling
time of MEGs from the depot to the specific location is also considered by assuming three
regions (R1, R2 and R3), as shown in Figure 4. The assumed times for reaching R1, R2
and R3 are 30 min, 45 min and 60 min, respectively. Nevertheless, these traveling times
can be changed accordingly in the model. The developed model was optimized using
mixed-integer quadratic constraint programming (MIQCP), and all simulations were per-
formed in AMPL IDE software. CPLEX was used as a solver in AMPL IDE that utilizes
branch and bound algorithms. The ratings of all available MEGs are presented in Table 3.
A Monte Carlo simulation (MCS) was performed where the failure probability produced
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by the fragility curve based in [33] serves as an input to the simulation. Afterwards, a
non-sequential selection approach was considered to select ten scenarios for testing. Table 4
ranked the selected scenarios according to their failure probabilities from the lowest to
the highest. Note that the arrangement of damaged lines for each scenario represents the
transition and the different faults that occurred at a certain period. To closely match the
load demands at each microgrid when it needs to be formed, this paper assumed three
classifications of MEG power generation: 50%, 70% and 100% of their rated capacity. Never-
theless, the proposed model is adaptable to any other required percentage of capacity. Two
case studies are presented in this paper to validate the major contributions of this study.
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Table 3. Active and reactive power of available megs.

MEG1 MEG2 MEG3 MEG4 MEG5 MEG6

PMEG
max

(kW)
1000 750 600 500 400 230

QMEG
max

(kVar)
620 465 372 310 248 143
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Table 4. Sample of 10 scenarios and their probability of failure.

Scenario Damaged Lines Probability

#1 (12–13), (32–33), (10–11) 0.281

#2 (13–14, 11–12), (31–32), (20–21) 0.344

#3 (15–16), (9–10, 19–20), (23–24) 0.42

. . . . . . . . .

#9
(11–12, 17–18, 32–33), (8–9,
28–29, 30–31), (19–20, 3–4) 0.813

#10
(16–17), (13–14), (7–8, 19–20,

30–31), (4–5), (3–4, 23–24) 0.875

4.1. Case I: 33-Bus System
4.1.1. I(a): Power Outage Management and PCT on MEGs

In this section, a comparison is made between the performance of MEGs with PCT
and MEGs without PCT. The results presented are meant to highlight the first major contri-
bution in this study. It is presumed that scenario 9 will take place during the disturbance
stage. Following the disturbance, the second approach is considered the optimal approach.
Figure 4 shows the number of MEGs deployed before and after the implementation of PCT.
In Figure 4a, six MEGs have been considered to serve the load outage due to the absence of
PCT. In Figure 4b, only five MEGs are required to restore the entire system. The presence of
PCT has allowed the model to search through the MEG capacity before the microgrid is
developed. As a result, the MEGs managed to serve more buses and, thus, restricted the
number of MEGs deployed.

Table 5 shows the comparison of the average power utilized by the MEGs. It is evident
that, with the presence of PCT, the average power utilized is higher when compared
to without the PCT. The allocation of five MEGs has boosted the average active power
consumption up to 73%. Meanwhile, when six MEGs are deployed, the average active
power utilized is 63%. Therefore, maximizing the full potential of each MEG will result in a
smaller number of MEGs being deployed. To thoroughly examine the impact of PCT in each
scenario, the average power utilized, and the number of MEGs deployed are presented in
Figure 5. As can be seen, the presence of PCT has caused the number of MEGs deployed in
most scenarios to be smaller, resulting in larger power utilization. Note that, in scenario 1,
the average power utilized is zero since there are no MEGs deployed during the restoration
process. Based on the power outage management strategy, the NR approach is found to be
sufficient to restore the entire system in scenario 1; thus, no MEGs need to be deployed. In
scenario 10, the average power utilized is equal since all MEGs are required to serve the
outage region in both cases. Thus, it can be concluded that the capabilities of each MEG
can be more utilized when their power generation is specifically classified.

4.1.2. I(b): Resilience Metrics and Quantitative Approach

The results presented in this section correspond to the second major contribution of
this study. A comparison is made with [26] to demonstrate the capability of the proposed
metrics for producing detailed information related to system performance, thus leading to
a comprehensive monitoring system. It is assumed that scenario 10 will unfold during the
event. Table 6 demonstrates the progression of metrics indicators in quantifying the DSs,
while Table 7 summarizes the performance of previous metrics. Meanwhile, Figure 6 shows
the line status following every event that occurred in scenario 10. Figure 6 is presented to
help understand the quantification process discussed in phase I.



Energies 2023, 16, 3953 14 of 21

Table 5. Average active power utilized related to megs dispatched.

MEGs PMEG
max

(kW)
QMEG

max
(kVar)

Pd
max

(kW)
Qd

max
(kVar)

Average Active
Power Utilized (%)

Without
PCT

MEG1 1000 620 640 290

63

MEG2 750 465 525 235

MEG3 600 372 330 155

MEG4 500 310 360 170

MEG5 400 248 150 80

MEG6 230 143 180 110

With PCT

MEG1 1000 620 620 300

73

MEG2 750 465 585 270

MEG3 600 372 470 220

MEG5 400 248 360 170

MEG6 230 143 150 110
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Table 6. Progression of metrics indicators in scenario 10.

Phase Symbol Metric Indicators Indicator Output #MEGs
Dispatched

I

RST
d

Time (minutes) tde

∑
t=1

0b

∑
s=1

Ldg,s,tdb+t

-30 RS0
d + [Ldg,1,1 + Ldg,2,1 + . . .+ Ldg,33,1] RS1

d = 0

.

.

.

.

.

.

.

.

.

270 RS8
d + [Ldg,1,9 + Ldg,2,9 + . . .+ Ldg,33,9] RS9

d = 3345

Td tde − tdb 4.5
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Table 6. Cont.

Phase Symbol Metric Indicators Indicator Output #MEGs
Dispatched

II

RSNR
exp LNR

exp,1 + LNR
exp,2 + . . . + LNR

exp,33 370

6
RSCL [(SCLo,1 + CLo,1) + . . . + (SCLo,33 + CLo,33)]/(SCLT + CLT) 1

RSpr 0(RSNR
exp) + (1− 0)RSMEG

exp RSMEG
exp

RSMEG
exp LMEG

exp,1 + LMEG
exp,2 + . . . + LMEG

exp,33 2915

Tpr trb − tde 0.83

III

RST
r

Time (minutes) tre

∑
t=1

0b

∑
s=1

Lr,s,trb+t

-320 RS0
r + [Lr,1,trb+1 + Lr,2,trb+1 +

Lr,3,trb+1 + . . . + Lr,33,trb+1]
RS1

r = 750

.

.

.

.

.

.

.

.

.

410 RS4
r+[Lr,1,trb+5 + Lr,2,trb+5 +

Lr,3,trb+5 + . . . + Lr,33,trb+5]
RS5

r = 2915

Tr tre − trb 1.5

SR
(

RS5
r /Lo

)
∗ 100% 78.46%

Table 7. Performance of previous metrics indicators in scenario 10.

Reference Phase
Cover

Metric
Symbol

Metric
Indicator Unit # MEGs

Dispatched

[26] III F( tr| er) 0 (kW/kW) 0

[27] I R 1.90 (kW/kW) 0

[28]

I
Φ −743 MW/hours

0
Λ 3345 MW

II E 0.83 hours

III Π 0 MW/hours
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In phase I, the proposed metrics will quantify the load status at every bus and the
process is repeated every 30 min until the event stops. The RS1

d metric shows the result of
the first quantification made during the first 30 min. At t = 30, there has been no disaster
in the DSs, thus making RS1

d = 0 kW. Note that this value will then be updated throughout
the subsequent quantification process. The first event occurred at t = 60 on L16−17, causing
both L16−17 and L17−18 to be de-energized. The disturbance has resulted in degradation
level RS2

d = 150 kW. Then, the second event is spotted at t = 90 on L13−14 causing a total of
5 lines (L13−14 to L17−18) to be de-energized. As a result, the degradation level has increase
from RS2

d = 150 kW to RS2
d = 390 kW. As shown in Figure 6, the amount of de energized
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lines increases in proportion to the increase in the degradation value. Later, the degradation
level remained constant between t = 120 and t = 150, making both RS4

d and RS5
d equal

to 390 kW. At t = 180, the third event landed on lines L7−8, L19−20 and L30−31, leading to
current degradation level RS6

d = 1565 kW. After that, at t = 210, the DSs faced the fourth
event causing the degradation level to increase from RS6

d = 1565 kW to RS7
d = 2385. This

value has remained constant until t = 240 due to the absence of an event, resulting in
RS8

d = 2385. The DSs facing the last event (fifth event) a t = 270 make the total degradation
level RST

d = RS9
d = 3345 kW. As a result, nine quantification processes were performed

during the deterioration period, with a total degradation time of Td = 4.5 hours recorded.
No metric has been proposed in [26] to quantify the system degradation. Meanwhile, the
average load loss measured by metric R in [27] is 1.90. Additionally, the degradation rate
Φ and total degradation Λ in [28] are −743 kW/hour and 3345 kW, respectively. As can be
seen, the existing metrics in [27,28] are only capable of quantifying the performance of DSs
after the event has stopped.

There are no indicators that have been developed in [26,27] for phase II; however, the
total pre-restoration period measured by metric E in [28] is 0.83 h. Meanwhile, a set of
decision-making metrics proposed in this paper are used to select the optimal approach to
execute. The NR approach is first considered to restore the system. As shown in Table 6,
RSNR

exp is obtained by thoroughly quantifying the individual expected load served from
LNR

exp,1 to LNR
exp,33 and adding all the values. From the NR simulation, the expected amount of

load served obtained by metric RSNR
exp is equal to 370 kW. The simulation result indicates that

the NR approach is not an ideal solution since RSCL = 1. Thus, λ = 0 and RSpr = RSMEG
exp .

Afterward, the system starts to simulate the second approach. In this approach, RSMEG
exp

is calculated by thoroughly quantifying each expected load served from LMEG
exp,1 to LMEG

exp,33

and adding the values. The total expected served load obtained by metric RSMEG
exp is equal

to 2915 kW. The result shows that the second approach is the optimal solution due to its
capability to serve all critical loads. After the simulation has been completed, the utility
will then deploy all the selected MEGs to each selective node; total time needed during
pre-restoration stage Tpr is equal to 0.83 h.

In phase III, after the arrival of MEG4 at bus 7, MG1 is formed and restored imme-
diately since no manual switching is needed. This action has restored certain regions of
the DSs, thus making RS1

r =750 kW. The dispatch of the RC teams and MEGs in scenario
10 is presented in Figure 7. After 65 min at t = 335, MEG6 arrived at Bus 11, and MG2
is developed, resulting in a cumulative load restored RS2

r =915 kW. Later, both RC1 and
RC2 arrived at L25−29 and L8−21, respectively. An additional 30 min is needed to change
the line status, and MG3 and MG4 are formed after 80 min. The developed microgrid has
improved the restoration level from RS2

r =915 kW to RS3
r =2045 kW. Meanwhile, MG5 is

restored by MEG5 after 125 min, resulting in RS4
r =2345 kW. More time is needed during

this process due to the long traveling distance by RC1 and the additional time required
for manually switching on L9−15. Last, MG6 is created by MEG2 after 140 min, making
RST

r =RS5
r =2915 kW. As illustrated in Figure 7, six MEGs have been deployed and four

bus outages due to an insufficient number of MEGs. Upon completing the restoration
process, the DSs has achieved system resilience, SR = 78.46%, and the total restoration time
is Tr = 1.5 hour. The number of EMGs dispatched in [26–28] is zero, and 28 buses are out,
including ten critical loads. Furthermore, the ratio of load recovery to load loss measured
by metric F( tr| er) in [26] is 0 since there is no increment in the resilience level when the NR
approach is implemented. Moreover, [27] did not develop a metric in phase III, whereas [28]
has quantified the restoration rate using a metric Π of 0 kW/hour. Thus, as presented in
Figure 8, although the resilience of DSs has not been fully restored, the proposed metrics
managed to demonstrate their ability to provide a comprehensive quantification process
in both the degradation and restoration phases. It is evident that, although the previous
metrics have been implemented in the same model, no EMGs were successfully deployed
by the metrics indicator. This situation happened due to the lack of integrated development
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of the decision-making metrics in [26]. Additionally, integrating metrics into the system has
enabled an autonomous selection process and constant monitoring of system performance.
Furthermore, to scrutinize the impact in each scenario, the performance of the resilience
indicator is presented in Figure 9 and Table 8. Table 8 shows both the ability of the PCT
and the decision-making metrics proposed in this study. In scenario 1, the disturbance that
occurred for Td = 1.5 hour has caused RST

d = RS2
d = 615 kW. Following the disturbance,

the NR approach is first considered for system restoration. The RSNR
exp value in Table 8 is

obtained by thoroughly quantifying the individual expected load served from LNR
exp,1 to

LNR
exp,33 and adding all the values. From the NR simulation, the expected amount of load

served obtained by metric RSNR
exp is equal to 3715 kW. The simulation results reveal that the

NR method is the optimal solution since RSCL = 0; thus, λ = 1 and RSpr = RSNR
exp. Before

the system starts to recover, RC teams are deployed to the selective tie line to conduct the
switching process manually. In addition, all MEGs have stayed at the depot since no MEGs
are required throughout the restoration process. The system is fully restored during the
restoration phase, where RST

r = 3715 kW, and the total restoration time is Tr = 1. Therefore,
scenario 1 proved that implementing the proposed technique can significantly reduce the
number of MEGs deployed while achieving Sr = 100%.

Finally, Table 8 demonstrates the performance of MEGs from scenario 2 to scenario 10.
It can be seen from Figure 5b and Table 8 that the number of MEGs deployed increases as
the number of load outages increases. The execution of the optimal approach has reduced
the RSCL value to zero. In addition, with the automatic switching process in place, the
system performed a relatively rapid service restoration. Therefore, it is proven that the
proposed method is capable of improving the resilience of DSs. It is important to mention
that the proposed method is also capable of being implemented in other test systems since
the solver implemented in this study can be integrated with the commercial solver.
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Table 8. Scenario-based resilience indicator for proposed metrics.

Scenario

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

I
RST

d (kW) 615 960 1170 1585 1585 1605 1725 2325 2325 3345

Td (h) 1.5 2 2.5 3 3 3.5 2.5 4 4 4.5
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Table 8. Cont.

Scenario

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

II

RSNR
exp (kW) 3715 3505 3235 2330 2330 2390 2815 1530 1530 370

RSCL (kW/kW) 0 0.1 0.1 0.4 0.4 0.3 0.2 0.9 0.9 1

RSpr (kW) RSNR
exp RSMEG

exp RSMEG
exp RSMEG

exp RSMEG
exp RSMEG

exp RSMEG
exp RSMEG

exp RSMEG
exp RSMEG

exp

RSMEG
exp (kW) - 3715 3715 3715 3715 3715 3715 3715 3715 2915

Tpr (h) 1.3 1.3 1.3 1.3 1.25 0.83 1.3 0.83 0.83 0.83

III

RST
r (kW) 3715 3715 3715 3715 3715 3715 3715 3715 3715 2915

Tr (h) 1 1 1 1.25 1.25 1.5 1 1 1.5 1.5

SR (%) 100 100 100 100 100 100 100 100 100 78.46
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5. Future Work

Power distribution outage management incorporating NR and a combination of NR
and MEG deployment for enhancing the resilience of DSs was proposed in this study. The
following are a few studies that are worth investigating in the future:

(1) The combination of distributed generators (DGs) with MEGs has not been considered
in this study. The presence of DGs will have significant effects on improving resilience.
Consequently, future studies that are worth investigation include determining the
optimal sizing and placement of DGs when MEGs are being considered while allowing
for the multi-level recovery process;

(2) Renewable energy resources and mobile energy storage systems (MESS) are not
included in this study. The advantages of renewable resources and MESS can be
maximized, and the implementation could possibly reduce operational risk during
catastrophic events.

6. Conclusions

In this paper, the potential of MGs, DGs, NR and resilience metrics has been exploited
in an attempt to enhance the resilience of smart grid systems. A power outage management
strategy based on optimal network reconfiguration and MEG deployment has been mod-
eled, along with resilience quantification metrics. The proposed optimization framework
is validated on standard IEEE 33-bus radial DSs. By integrating the proposed resilience
metrics into the model, the optimal strategy was achieved whilst exploiting the beneficial
effect of NR and MEGs. In contrast, the existing metrics proposed by previous researchers
are only capable of quantifying the system’s performance. This has driven the system to
only select the NR approach in each scenario. The limitations of previous metrics have
shown that no MEGs could be deployed. From the presented scenarios, the power classifi-
cation technique of MEGs managed to fully reduce the number of MEGs deployed. The
results indicate a good improvement of resiliency from 70% to 100% of load restoration.
Although the system did not achieve 100% system resiliency in certain scenarios, the results
confirmed that the proposed metrics and the power outage management strategy could
help the utility effectively and optimally mitigate the power outage, and, thus, improve the
resilience of smart grid systems.
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Abbreviations

DSs distribution systems
MEGs mobile emergency generators
MESSs mobile energy storage systems
MGs microgrids
NR network reconfiguration
RCSs remote-controlled switches
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RC repair crews
DGs distributed generators
HILP high-impact, low-probability
PCT power classification technique
MCS monte carlo simulation
MIQCP mixed integer quadratic constraint programming
IEEE institute of electrical and electronics engineers
AMPL a mathematical programming language
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