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Abstract: Land-based gas turbines (GTs) are continuous-flow engines that run with permanent flames
once started and at stationary pressure, temperature, and flows at stabilized load. Combustors
operate without any moving parts and their substantial air excess enables complete combustion.
These features provide significant space for designing efficient and versatile combustion systems. In
particular, as heavy-duty gas turbines have moderate compression ratios and ample stall margins,
they can burn not only high- and medium-BTU fuels but also low-BTU ones. As a result, these
machines have gained remarkable fuel flexibility. Dry Low Emissions combustors, which were
initially confined to burning standard natural gas, have been gradually adapted to an increasing
number of alternative gaseous fuels. The paper first delivers essential technical considerations that
underlie this important fuel portfolio. It then reviews the spectrum of alternative GT fuels which
currently extends from lean gases (coal bed, coke oven, blast furnace gases . . . ) to rich refinery
streams (LPG, olefins) and from volatile liquids (naphtha) to heavy hydrocarbons. This “fuel diet”
also includes biogenic products (biogas, biodiesel, and ethanol) and especially blended and pure
hydrogen, the fuel of the future. The paper also outlines how, historically, land-based GTs have
gradually gained new fuel territories thanks to continuous engineering work, lab testing, experience
extrapolation, and validation on the field.

Keywords: gas turbine; fuel flexibility; alternative fuels; combustion; low emissions; hydrogen; fossil
fuels; biofuels

1. Introduction

The current decade will see disruptive changes in the energy scene as a dramatic
abatement of GHG emissions, especially those of CO2, has become a global, inescapable
necessity [1]. However, as pointed out by the IEA [2], the thermal power segment will
survive, initially, in order to deliver the massive power additions that will be required by
the upcoming electrification of the economies, particularly, that of the transportation sector.
Then, the thermal sector will continue to play a critical role since electrical grids will need
dispatchable units and “spinning reserves” to support the grids and offset the intermittency
of renewables. Currently, among thermal power facilities, land-based gas turbines are
serious candidates to support the energy transition as they meet all the requisites, including
efficiency, reliability, controlled emissions, and peak shaving capability, with fast start and
ramp-up ability [3]. The irreplaceable role played by gas turbines in the reliability of power
grids and their potential contribution to a decarbonized economy in conjunction with the
advent of hydrogen as an energy vector has been discussed elsewhere [4,5].

In addition, gas turbines have the additional advantage of being highly fuel flexible, a
key asset in addressing the volatile and uncertain fuel market of the future. Indeed, they
have managed to build a wide fuel portfolio, starting from natural gas and light distillate—
which are their historical fuels—and now encompassing a large variety of alternative gases
and liquids.

This paper aims to review the vast fuel territories that have been successfully explored
and occupied by land-based gas turbines over the years, drawing in particular on the
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author’s own experience. To better understand the reasons for this success, it will first set
out some key aspects that pertain to the technology of these machines. It will also highlight
some interesting milestones in this fuel flex expansion process.

2. Essential Technical Considerations
2.1. The Value of Fuel Flex in the Power Generation Market

Generically, fuel flexibility is the ability not only to accommodate a plurality of fuels
but also to achieve reliable fuel changeovers. In modern power plants, these must be
performed either automatically or upon simple “push-button” orders. The simplest and
most common case of fuel flex is dual fuel capability, which usually involves natural
gas (NG) and light distillate oil (LD) for gas turbines [6]. However, two cases should
be distinguished because the expectations from a prime mover depend on to the type of
service it provides:

- Peak-shaving service is characterized by few operation hours but a constraint of
permanent “dispatchability”, which is the ability to respond to changes in power
demand over time, and which requires faultless startups and fast access to the targeted
load; here, the plant operator’s attention is essentially focused on maintenance costs;

- Base-load or “semi-base-load” service implies longer operation periods, during which
the operator focuses on fuel cost which represents up to 60% of his O&M expenses.

Figure 1 shows the “pyramid of merits” of gas turbines intended for peak-shaving
and base-load service, respectively. In both cases, the objective is to maximize the gain per
kWh generated and the load factor of the unit.
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Figure 1. The “pyramid of merits” for peak-shaving and base-load gas turbines.

For a peak-shaving service, the required qualities are: (i) startup readiness, with, at
best, a black-start capability; (ii) secured access to fuel, implying a backup fuel; (iii) fast
ramp-up time; and (iv) containment of maintenance costs since operating in peak-shaving
mode considerably increases the “maintenance factor” due to multiple startups/shutdowns,
fast load changes, and peak-load excursions. Here, a dual fuel capability represents an
additional security as it will avoid the financial losses potentially caused by failures to
start upon a requisition from the dispatch center. For a GT normally burning NG, which
represents most cases, the second fuel can simply be a light distillate, which will be rarely
used. However, in some areas lacking natural gas and light distillate (e.g., in some remote
islands), the possibility to start with an alternative fuel, such as a liquefied petroleum gas,
is highly desirable. However, efficiency remains an important consideration.
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For a base-load or a semi-base-load service, fuel availability is also essential, but the
focus is more on securing an uninterrupted supply of large fuel volumes and on minimizing
fuel cost. Indeed, GTs serving large industrial plants such as refineries, petrochemical plants,
or ironworks, usually operate for long periods of time, sometimes non-stop for an entire
year. It is where the access to an alternative but also economic fuel acquires its full value.

The purpose of this paper is therefore to explore fuel flexibility in all its forms by
highlighting the gains it can bring to many industrial sectors, especially when this quality is
combined with efficient energy conversion methods, including cogeneration and combined
cycles, and smart uses of residual or low-grade secondary energies [7].

2.2. Inherent Strengths of Gas Turbines Favoring Fuel Flex

Contemporary gas turbines operate according to the Brayton cycle, in which the heat
addition step is made by combusting a fuel in a continuous flow of air [8]. For several
reasons, this cycle is very propitious for fuel flexibility. At first, the three cycle steps
(compression; combustion; expansion) are performed sequentially and in separate sections
of the machines. Once the targeted load is reached, both air and fuel enter the combustors
at constant flow, temperatures, and pressure, creating stationary aerodynamic and thermal
patterns that greatly aid flame stability. These stable conditions and the absence of any
moving part in the combustors provide a fairly large amount of room to conceive versatile
combustion systems capable of matching a plurality of objectives, the most important being
complete combustion, low NOx emissions, and multifuel capability, which is the focus
of this article. In addition, a large portion of the combustion testing activity can be made
on single combustor assemblies, separately from the rest of the machine, which enables
accelerated developments of new combustion concepts or designs [9,10].

Boilers also feature continuous flow and permanent flames [11] and are greatly fuel
flexible. However, a main difference is that GTs operate under pressure (up to 30 bars)
and use hot combustion air, resulting in faster and more complete combustion kinetics,
even when dealing with difficult fuels. The flames are therefore shorter, so the combustion
chambers are of much smaller size. Moreover, the combustion heat is directly converted into
mechanical power as the combustion gases themselves act as the driving fluid that rotates
the machine shaft. On the contrary, the energy conversion in boilers proceeds through
several heat exchanges that require very large surface areas, entailing strong thermal inertia
and large transient expansions/contractions, imposing much slower temperature changes,
i.e., slower load changes. These differences are also important because the much smaller hot
parts of GTs can be fabricated using advanced materials, such as single crystal superalloys
that are internally cooled and coated with thermal barriers [12–17]. The small, sophisticated
turbine blades and vanes can withstand much higher mechanical strains and temperatures
than boiler tubes, as well as steeper thermal transients, opening the way to (i) elevated
cycle pressures/temperatures and hence high efficiencies that are essential for base-load
operation; and (ii) fast starts/load changes that are key for peak-load service [18,19]. Finally,
the compactness and modularity of gas turbine units are additional advantages that explain
their high power-to-weight ratio and their short fabrication and erection times [20].

Turning to reciprocating engines, their combustion process is intermittent with alterna-
tions of several strokes and intermediate ignition events [21]. Due to the need of repetitive
ignitions, those engines are specialized for certain classes of fuels with specific ignition
properties. While spark-ignited (gasoline and gas) engines require fuels that are resistant
to auto-ignition (i.e., with high octane indices) to avoid knocking [22,23], diesel engines
need autoignitable fuels (i.e., fuels with high cetane indices) to avoid difficult startups
and smoke emissions [24–26]. Gas turbines are free of these constraints as they operate
with permanent flames and with large air excesses. Consequently, they emit no smoke
and virtually no CO/UHC—even when they burn difficult liquid fuels—thanks to their air
atomization systems. The PM content at the exhaust of gas-fired GTs is very low and has
even been found to be lower than in ambient air, owing to the air filters at the compressor
inlet [27]. While the rotary movement of reciprocating engines is created by pistons whose
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rings rub against cylinder walls, GT shafts rotate on hydrodynamic, friction-free journal
bearings [28]. Another difference is that GT combustion liners are air-film cooled, which
largely prevents flame quenching effects on their walls [29]. Although internal combustion
engines boast interesting efficiencies as stand-alone machines [30,31], they release exhaust
gases at medium temperature levels, which allows for only moderately or weakly efficient
heat recoveries [32]. In contrast, gas turbines of the heavy-duty family (“HDGT”) that are
designed with moderate compression ratios have relatively high exhaust temperatures
(550–620 ◦C). Therefore, they can drive “topping” cycles and discharge their combustion
gas into heat recovery boilers to deliver heat to “bottoming” steam cycles or cogeneration
units, resulting in high overall efficiencies [33,34]. However, a definitive advantage of
reciprocating engines is that their fuel does not need to have been compressed before
injection in the engine.

Finally, the low fuel/air ratios and the large stall margins of HDGTs allow them
to accommodate large fuel flowrates, thus enabling the combustion of low-BTU fuels in
addition to medium- and high-BTU fuels [35,36]. All these design factors that favor the
fuel flexibility of gas turbines represent the basic capital on which it has been possible,
historically, to build a large fuel portfolio [37], thanks to continuous efforts made over years
in designing and testing. As a result, these machines have gained wide fuel flexibility and
have been sometimes nicknamed the “omnivorous” prime movers [38].

2.3. Technologies and Designs Underlying Fuel Flex

Validating the use of an alternative fuel in a gas turbine requires a somewhat holistic
approach as one must address multiple and often interrelated design and operational
aspects. Figure 2 sketches a gas turbine unit with its main fuel accessories and lists the
essential operational functions to perform [39].
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Figure 2. Sketch of a dual fuel GT unit (two gases; two liquids or one gas and one liquid).

Adding a second fuel needs not only a dual fuel system [6] but must also meet addi-
tional requirements, which are (i) performing successful fuel changeovers [40]; (ii) keeping
operation safe; (iii) protecting machine integrity; and (iv) staying emission compliant.

All these four aspects deserve specific considerations.

2.3.1. Reliable Operation with Dual Fuel Systems

Gas turbines are generally qualified as “dual gas” when they burn two gases and
“dual fuel” when they burn one gas and one liquid. However, “dual fuel” is also a generic
terminology to designate the capability to burn two fuels, regardless of their physical states.
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• Dual Gas Systems

An essential datapoint for the reliable and safe combustion of any gaseous fuel is
its “Wobbe Index”, and more precisely, its “Modified Wobbe Index”, which governs the
sizing of the gas fuel system [41] and more generally the interchangeability of gas fuels in
industrial and domestic applications [42]. These indices are defined as follows:

WI = LHV/SG0.5 (1)

MWI = LHV/(SG0.5 × Tg
0.5), (2)

where SG is the specific gravity of the fuel (a dimensionless property, independent of
the temperature) and Tg its absolute temperature (Kelvin). The MWI decreases when the
temperature increases.

The MWI is a key datapoint to properly manage the use of different fuel gases in a
given piece of combustion equipment. Indeed, the calorific power being transported by
the gas, which determines the power output of the GT, is a function of (i) its MWI; (ii) the
nozzle pressure drop (i.e., essentially the gas feed pressure); and (iii) the total section area
of the set of orifices of the gas nozzles (i.e., the diameter and number of these orifices).

Since the gas feed pressure is limited in a certain range, and the geometry of the nozzle
orifices is fixed for a defined hardware, if the MWI of the alternative gas differs too much
from that of the first gas, there is a need to add secondary nozzle caps with suitable orifice
diameters. Incidentally, the combustor plates of gas turbines are large enough to allow
for such additions, which is an advantage of GT construction. More specifically, a sound
engineering practice recommends limiting the MWI variations to ±5% for a given set of gas
nozzles as a measure to avoid any damage of combustor subcomponents [43,44]. Indeed,
the nozzle pressure drop is proportional to the kinetic energy of the injected gas; thus, for a
given nozzle set, setting the MWI around a defined value and controlling the gas pressure
keeps the flame at a suitable distance from (i) the gas nozzle tip and (ii) the end portion of
the combustion chamber, namely, the transition pieces. The MWI also conditions both the
aerothermal patterns and the heat release process; it consequently affects flame stability
and thermoacoustic activity [45,46].

When the MWI numbers of two gas fuels differ by slightly more than 5%, it is possible
to reduce this difference by heating the higher calorific gas. If, for example, the MWI gap is
6%, the necessary temperature increase, ∆Tg, given by Equation (2), will equal:

∆Tg = 2 × Tg × ∆(MWI)/MWI ≈ 2 × 300 × 0.06 = 36 K.

More generally, one will use a dual-gas system, which consists of a set of double-gas
nozzles and possibly two gas manifolds and two sets of gas valves (Figure 3) [47].
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• Liquid Fuel (LF) Systems [39]

The high-pressure portion of the LF circuit is fed by a low-pressure forwarding circuit.
It comprises a positive displacement HP pump, the flow rate of which is adjusted by
recirculation through a by-pass valve. In some designs, a mechanical device called “flow
divider” is used to distribute equal fuel flows to all combustors; they can be of the linear
type, as represented in Figure 4, or circular.
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Some atomization air is bled from the GT compressor and boosted by an auxiliary
compressor to have the liquid fuel finely sprayed into the combustor and to suppress soot
formation [48].

Virtually all liquid fuels, including biodiesel but excepting alcohols, have relatively
close heating values; this dispenses from changing the fuel accessories and the fuel injectors
when passing, for instance, from a naphtha to a No.2 distillate fuel.

Viscous LFs can be heated (in the upstream low-pressure section) to reduce their
viscosity and enable their proper atomization into the combustors, thus preventing smoke
emissions [39]. However, the heating temperature must not exceed the incipient pyrolyzing
temperature of the fuel, which depends on its composition, the usual maximum being
130–140 ◦C [43].

Conversely, some light liquids (naphtha, alcohols) are low-viscosity fuels and have
poor “lubricity”, a property which is evaluated via the “HFRR test” [49,50]. If it is insuffi-
ciently “lubricious”, dosing a lubricity improving additive may prove necessary.

2.3.2. Ensuring Operation Safety

• Essential safety measures

As indicated in Figure 2, GT enclosures must be equipped with adequate ventilation
and fuel leak detection systems, as well as CO2 inerting systems in emergency case.

The essential safety data for fuels are (i) the lower and upper explosion limits (LEL-
UEL), the LEL being the critical datum; (ii) the autoignition temperature (AIT); (iii) the
minimum ignition energy (MIE); and, for liquids, (iv) the boiling point and (v) the vapor
pressure (measured at e.g., 38 ◦C) [51]. The LEL of gas or vapor mixtures can be estimated
by Le Chatelier’s law in the absence of inert compounds [52] and based on empirical models
in presence of inerts [53]. It is mandatory to verify that the installed gas detectors fit with
the vapors of the fuel being burned [54,55]. The prediction of the AITs of gas mixtures in
GT conditions, i.e., at elevated temperatures and pressures, is a complex subject on which
interesting progress is nevertheless being made thanks to Artificial Intelligence [56].

In the case of a dual gas machine, a gas changeover is preceded by a purge of the
fuel circuit using compressed air extracted at the GT compressor discharge. Since this
compressed air is hot, nitrogen is used instead for purging if the gas has a low AIT or
MIE. This point will be revisited when dealing with hydrogen applications. Similarly,
before transferring from a volatile liquid to a gaseous backup fuel, and vice versa, a
purge of the liquid fuel line by a light distillate is performed to avoid uncontrolled flash
vaporization of the volatile liquid. In case of leaks, LPGs (butane/propane) and volatile
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fuels (naphtha/NGL) can generate hazardous liquid pools and vapor clouds that are denser
than air and may stagnate at low points [57], requiring highly sensitive vapor detectors [55].

As far as product and operational safety is concerned, an international safety standard
(ISO 21789:2022) has been developed at the initiative of the UK HSE and implemented
in the late 2000s to facilitate the integration of some recent EU regulations in GT designs,
especially the Explosive Atmosphere (ATEX) and Pressure Equipment (PED) Directives.
This ISO standard has been updated in 2022 [58].

• Safe Fuel temperature range

If the alternative fuel is a volatile liquid, it is a sound engineering practice to keep its
temperature at about 56 ◦C below its bubble point to prevent vapor locks and the associated
risk of pump cavitation, which is conducive to uncontrolled or hazardous operation. It
is the case with naphtha, gas condensates (GC), or “natural gas liquids” (NGL) [59]. This
measure is illustrated by Figure 5.
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Conversely, if it is a partly condensable gas, then its temperature must be brought to
about 28 ◦C above its dew point [43] to prevent the occurrence of a “blowpipe effect” that
would devastate the combustors and possibly some turbine parts. This would occur if one
were to burn incompletely vaporized LPG or a C3+ rich natural gas.

2.3.3. Staying Emission Compliant

Emission compliance is now mandatory worldwide, whatever the fuel burned.
SOx emissions and “organic” NOx emissions (generated by the fuel-bound nitrogen)

are directly related to the sulfur and nitrogen contents of the fuel, respectively; these must
be kept below appropriate levels. Flue gas desulfurization or “DeSOx” post-combustion
technologies exist [60,61], but they are expensive and reserved in practice for boilers as
they entail elevated pressure drops at equipment exhaust and GT performance penalties.

As pointed out above, gas turbines release minute CO, UHC, and smoke emis-
sions, even with difficult fuels, including highly aromatic by-products, which will be
discussed later.

Due to the firing temperature and pressure developed in their combustors, GTs tend,
however, to generate high thermal NOx when they operate with diffusion flames, which is
the historical combustion mode of these machines; each fuel has an own NOx index that
depends on its composition and is approximately an exponential function of its (adiabatic)
stoichiometric combustion temperature, “Tad,st” [62]. This must be carefully considered
when envisaging an alternative fuel [63,64].

To reduce the NOx emission, up until the late 1980s, OEMs applied a “wet control”,
which consisted in injecting a diluent (most often liquid water or steam) in the combustors
to reduce the temperature peak (Tad,st) in the flame. However, major developments con-
ducted in the 1980s–90s in combustion laboratories led to the design of inherently-low-NOx
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systems that prevent GT users from injecting any diluent or installing expensive post-
combustion DeNOx systems when burning natural gas. The solution, referred to as “Dry
Low NOx” (DLN) (or “Dry Low Emissions”, DLE) technologies, is based on the combustion
of premixed gas/air mixtures [65–68]. Successful DLN designs must overcome a set of com-
plex difficulties, namely, (i) avoiding lean blowouts (LBO) and flashbacks; (ii) containing
CO emissions; and (iii) controlling combustion dynamics [69] while (iv) keeping hardware
durability (Figure 6a).
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Flame flashbacks possibly occur according to different mechanisms: by autoignition in
the premixed zone due to a too-low AIT of the fuel or combustion instabilities (combustion
dynamics); and by retro-propagation in the core flow or through boundary layers [70].
Combustion dynamics are due to an interaction between unsteady aerodynamics and
heat release fluctuation processes causing pressure oscillations that can resonate in the
combustor cavities and cause mechanical wear/damage [71]. Since premixed flames have,
by design, a narrow lean richness range, they are more sensitive to dynamics than diffusion
flames that have broad richness ranges with lower risks of simultaneous extinction of all
points of the flame front.

A typical evolution of NOx control is outlined in Figure 6b. Ongoing efforts are being
made with success to improve the operability of DLN systems, namely, in two directions:
(i) expanding the range of emission compliance to lower GT loads, the so-called “Minimum
Emissions Compliance Load” (MECL) or, more simply, the “Turn Down” (see inset in
Figure 6a); and, as regards fuel flexibility, (ii) extending the capability of those systems to
non-NG fuels by improving the aerothermal patterns of the combustors to counteract the
adverse combustion effects described above [72].

Regarding low NOx systems for liquid fuels, it must be noted that C5+ hydrocarbons
have low AIT data as compared, e.g., to methane. Therefore, “Dry Oil NOx” systems are
very challenging to design for trouble-free operation. For some alternative fuels, the sole
option is therefore to inject a diluent (most often liquid water or steam) in the combustors
to reduce the temperature peak in the flame and correlatively the emission of NOx.

2.3.4. Ensuring Machine Integrity

The design and operational measures covered in Sections 2.3.1 and 2.3.2 enable the
avoidance of defective combustion and associated component damages in dual fuel con-
figurations. However, many alternative fuels contain impurities. Some of them (e.g., coke
oven and blast furnace gases: COG; BFG) contain inorganic particles that must be removed
by proper filtration as they can inflict severe erosion to turbine parts [43]. Some others
contain sulfur (e.g., sour natural gases) leading to polluting SOx emissions. Finally, some
liquid fuels (crude and residual oils) contain both sulfur and traces of alkaline metals
(Na, K) and vanadium (V), leading to corrosive, low-melting point salts or oxides (mainly
sodium sulfate: Na2SO4; and vanadium pentoxide: V2O5) [73]. Reference [41] gives a
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comprehensive review of the adverse effects of fuel impurities on turbine parts and the
corrective pretreatments, including filtration, desalination, and corrosion inhibition.

2.3.5. Measures Specific to the Operation on Hydrogen-Rich Gases

Additional measures relating to the combustion of hydrogen taken to suppress the
risk of hot parts overheating and material embrittlement will be addressed in Section 4.

3. Creation and Growth of the Fuel Portfolio
3.1. General Overview

Since the 1960s, land-based gas turbines have gradually occupied a wide space of
alternative fuels [37,38,74–78]. Figure 7 gives a synoptic view of the current extension of
that fuel portfolio.

Energies 2023, 16, x FOR PEER REVIEW 9 of 29 
 

 

Figure 6. (a) Operation boundaries of DLN systems; (b) typical historical progress in NOx emissions 
on natural gas. 

Regarding low NOx systems for liquid fuels, it must be noted that C5+ hydrocarbons 
have low AIT data as compared, e.g., to methane. Therefore, “Dry Oil NOx” systems are 
very challenging to design for trouble-free operation. For some alternative fuels, the sole 
option is therefore to inject a diluent (most often liquid water or steam) in the combustors 
to reduce the temperature peak in the flame and correlatively the emission of NOx. 

2.3.4. Ensuring Machine Integrity 
The design and operational measures covered in Sections 2.3.1 and 2.3.2 enable the 

avoidance of defective combustion and associated component damages in dual fuel con-
figurations. However, many alternative fuels contain impurities. Some of them (e.g., coke 
oven and blast furnace gases: COG; BFG) contain inorganic particles that must be removed 
by proper filtration as they can inflict severe erosion to turbine parts [43]. Some others 
contain sulfur (e.g., sour natural gases) leading to polluting SOx emissions. Finally, some 
liquid fuels (crude and residual oils) contain both sulfur and traces of alkaline metals (Na, 
K) and vanadium (V), leading to corrosive, low-melting point salts or oxides (mainly so-
dium sulfate: Na2SO4; and vanadium pentoxide: V2O5) [73]. Reference [41] gives a com-
prehensive review of the adverse effects of fuel impurities on turbine parts and the cor-
rective pretreatments, including filtration, desalination, and corrosion inhibition. 

2.3.5. Measures Specific to the Operation on Hydrogen-Rich Gases 
Additional measures relating to the combustion of hydrogen taken to suppress the 

risk of hot parts overheating and material embrittlement will be addressed in Section 4. 

3. Creation and Growth of the Fuel Portfolio 
3.1. General Overview 

Since the 1960s, land-based gas turbines have gradually occupied a wide space of 
alternative fuels [37,38,74–78]. Figure 7 gives a synoptic view of the current extension of 
that fuel portfolio.  

 
Figure 7. Current extension of the gas turbine fuel map. Figure 7. Current extension of the gas turbine fuel map.

To be able to bring together both gaseous and liquid fuels in a same chart, the chosen
ordinate is the mass percentage of hydrogen, the abscissa being the mass LHV. Since
the dihydrogen molecule has both the highest mass LHV (120 MJ/kg) and contains, by
definition, 100% elemental hydrogen, it occupies the top right corner of that chart.

Table 1 lists most of these fuels along with the following data: (i) their origins; (ii) the
acronyms used in this paper; (iii) their gaseous/liquid state; and (iv) their level of pu-
rity, namely, their ash-free or ash-forming character. This table also includes the two
conventional fuels (natural gas and light distillate).

Historically, the acquisition of this portfolio started from pipeline NG and LD and
has been a gradual process that took place over several decades. The additions of the
different fuels generally were/are in response to specific demands from industrial actors.
The most frequent opportunities are related to by-products of industrial processes available
in substantial volumes. These come from multiple economy branches: the oil and gas,
petrochemical, and metallurgical sectors; the processing and gasification of coal, of biomass
or even municipal solid wastes.

The plants in demand typically generate streams of combustible by-products that
have valuable energetic potentials but were previously either wasted—e.g., by flaring—or
used in few profitable applications, until more cost-effective usages became feasible [79].
Conversion to heat and power is one of them: thermal power is generally used to cover
domestic needs (chemical, petrochemical, or food processes), while the electric power is
intended for self-consumption and sometimes for export.
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Table 1. List of alternative GT fuels, along with conventional NG and LD [78].

Economy
Branches

Origin
Process Fuel Name Acronym State (L/G) Main Features Ash-Less or

Ash-Forming

Oil Production
& refining

Extraction

Distillation

Catalytic
Cracking

Crude oil

Liq. Petr. Gas
Naphtha
Kerosene

Light Distil’te
Heavy Dist’te

Heavy Oil

Light Cycle oil
Ref Fuel Gas

CO

LPG
-
-

LD
-

HFO

LCO
RFG

L

L/G1

L
L
L
L
L

L
G

Light to Heavy

HCV2

Volatile
Ultra Pure

Conventional
Liq.

Viscous
Impurities

Aromatic
H2 & Cn

AL

AL
AL
AL
AL

Slight. AF
Strong. AF

AL
AL

Gas
Exploration

& processing

NG extraction

NG reforming

Natural Gas
Gas Cond’sate
Nat. Gas Liq

Hydrogen

NG
GC

NGL
H2

G
L
L
G

Rich/weak/Soft/sour
Light to heavy
Low viscosity
Highly flamm.

AL
AL
AL
AL

Coal Mining &
Processing

Coal mining

Coal
gasification

Coalbed gas

Syngas
Substitute NG

Methanol
Hydrogen

CBG

SG
SNG

MeOH
H2

G

G
G
G
G

LCV3

MCV4/LCV
MCV/LCV

Highly volatile
Highly flamm.

Slight. AF

AF
AL
AL
AL

Metallurgy
Coal pyrolysis

Metal oxide
reduction

Coke Oven Gas
Blast Furnace

Gas

COG
BFG

G
G

MCV
LCV

AF
AF

Petrochemistry

Naphtha
Cracking

Aromatisation

Butadiene unit

Olefin-rich Pet.
Gas

H2 Pet Net G.

C3/C4 Pet Net
G

PNG

PNG

PNG

G

G

G

Var. olefin %

Var. H2 content

Var. C3 & C4%

AL

AL

AL

Farming Aerobic
fermentation Biogas BG G Var. N2-CO2% AL/sligh AF

Biomass Vegetables
processing Biodiesel

Bioethanol
Dimethyl Ether

BD
EtOH
DME

L
L
L

Analog. to LD
Analog. to naph
Analog. to LPG

AL
AL
AL

Historically, the beneficiation options involved the combustion of these by-products
in utility boilers, but more efficient GT-driven cogeneration units gradually displaced these
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boilers. This displacement began around the 1970s in the USA, where GT started their
brisk development (with efficiencies reaching then exceeding 25%), then roughly in the
1980s in Europe and during the 1990 s in Asia. It was accelerated by emerging regulations
encouraging cogeneration as a virtuous tool for improving energy effectiveness [80].

Recently, gaseous and liquid biofuels, resulting from the processing of a wide variety
of biomass feedstocks, have emerged as potential GT fuels. The reference [81] offers a
thorough technical coverage of the raw materials and processing technologies that are
currently involved in the production of biofuels.

Before a given candidate becomes “entitled” as an actual alternative GT fuel, it
must pass rigorous analyses and lab combustion tests, but subsequent pilot field tests
are also highly advisable. These tests became increasingly focused on emission compliance
due to the rise of environmental regulations worldwide. In the 1970s, the first USEPA
recommendations—the so-called Clean Air Act—began setting a NOx emission limit of
75 ppm to fight against the episodes of “smogs” in big cities and enforced more stringent
limits (42 or 25 ppm) in critical “non-attainment areas” (California, Texas) [82]. Since DLN
technologies were industrially available only in the early 1990s (see Section 2.3.3), DeNOx
was formerly achieved in GTs by steam injection. To that end, medium-pressure steam
was extracted from the heat recovery steam generators. Resorting to the SCR (Selective
Catalytic Reduction) technology was necessary to reach the lowest NOx codes [83].

When the pilot tests of an alternative fuel candidate prove successful, they result
in “win–win” opportunities for both the requesting industrial partner and the GT OEM.
Sometimes, it becomes the starting point for a closer relationship. For instance, the power
generator Groupe E (formerly ENSA), which has its headquarters in Neuchatel (Switzer-
land), has greatly contributed to the successful testing of several alternative fuels [84–86].

3.2. The Gas Fuel Portfolio

Figure 8 illustrates the way the map of gaseous GT fuels has been extending over the
years. The MWI Index (Equation (2)) has been taken as ordinate and the mass LHV as
abscissa. In this new representation, hydrogen has the highest mass LHV and lies on the
right borderline while butane has the highest MWI and marks the higher boundary. 
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Fuel gases can be classified as HCV fuels (having LHV ranging from 50 to
120 MJ/Nm3), MCV (11 to 50 MJ/Nm3) and LCV ones (below 11 and possibly down
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to 3 MJ/Nm3). It is worth mentioning that this classification is not an absolute one as some
GT OEMs use different scales.

In addition, this classification would change if one would consider mass-based LHVs
instead of volume-based ones: for instance, hydrogen would pass from the LCV to the
HCV category since its LHV is 120 MJ per kg but hardly 11.7 MJ per Nm3.

Since the 1960s, the sphere of gaseous GT fuels has been expanding, starting from
the historic “island” of natural gas, which consists essentially in methane and traces of
C2+ hydrocarbons. It currently embraces HCV, MCV, and LCV gases. The backup fuel is
generally a light distillate.

The expansion of this gas portfolio has occurred in three directions: towards higher
and lower calorific fuels and higher hydrogen contents.

• Expansion towards high-calorific fuels:

This family includes the following products:

- Commercial LPGs (propane, butane, and mixtures thereof) mainly come from the
processing of NG and the atmospheric distillation of crudes. They are generally
burned after vaporization. Their combustion in variable amounts in GTs is interesting
as it allows matching the offer to the demand of LPGs namely in summer [87];

- Refinery fuel gases (RFG) [88] as well as petrochemical net gases (PNG) [87–90] mainly
contain C2 to C4 alkanes and/or olefins, in addition to variable amounts of H2; they
stem from fluid catalytic cracking (FCC) or steam catalytic cracking (SCC) units. They
are produced continuously and yield high GT performances.

• Expansion towards low-calorific fuels:

This family involves gaseous streams in which the combustible species (mainly CH4,
CO, and H2) are diluted by elevated amounts of N2, H2O, and/or CO2. Their main
representatives are the following:

- “Lean natural gases” stem from some NG wells or coal mines and contain CH4, N2,
and CO2 [37]; they are medium- or low-BTU fuels; their combustion after compression
is interesting if the sale of the kWhs exceeds the cost of compression that is only partly
compensated by the extra power produced by the expansion in the turbine;

- Biogases are produced in breeding farms or in landfills; they can be cleaned (H2S
removal) and burned in microturbines to cover power self-consumption; recently, they
have been transported and injected in natural gas networks [91–94];

- Coke oven gases (COG) come from the pyrolysis of coal for the preparation of metal-
lurgical coke and contain H2, CH4, CO, CO2, and H2O. They contain dusts that must
be filtered and tars that must be removed by condensation/water scrubbing [95–97].

- Air-blown syngases (SG) are very lean gases which contain mainly CO, N2, H2O,
and H2 and come from the gasification of coal/lignite [98–102], or biomass [103–105],
or even solid municipal wastes [106–108]; oxygen-blow gasification is applied to
very difficult solids (HFOs and bituminous coals) and yield syngases with higher
LHVs [101]. Syngases from coals and HFOs must undergo drastic clean-up processes
to remove particles, sulfur, nitrogen, and heavy metals;

- Blast furnace gases (BFG) are also lean fuels and are loaded with high concentrations
of CO2 and H2O; due to their high level of dust, they also need very efficient clean-up
facilities before injection in GTs [109–111].

• Expansion towards higher H2 contents:

Both steam cracking and aromatization units in petrochemical and refineries release
gaseous byproducts that contain variable amounts of hydrocarbons and hydrogen. These
streams are gathered in a gas network and are called “fuel gas” or “net gas”; they are used
as secondary energies in the plant utilities equipped with gas turbines. The amount of H2
can reach 70% or even 95%: this point is important and will be brought up again when
dealing with the development of the hydrogen economy.
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3.3. The Liquid Fuel Portfolio

Figure 9 shows a map of most popular alternative liquids, which can be split into
fossil and biogenic products. The (non-linear) ordinate of this chart is the hydrogen content.
Biofuels have, in general, lower calorific value and do not have higher hydrogen contents
than fossil fuels, both points being due to the presence of oxygen atoms in their molecules.
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3.3.1. Fossil Liquids

The overwhelming majority of fossil liquids stem from O&G production, oil refineries,
and, to a lesser extent, from petrochemical plants. A sketch of a typical natural gas chain is
given in Figure 10 and a diagram of a modern refinery in Figure 11.
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Figure 11. Typical oil refining diagram (gases are in blue; liquids in brown and black).

Fossil liquids can be categorized according to their volatility and aromatic character:

• “Super-Light Distillates” (SLHCs) include three main products:

- Naphtha’s that stem from the distillation of crude in refineries;
- Gas condensates (GC) that come directly from gas fields (Figure 10);
- Natural gas liquids (NGL) that originate from the stripping of raw NGs [112].

Naphtha and NGLs are high-grade, clean fuels and belong to the same refining pool
as gasoline; they yield GT performances similar to those of #2 distillate oils. GCs are
raw products that are mainly constituted by light hydrocarbons but can contain some
heavy ends, such as light crudes. All require specific safety precautions, due to their high
volatility, and the dosage of a “superlubricant” additive to make up for their low lubricity
(see Section 2.3.1) [113]. Startups and shutdowns are made using a No. 2 distillate.

Naphtha has been largely used as GT fuel in India and Pakistan, where there are
surpluses of gasoline and shortages of NG. More generally, SLHCs are “bridging fuels”
to natural gas or to LNG in regions with high development potential but a lack of NG
resources or immature pipeline networks. Incidentally, we should note that naphtha is not
named a “super light hydrocarbon” in the in the oil business but is instead categorized as a
light distillate, like gasoline (Figure 11).

• Light distillates (LDs) are classified as “middle distillates” by the oil business. They
consist of kerosene and #2 distillate oil; their use in GTs does not require the additives
package that is necessary for aircraft and diesel cars. Kerosene’s and No. 2 distillate oils
are “straight-run” refinery products that originate from the atmospheric distillation of
crudes (Figure 11); they are prime-quality, expensive GT fuels. While No. 2 distillate
is the conventional liquid fuel for heavy-duty GTs, kerosene is the preferred one for
aeroderivatives in consideration of its still-higher purity. However, the expensive
kerosene is generally used only on some rare islands where No. 2 diesel is not
demanded as car fuel. Finally, another refinery cut called “light cycle oils” (LCOs)
can be integrated in this group although it is of much lower grade; LCOs are not
straight-run products as they come from the cracking of vacuum distillates (Figure 11)
and are rich in aromatics and polyaromatics. Their possible use in gas turbines is
described below in the paragraph devoted to aromatic fuels;

• Heavy distillate Oils originate from the vacuum distillation of crudes [87]. They are
available from refineries that do not have “deep conversion” units; they must be
burned after heating to reduce their viscosity for proper atomization;



Energies 2023, 16, 3962 15 of 29

• Crude oils are the raw hydrocarbons extracted from oil fields where they may be
associated with C1-C4 gases (LPGs) or C5+ condensable gases (gas condensates). Their
composition is variable as they can contain heavy hydrocarbon ends. Heavy crudes,
especially those extracted in remote areas, do not interest refiners as they do not yield
light cuts; they can be cleanly burned in GTs on the spots, using—if necessary—a
combustion catalyst additive, e.g., cerium derivatives [114], to avoid a slight smok-
ing trend;

• Residual oils (RO) are very-low-grade refinery cuts. These ash-forming fuels can no
longer be distilled and represent the “bottom of the barrel”. Due to their high SOx,
NOx, and PM emissions, they are disappearing from the market, being converted into
“pet-cokes” or gasified in oxygen-blown gasifiers to produce syngases (SG). Never-
theless, the combustion of HFOs in GT combined cycles generates significantly fewer
polluting emissions than if using diesel engines. As mentioned in Section 2.3.4, both
crudes and ROs need to be cleaned before combustion. Some low-sulfur waxy residual
fuels, called “LSWR”, have been used in the Far East (Japan, Korea, Singapore . . . )
for power generation. Efforts have also been made to alleviate the adverse effects of
smoke and ash deposition on the performances of gas turbines [114,115];

• Aromatic fuels belong either to the group of super light hydrocarbons (“BTX” and
“C9+ aromatics”) or to that of light distillates (Light Cycle Oil or “LCO”):

- BTXs (Benzene–Toluene–Xylene) are C6–C8 mono-aromatics. Huge volumes
are also used as petrochemical feedstock for the synthesis of a large variety of
commodities, including polymers, paints, and solvents. They have also been used,
along with “C9+ aromatics”, as RON improvers for gasoline’s, owing to the high
AITs of aromatics. However, due to the ban of aromatics in automotive fuels,
they may be produced in surpluses in refineries deprived of petrochemical units;
moreover, the exportation of such sensitive cuts represents a financial burden
and creates EHS difficulties that can lead refiners to envisage other usages. This
is where on-site power generation becomes an interesting option. A stream of
such aromatic hydrocarbons, called BHC (for “Benzene Heart Cut”), with a BTX
composition, have been successfully tested in a 40 MWe heavy-duty GT [84].
Subsequently, based on this successful test, a C9+ aromatic cut found an industrial
application in Korea [116];

- LCO (light cycle oil) tends to be produced in increasing amounts in modern re-
fineries. Indeed, fluid catalytic crackers (“FCC”) crack heavy distillate feedstocks
into lighter ones, thereby helping convert the original crude to more middle distil-
lates and gasolines with higher RON indices. LCOs contain up to 70% aromatics
(essentially in the form of di-aromatics). Their very poor cetane number and high
smoking propensity strongly limits the proportion that can be added to diesel
fuels and to domestic heating oil. In contrast, the combustion of LCO has been
successfully tested, also in a 40 MW heavy-duty GT [84,85].

3.3.2. Liquid Biofuels

Liquid biofuels represent a prolific and promising family. Figure 12 summarizes
the different production processes starting from vegetable biomass. The most popular
liquid biofuels belong to three main groups: alcohols (bio-ethanol); vegetable oils (VO),
and biodiesels.

The combustion of liquid biofuels in gas turbines is not a new topic but its interest
has been renewed in the late 2000s, as energy decarbonation became an increasing con-
cern [117–124]. However, both bioethanol and biodiesel are currently produced from edible
substances: the former comes from sugars, corn, or wheat starches and the latter from oil
seeds. This “food versus fuel” competition has raised a legitimate debate [125].
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Since biodiesel and bioethanol are already used as blenders of diesel and gasoline
car fuels, respectively, it looks reasonable to consider that their use for power generation,
which consumes large volumes, should be reserved for small units.

• Bioethanol comes from the anaerobic fermentation of natural sugars (grape, sugar beet,
sugar cane, etc.) (Figure 12) and are often produced in surplus in some agricultural
sectors and some countries. Dehydrated ethanol is fully miscible with gasoline; this
property has been exploited in a bioethanol combustion test that was carried out on
a 20 MW GT in India and in which naphtha was used as starting fuel and gradually
blended with increasing proportions of bioethanol, up to 95% [126]. This field test
demonstrated that ethanol can be burned without any trouble with NOx emissions
lower than those of LD and close to those of NG (Figure 13). Bioethanol from sugar
cane has also been recently burned in a 40 MW GT at Saint Pierre de La Réunion (a
French ultramarine territory), although this experience is not well documented [127].
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Brazil is the world leader for the production of bioethanol. The “first-generation”
bioethanol is prepared from sugar harvested from cane fields (“first crop”). It is largely
consumed as automotive fuel in Brazil, where the fleet of flex-fuel cars can accept up to
E100 fuel (i.e., 0% gasoline). However, the “food versus fuel debate” has prompted the
use of a “second crop” source of ethanol, which will exploit the lignocellulose contained
in bagasse as raw matter [128]. Bagasse is the fibrous substance left after the juice of the
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sugarcane plant has been harvested; it will be processed in “ethanolic biorefineries” that
will produce “second-generation biofuels” [129].

• Methanol was formerly prepared by the distillation/carbonization of wood (charcoal
industry) and was named “wood alcohol”. However, currently, 98% of methanol
comes from the reforming of methane and has thus a non-bio, fossil origin. It can also
be produced through the coal-to-liquid or biomass-to-liquid (CTL/BTL) routes. It
is a feedstock to produce FAME biodiesel, as discussed below. Kinetics simulations
show that it could be burned in GTs [130]. However, its high vapor pressure (13 kPa at
20 ◦C) and acute toxicity are major obstacles for this application.

• Dimethyl-Ether

DME also originates from the CTL/BTL routes. It is gaseous at room temperature,
with a vapor pressure of 5.10 bars at 20 ◦C. It has as some analogy with LPG as a potential
fuel, as set out below, and has been used as domestic fuel in China. Kinetics simulations
are also available [130] and a successful field test by British Petroleum on a 120 MW GT has
been performed [131].

• Biodiesels

Biodiesels are “Fatty Acid Alkyl Esters” obtained by trans-esterification of vegetable
oils (VOs) using methanol (FAME: fatty acid methyl esters) or, more rarely, ethanol (FAEE:
fatty acid ethyl esters). VOs are sourced from a large variety of seeds (soybean, rapeseed,
palm, coco (copra), corn, sunflower, cotton, peanut, sugarcane (bagasse), canola, etc.),
depending on the world regions [132]. They have variable chain lengths and double bond
numbers. This VO source is often complemented by triglycerides: “yellow greases” coming
from recycled food wastes or even by animal fats (“tallow”).

Various biodiesel field tests were performed, namely, in 2007 in Switzerland on an
E-class GT [86], in 2009 at Duke Energy Carolinas on an F-class G, and in 2021 at Göteborg
Energi [133]. These field tests have demonstrated the excellent behavior of FAME biodiesels,
including during “cold” and “hot” startups performed with 100% biodiesel, as shown in
Figure 14. The inset in that figure sketches a typical molecule of FAME biodiesel with a
single double bond.
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A question arose as to whether the thermal NOx indices of biodiesels, i.e., their
combustion temperature “Tad,st“ (see Section 2.3.3), are lower or higher than those of
No. 2 distillates. Both field test results and detailed kinetic simulations showed that the
values of Tad,st are always slightly lower for FAMEs than for hydrocarbons with the same
degree of insaturation (alkanes, alkenes, trienes, alkylaromatics), irrespective of the chain
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length (Figure 15) [134]. This point is interesting as it contrasts with the results obtained
for some diesel engines, in which another physical process prevails, which is the higher
compressibility bulk modulus of biodiesel that alters the ignition time and tends to increase
NOx [135].
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• Vegetable Oils

So far, VOs have not been entitled as GT fuels, the main reasons being (i) their high
viscosity and the risk of chemical degradation by pyrolysis when heating them to make
them more fluid; and (ii) their content of metallic contaminants (K and Ca) that often exceed
GT fuel specifications (Section 2.3.4) and cannot be completely extracted by water-washing
as they are partly oil-soluble, which makes their removal difficult.

3.3.3. Similarities between Biofuels and Fossils

As regards gas turbine applications, there are some interesting commonalities between
biogenic and fossil fuels (Table 2).

For instance:

- Bioethanol versus naphtha: Anhydrous ethanol is fully miscible with naphtha, i.e., with
gasoline. This is interesting in countries such as India where naphtha is often used
as base-load GT fuel due to the scarcity of natural gas and distillate fuels and, on an-
other hand, the fact that bioethanol is available through the fermentation of discarded
cotton [136];

- Biodiesel versus light distillate: Biodiesel is fully miscible with light distillate oils,
i.e., with diesel fuels. It is more lubricious than diesel fuels but, due to its higher power
as solvent, it can be aggressive against certain elastomeric seals used in fuel circuits;

- Vegetable oils versus crude oils: VOs are partly miscible with crude oils [137] and
have several similarities with them: both are unprocessed liquids that contain long
molecules with many chemical functions and are contaminated with metals. However,
there are important differences. Indeed, contrary to crude oils, vegetable oils contain
no heavy metals (vanadium, nickel) and very little sulfur and nitrogen; their metallic
contaminants are partly oil-soluble and, when they are heated, they do not distil but
tend to degrade more rapidly than petroleum cuts by pyrolysis. For these reasons,
VOs are not currently used as a GT fuel; they can be burned in boilers with some
precautions due to the generation of corrosive low-melting point salts (potassium and
calcium chlorides).
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Table 2. Similarities between biogenic and fossil fuels.

Biofuel Similar
Fossil Fuel Commonalities Differences

(Bio Versus Fossil)

GASES

Biogas (raw) Weak Natural Gas (raw) - Comparable values of
%C1 & WI

- Higher CO2 & H2S contents
- siloxane contaminants

LIQUIDS

DiMethyl-Ether (DME) LPG - High Vapor pressure
- High vapor density

- Narrower distillation range
- burned as liquid (LPG as gas)

Bioethanol-(biomethanol) Naphtha - Gasoline

- Intermiscible
- Good purity

- Highly volatile
- Poor lubricity

- Narrower distillation range
- Lower NOx emission

Biodiesel Light Distillate Fuel
(#2 DF)

- Intermiscible
- Good to fair purity
- limited volatility

- Better lubricity
- Aggressive to gaskets

Vegetable Oil (VO) * Crude oils

- Wide distillation range
- Partly intermiscible
- Metallic impurities

- Highly viscous

- No light hydrocarbon
- No aromatic species
- Less heat resistant

- oil soluble contaminants

* Not considered a GT fuel.

4. The Contribution of Gas Turbines to the Hydrogen Energy Move

Hydrogen is an energy carrier and not a primary energy as there are very scarce
natural sources thereof; the rare reservoirs of hydrogen originate from chemical reactions
inside the earth crust and are sometimes referred to as “natural H2”or “white H2” [138].

4.1. The “Hydrogen Rainbow”

The main supply of hydrogen is currently from fossil fuels via two main routes which
are (i) the steam reforming of natural gas that yields “grey” or “blue” H2, depending on
whether the resultant CO2 is captured or not; and (ii) the gasification of coal which leads
to “black” (or “brown”) H2. These processes are very energy intensive. However, an
increasing number of projects are conducted or planned to produce H2 by the electrolytic
splitting of water into H2 and O2, using either solar power (“yellow” H2), wind/hydro
power (“green” H2), or nuclear power generated during off-peak hours (“pink” or “purple”
H2). There are in fact numerous approaches under investigation to produce hydrogen,
resulting in the so-called “H2 rainbow” (Figure 16) [139].
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The development of hydrogen as an energy vector must deal not only with its pro-
duction, but also with the delicate development of all the infrastructures that are required
for its storage and transportation, as well as its conversion into power or its adaptation to
cars. This vast theme, along with the associated feasibility and safety aspects, fall by far
beyond the scope of the present paper. This set of topics generates an exponential number
of publications. Extensive information is available from different sources, namely, from the
EU commission [140], the USDOE [141], or the UK government [142].

The advent of hydrogen of the green, yellow, or pink type as a universal substitute for
fossil fuels would procure a dramatic solution to some critical environmental problems.
Indeed, it would provide not only the sought route towards carbon-neutral economies but
also a radical solution to endemic urban pollutions by suppressing all emissions of VOCs,
CO, SOx, O3, PAH, and soot particles.

However, the development of the “hydrogen economy” must overcome several tech-
nology challenges since, apart from high R&D investment needs, hydrogen has critical
physical and chemical properties which impact the safety of its entire application chain, i.e.,
its production, storage, transportation, and end usages. With regard to the performance
and the safety of combustion, hydrogen features a set of challenging properties, which are
as follows: a wide flammability range; a high diffusivity with metallurgical impacts on
materials; and a very-high flame speed and low ignition energy. In this respect, Table 3
shows a comparison between hydrogen and methane [143,144].

Table 3. Compared combustion properties of hydrogen and methane.

DATA
−

FUEL

No of Molecules
of Combustion

Products

LHV
Mass Volume

MJ/kg MJ/Nm3

Diffusion
Coefficient
1 atm; 25 ◦C
− 10−6 m2s−1

LFL – UFL
Low/Up. Flam.

Lim.
− % vol

Lamin.
Flame Speed
− cm.s−1

Min. Ignition
Energy
− mJ

H2 1 (H2O) 120 10.7 7.9 4.0 - 75 265 0.018

CH4 3 (CO2 + 2 H2O) 50 35.8 0.2 5.0 - 15 33 0.033

4.2. The Possible Role of Gas Turbines

As discussed below, gas turbines can burn both pure and blended hydrogen and, as
discussed above, they boast high energy effectiveness in combined cycles as well as fast
installation. Therefore, these machines are placed in the front of the energy scene, as they
are in position to boost the deployment of hydrogen energy in the power generation sector.
Figure 17 shows a possible energy system involving gas turbines: green, yellow, or pink
hydrogen is produced in electrolysis “power-to-gas” units fed by wind, PV, and nuclear
plants; it is partly used as an automotive fuel and partly mixed with NG (and possibly with
some carbon-neutral biogas streams) in gas networks which, in turn, feed “gas-to-power”
GTCC nodes (or large Fuel Cell units) [145].

Energy wise, H2 is also a very singular fuel since; on one hand, it has a weak volume
LHV (10.7 MJ/Nm3) that would place it in the category of LCV gases; however, on the
other hand, it boasts the highest mass LHV (120 MJ/kg) of all fuels [146].

Moreover, NOx emissions pose a serious challenge due to the addition of two effects:

- Hydrogen flames are very hot (Figure 18a) [147]. Indeed, one molecule of H2 generates
three times less molecules of combustion products than does CH4 (Table 3); therefore,
its stoichiometric combustion temperature (at the flame front) is much higher (2120 ◦C
versus 1950 ◦C, in E-class GT conditions) since its combustion heat is transferred to
one molecule instead of three. This is why hydrogen generates much higher NOx in
diffusion flames than methane;

- Conventional Dry Low NOx systems based on the current fuel/air premix devices are
defeated due to the very fast flame speed (Figure 18b) [148] that results in very short
flames (Figure 18a) but causes very difficult flashback issues (see Section 2.3.3).
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Therefore, the combustion of hydrogen in GTs requires innovative approaches to de-
sign appropriate DLN systems likely to avoid flashbacks and secure proper flame holding.

It should be noted that the combustion of ammonia (NH3) as a potential substitute of
dihydrogen is not feasible as it would generate huge amounts of organic NOx (Section 2.3.3).
Consequently, an intense activity has been deployed for several years to develop “hydrogen-
capable” low-NOx combustors. To prevent flashbacks, current designs focus on multiple
small H2/air jets passing at high velocity through small injection orifices and become
intimately mixed with corresponding air jets. Such devices, based on “micromix” injectors,
are very promising; they enable the fine control of the spatial distribution of the fuel
richness, down to the sub-millimetric scale, and minimize the risks of both core-flow and
boundary-layer flashbacks (see Section 2.3.3). Figure 19 shows such a device that has been
successfully lab tested [149,150]. Other similar designs exist [151,152].

Another important specificity of hydrogen resides in the fact that due the intrinsically
high thermal conductivity of gaseous H2O at high temperature, there are intense convective
heat exchanges between the H2O-rich combustion gases and the hot parts of the expansion
turbine; this tends to increase metal skin temperatures and requires the reinforcing of the
cooling of the hot parts to avoid premature creep and thermal fatigue effects.
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Finally, hydrogen can cause the embrittlement of some metallic alloys, depending on
pressure and temperature, so compatibility testing is required [153].

4.3. Exploiting the Experience Gained with H2-rich fuels

From a historical perspective, the ability of gas turbines to handle industrially H2-rich
gases and eventually pure hydrogen is demonstrated by the wide experience that has been
gained over the years in tens of refining and petrochemical plants burning by-process gases
worldwide, as discussed in Section 3.2.

For instance, Spanish, UK, Korean, and Chinese refiners/petrochemists have managed
major revamping programs of their utilities in the 1990s and 2000s, replacing aging refinery
boilers with CHP units driven by 40 MW-class and sometimes 100 MW-class gas turbines
that can burn up to 70% H2 rich gases [87–89].

However, the “hydrogen fleet leader” is a 40 MWe gas turbine installed at the Daesan
Petrochemical Plant in Korea (Figure 20) [154]. In the 1970s, this site hosted a first petro-
chemical unit (marked as #1 Pet-Chem Unit in that figure) equipped with a naphtha cracker
along with a 25 MWe gas turbine (#1 GT), which began to burn a C3-rich “petrochemical net
gas” (PNG) coming from that cracker. Thereafter, the petrochemical company (Samsung
General Chemicals at that time) installed an aromatization reactor that generated a net gas
highly rich in H2 (H2-rich PNG) and was associated with a 40 MWe gas turbine (#2 GT)
that drove an additional power unit (marked as #2 Pet-Chem Unit). Since 1997, this second
GT has been reliably running for hundreds of thousands of hours on that H2-rich PNG
with hydrogen contents up to 90–95%. Although this machine operates with conventional
diffusion flames and is equipped with DeNOx steam injection, this experience has amply
demonstrated, with a hindsight of six years at present, the feasibility of operating a GT
with nearly 100% hydrogen from both safety and reliability standpoints.

This plant also illustrates the multifaceted fuel flex and the high integration potential
of heavy-duty gas turbines since (i) the two GTs use a C4-LPG as startup fuel; and (ii) the
first one burns a C3-rich gas stream produced by the naphtha cracker and its flue gas serves
as hot fluid to heat the same cracking reactor.
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5. Conclusions

This paper aimed to offer an extensive view on the wide fuel flexibility acquired by
land-based gas turbines in the power generation sector.

First, it has provided essential technical keys by which to understand the reasons for
this distinctive capability. To highlight the value of fuel flex in modern electrical grids, this
quality has been put in perspective with the set of duties expected from modern power
generators. Furthermore, to understand how gas turbines can accept multiple fuels, basic
aspects of the Brayton cycles and GT combustion systems have been set out.

Then, this paper reviewed the various classes of products that make up the GT fuel
portfolio, as well as the corresponding applications, outlining how this fuel portfolio has
been expanding over years. The resulting range of alternative GT fuels cuts across many
sectors of the economy worldwide, overlapping with most industrial and farming activities
where gaseous or liquid combustible streams have been made available.

This outcome relies on the great adaptability of the gas turbine product but has been
made possible by intense engineering work, experience accumulation and extrapolation,
lab testing, and validation on the field. It has also been favored by market opportunities
and fostered by the vivid development of cogeneration and combined cycles as effective
energy conversion systems.

In the future, the development of new energies, especially hydrogen and second-
generation bio-sourced fuels, is expected to preserve the assets of land-based gas turbines
in the power generation sector and reinforce their role in the energy transition. This is
despite the irresistible but indispensable rise in power of renewable energy alternatives,
which tend to displace thermal generation.
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