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Abstract: The Zeta converter is an essential and widely used high-order converter. The current
modeling studies on Zeta converters are based on the model that devices, such as capacitors and
inductors, are of integer order. For this reason, this paper takes the Zeta converter as the research
object and conducts an in-depth study on its fractional-order modeling. However, the existing
modeling and analysis methods have high computational complexity, the analytical solutions of
system variables are tedious, and it is difficult to describe the ripple changes of state variables. This
paper combines the principle of harmonic balance with the equivalent small parameter method
(ESPM); the approximate analytic steady-state solution of the state variable can be obtained in only
three iterative steps in the whole solving process. The DC components and ripples of the state
variables obtained by the proposed method were compared with those obtained by the Oustaloup’s
filter-based approximation method; the symbolic period results obtained by ESPM had sufficient
precision because they included more combinations of higher harmonics. Finally, the influence of
fractional order on harmonics were analyzed. The obtained results show that the proposed method
has the advantage of being less computational and easily describing changes in the ripple of the state
variables. The simulation results are provided for validity of the theoretical analysis.
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1. Introduction

Since the development of electronic converters of a high frequency and high integration
of power, the scale and complexity of the systems continue to increase. Thus, the errors
caused by modeling gradually cannot be ignored. Inductance and capacitance are essential
energy storage components in DC-DC converters. Most modeling and analysis methods for
DC-DC converters is based on integer order inductors and capacitors. The literature [1,2]
shows that inductance and capacitance are both fractional order in nature, which means
that errors may occur inevitably when using the integer-order model to analyze inductance
and capacitance. Research on more accurate modeling and analysis methods for DC-DC
converters have important theoretical significance and practical application value.

Low-order converters, such as buck, boost, and buck-boost converters, have the
advantages of a small size, simple structure, and high conversion efficiency, which can easily
achieve boost, step-down, and negative voltage output. They are widely used in inverter
circuits and power factor correction circuits (PFC). References [3–5] use fractional-order
calculus theory to model and analyze boost converters operating in continuous conduction
mode (CCM), discontinuous conduction mode (DCM), and pseudo-continuous conduction
mode (PCCM), respectively. In references [6,7], the fractional-order mathematical model
and the state average model of CCM and DCM buck converters were established and
analyzed, respectively, based on fractional calculus theory. The research results show that
the fractional-order models of boost converters and buck converters based on fractional-
order calculus theory differ greatly from those of integer-order models. Compared with
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the integer-order model, the fractional-order model is more accurate and more consistent
with the actual circuit essence. At present, there are mainly four definitions of fractional
calculus. The research result under different definitions of fractional order calculus is
also different. References [8,9] conducted a steady-state analysis of buck converters and
buck-boost converters in CCM mode based on Riemann Liouville’s (R-L) calculus definition
and compared the results with the analysis results defined by Caputo. Compared with the
Caputo definition, using the R-L definition to analyze the fractional buck converter and
buck-boost converter is more accurate, and better in tracking dynamic response. However,
different definitions of fractional-order calculus are not as unified as those of integer-order
calculus, and it is difficult to give the expression of the analytical solution of the system
according to these definitions [10,11]. Therefore, numerical algorithms can be used to solve
and analyze fractional-order systems. The existing modeling methods of the fraction-order
converter include the state space averaging method, predictive correction method (ABM),
and the Oustaloup’s frequency-domain filtering method. The state-space averaging method
takes the single period of the system as the research object. According to the state-space
equations of the system equations in different modes, weighted average processing is
performed on the linear switching function in each period, and then through the small
signal disturbance processing and linearization processing, the equivalent model of the
switching converter is obtained. Since the state space averaging method is “averaging”
processing, and only considers the low-frequency characteristics of the system, ignoring
the high-frequency dynamic characteristics of the switching converter, which will fail
to correctly analyze the steady-state characteristics of the system, especially considering
that the inductance and capacitance are fractional order, the inductance current ripple
and capacitance voltage will be larger than the integer order. So, the error is bigger in
fractional circuits. The basic idea of ABM is to establish the time model of the system,
obtain the fractional differential equation of the system, then to discretize the differential
of the equation, and then obtain the near value of the numerical solution through the
pre-estimator, and the initial value of the next iteration can be obtained by using the
corrector obtained in the calculation process. After many iterations, the numerical solution
gradually converges to a stable numerical interval. The advantage of the ABM algorithm is
its simple and effective nature, but due to the restriction of time complexity, the selection of
initial value and the dimension of variables will affect the system’s analysis of the research.
The Oustaloup frequency-domain filtering method can clearly express the relationship
between system state variables and circuit element parameters when analyzing fractional
order systems. However, the Oustaloup’s frequency-domain filtering method also has
some problems, such as difficulty in modeling high-order converters, slow running speed
and the impact of switching frequency on simulation results. The lower limit of fitting
frequency, upper limit of fitting frequency and the order of filter also have great influence
on the accuracy of fractional-order DC-DC converter modeling. The fractional calculus
operation has long-term memory characteristics, which results in the numerical algorithm
occupying a large memory space and the operational process being time-consuming in
simulating computer software [12]. References [13,14] use ESPM to model and analyze the
steady-state characteristics of fractional-order buck and boost converters in CCM and DCM.
Using the ESPM, the approximate steady-state analytical solution of the state variables
can be obtained without considering the complex definition of fractional calculus, and the
amplitudes of each harmonic in the circuit can be calculated. Compared with the numerical
solution, the analytical solution obtained by ESPM is more general and can reflect the
relationship between the system state variables better and more intuitively. In addition, the
ESPM has the advantages of fast running speed and less memory.

Now, the fractional order modeling and analysis of converters are mainly focused
on low-order converters. However, high-order converters (Cuk, Sepic, Zeta) can achieve
higher voltage gain, small ripple, small volume, and higher transmission efficiency, so
they are widely used in wind power generation systems, fuel cells, and photovoltaic
systems [15–17]. However, the modeling and analysis methods for high-order converters
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are very complicated [18]. The research and analysis on the modeling of Zeta converters
has been achieved to some extent, but the research results are mainly based on the model
that the capacitors and inductors in the circuit are of integer order. Therefore, in this paper,
we take the Zeta converter as the research object and conduct an in-depth study on its
fractional-order modeling. Based on the existing research, we consider the fractional-order
characteristics of capacitors and inductors in the circuit and analyze the characteristics
of fractional-order circuits, which not only can represent the real characteristics of the
converter more accurately, but also can use the nature of fractional-order calculus to expand
its application scope and further improve the performance of the converter. In this way, we
can improve the theoretical basis of power electronic converter circuit research. For this
reason, this paper aims to model and analyze the fractional order Zeta converter operating
in CCM by using ESPM and proposes a method for obtaining approximate analytical
solutions of the state variables of the inductor current and capacitor voltage. According to
the obtained solutions, the DC quantity, ripple, and harmonics of the state variables can be
analyzed intuitively, and then the relative performance of the DC chopper can be studied.

This paper is organized as follows. Section 2 deals with the modeling of the fractional-
order Zeta converter in CCM. Section 3 establishes an equivalent model based on the ESPM
method and the approximate solution. In Section 4, simulations are performed to verify the
proposed method. The effects of fractional order on the harmonic amplitude of capacitor
voltage and inductor current are discussed in Section 5. Finally, conclusions are given in
Section 6.

2. Mathematical Model of the Fractional CCM Zeta Transformer

The circuit topology of the fractional Zeta converter is shown in Figure 1. In the figure,
Vin is the power supply voltage, δ(t) is the switching function, ST and SD are the switching
tubes, R is the circuit resistance, and iL1, iL2, vC1 and vC2 are the inductive current and
capacitor voltages of the converter, respectively. α and β are the orders of the inductor and
capacitor, respectively.
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Figure 1. Fractional-order Zeta converter.

The fractional-order inductor and the voltage across the capacitor have the following
relationship: 

vL(t) = L
dαiL
dtα

iC(t) = C
dβvC

dtβ

(1)

When both α and β are equal to 1, the object being modeled is a traditional integer
order model.

When the converter operates in the continuous current mode (CCM), the switches ST
and SD are controlled by the switching function δ(t). The fractional-order Zeta converter
has two operating modes in one switching period TS. The inductor current and capac-
itor voltage are used as the state variables of the converter; fractional-order differential
equations describe the state variables of the two modes of the converter:

Mode 1: nTS < t ≤ (n + D)TS, where D is the on-time duty cycle and n is an integer
representing a certain switching period. As shown in Figure 2, at this time δ(t) = 1, ST is
turned on and SD is turned off, and the state equation is written:
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− vc2
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(2)

Mode 2: (n + D)TS < t ≤ (n + 1)TS, at this time δ(t) = 0, ST is turned off and SD is
turned on. As shown in Figure 3, the state equation is written as:
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dα1iL1

dtα1 =
vC1

L1

dα2iL2

dtα2 = −vc2

L2

dβ1vC1

dtβ1 = − iL1

C1

dβ2vC2

dtβ2 =
iL2

C2
− vc2

RC2

(3)

In this paper, the operator symbols pα and pβ are used to replace dα/dtα and dβ/dtβ,
respectively; the nonlinear switching function δ(t) is used to represent the different modes
of the fractional-order CCM Zeta converter, which is defined as:

δ(t) =
{

1, nTS < t ≤ (n + D)TS
0, (n + D)TS < t ≤ (n + 1)TS

(4)

According to the mathematical model of the two modes of Equations (2) and (3) and
the switching function δ(t), the differential equation of the fractional CCM Zeta converter
can be obtained as
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

pα1 iL1 −
vC1
L1

(1− δ(t))− Vin
L1

δ(t) = 0

Pα2 iL2 +
vC1
L2

δ(t) +
vC2
L2
− Vin

L2
δ(t) = 0

Pβ1 vC1 −
iL2
C1

δ(t) +
iL1
C1

(1− δ(t)) = 0

Pβ2 vC2 −
iL2
C2

+
vC2
RC2

= 0

(5)

Representing Formula (5) in the form of a matrix equation, we have:

G0(pα1 , pα2 , pβ1 , pβ2)x + G1 f (x)− G2t(x) = 0 (6)

There are nonlinear functions f (x) = δ(t)x, t(x) = δ(t)e, and e =
[

Vin
L1

Vin
L2

0 0
]T

in

Formula (6), and the coefficient matrix G0(pα1, pα2, pβ1, pβ2), G1, G2 are, respectively,

G0(pα1 , pα2 , pβ1 , pβ2) =


pα1 0 − 1

L1
0

0 pα2 0 1
L2

1
C1

0 pβ1 0
0 − 1

C2
0 pβ2 + 1

RC2

 (7)

G1 =


0 0 1

L1
0

0 0 1
L2

0
− 1

C1
− 1

C1
0 0

0 0 0 0

, G2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (8)

The above is the state vector model of the fractional-order Zeta converter working in
CCM. It can be observed that the coefficient matrix G0(pα1, pα2, pβ1, pβ2) in the model is
closely related to the order of the energy storage element of the converter.

3. Equivalent Model of Converter Based on ESPM
3.1. Principle of the ESPM

The ESPM is mainly based on the harmonic balance principle of solving nonlinear
differential equations. By expanding the state variables of the circuit system by Fourier
series, when there are enough expansion terms of the series, the sum of these series can be
outstanding to approximate the periodic solution of the state variable. According to the
literature [19], the generalization of the harmonic balance principle is as follows:

dµeωτ

dtµ = ωµeωτ (9)

where µ is the order of the differential operation, which can be either an integer or a
non-integer; and ω is the angular frequency of the exponential function, which can be any
real number. From the above formula, it can be observed that the order of the differential
operation only affects the amplitude of the differentiated exponential function but has
no effect on its phase. Therefore, the harmonic balance principle can be generalized to
solve fractional-order nonlinear differential equations. Furthermore, the ESPM can also be
improved according to this generalization.

First, the state variable x is expanded to the form of the sum of the main oscillation
component x0 and the other corrections xi:

x = x0 +
n

∑
i=1

εixi (10)

The switching function δ(t) is also expanded into a similar series sum form:
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δ(t) = δ0 +
n

∑
i=1

εiδi (11)

Substituting the expansions of x and δ(t) into the nonlinear functions f (x) = δ(t)x
and t(x) = δ(t)e, and then combining terms with the same order εi, f (x) and t(x) can be
converted to:

f (x) = f0 + ε f1 + ε2 f2 + . . .
t(x) = t0 + εt1 + ε2t2 + . . .

(12)

where f i is: 
f0 = δ0x0
f1 = δ0x1 + δ1x0
f2 = δ0x2 + δ1x2 + δ2x0
f3 = δ0x3 + δ1x2 + δ2x1 + δ3x0

(13)

ti is: 
t0 = δ0e
t1 = δ1e
t2 = δ2e
t3 = δ3e

(14)

According to the principle of harmonic balance, it can be assumed that xi can be
expressed in the form of the sum of various harmonic components shown in Equation (15):

xi = ∑
k∈{Eir}

xik = ai0 + ∑ (aikejkτ + c.c) (15)

where c.c represents the conjugate term, and k represents the order of the harmonic, in
which τ = ωt is the normalized time. ai0 and aik represent the DC component of xi and
the amplitude of the kth harmonic component, respectively. In addition, the formula’s
harmonic components {Eir} are determined by the actual physical properties of the modeled
object. For the DC-DC converter, due to its low-pass filtering characteristics, the main
component in its state variable is DC, so set the harmonic component set {E0} = {0} of the
main oscillation component x0. The harmonic components {Eir} of the other corrections xi
are sequentially determined by the remainder Ri generated by the previous operation.

When the converter is in a steady state, the periodic switching function δ(t) can also
be expanded into a Fourier series of the form:

δ(t) = b0 +
∞

∑
k=1

(bkejkτ + c.c) (16)

In the formula, b0 = 1
TS

∫ TS
0 δ(t)dt = D, bk =

1
2 (αk − jβk), where:

αk =
2

TS

TS∫
0

δ(t) cos(kωt)dt = sin(2kπD)
kπ

βk =
2

TS

TS∫
0

δ(t) sin(kωt)dt = 1−cos(2kπD)
kπ

(17)

Usually, δ0 and δi are taken as:{
δ0 = b0 + b1ejτ + c.c

δi = b2iej2iτ + b2i+1ej(2i+1)τ + c.c
(18)

Substitute the expansions of xi and δi into f i and ti. Due to the multiplication of xi and
δi, new harmonic components are generated in f i and ti, as follows:
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{
fi = fim + ϕRi+1
ti = tim + ϕHi+1

(19)

Among them, f im represents the part of f i that is the same as the harmonic component
of xi, the remainder Ri+1 represents other components in f i, tim represents the part of ti
that is the same as the harmonic component of xi, and the remainder Hi+1 represents other
components in ti components, the spectrum of xi and Ri are the same as Hi. Therefore, the
value of the xi spectrum can be determined by Ri and Hi in the operation.

Substituting Equations (15) and (19) into Equation (6), Equation (20) can be deduced
as: 

G0(p α1 , pα2 , pβ1 , pβ2)x0+G1 f0m−G2t0m= 0
G0(p α1 , pα2 , pβ1 , pβ2)x1+G1( f 1m+R1)− G2(t 1m+H1) = 0
G0(p α1 , pα2 , pβ1 , pβ2)x2+G1( f 2m+R2)− G2(t 2m+H2) = 0
G0(p α1 , pα2 , pβ1 , pβ2)x3+G1( f 3m+R3)− G2(t 3m+H3) = 0

(20)

From Equation (21), the main oscillation component and each order correction can be
obtained step by step. If the following conditions are met, the iteration will be stopped.

Tolerance =
‖ aik ‖2

‖ a00 ‖2
≤ 1% (21)

By solving the equation in Equation (20), the main oscillation component and each
order correction can be obtained step by step, and finally the periodic solution of the system
state variable can be expressed as:

x = x0 + x1 + x2 + x3 . . . (22)

3.2. Steady-State Analytical Solution of Fractional-Order CCM Zeta Converter
3.2.1. Solving the Main Oscillation Component x0

Due to the low-pass performance of the DC-DC converter, it can be concluded that the
main oscillation component of the state variable is:

x0 = a00 =
[
I00, I′00, V00, V′00

]T (23)

where I00, I′00, V00, and V′00 represent the DC components of the inductor current and
capacitor voltage, respectively. From Equation (19) f i and ti expressions, it can be ex-
pressed as: {

f0m = a00b0
t0m = a00e

(24)

{
R1 = a00(b1ejτ + c.c)
H1 = b1e · ejτ + c.c

(25)

Substituting Equations (24) and (25) into the first term of Equation (20), it can be
expressed as:

G00a00 + G1Da00 − G2De = 0 (26)

At this time, the coefficient matrix is G00 = G0(0,0,0,0). According to the principle of
harmonic balance, the above formula can be transformed into


0 0 − 1

L1
0

0 0 0 1
L2

1
C1

0 0 0
0 − 1

C2
0 1

RC2

+ D


0 0 1

L1
0

0 0 1
L2

0
− 1

C1
− 1

C1
0 0

0 0 0 0





I00
I′00
V00
V′00

 = D


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




Vin
L1
Vin
L2
0
0

 (27)

The analytical formula of a00 can be obtained from Formula (27).
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3.2.2. Solving the First-Order Correction Amount x1

The components of x1 depend on R1 and H1, so the set of harmonic components of the
first-order correction amount x1 is {E1r} = {1}, and x1 can be expressed as

x1 = a11ejτ + c.c (28)

Where a11 = [I11, I’11, V11, V’11]T, bring x0, x1, δ0, δ1 into f 1 and t1, and the remainder
R2 of f 1m and f 1 can be obtained:{

f1m = b0a11ejτ + c.c
R2 = b1a11 + b1a11 + (b1a11 + b2a00)ej2τ + b3a00ej3τ + c.c

(29)

Since the spectrum of H1 is {K1r} = {1}, the spectrum of x1 is also {1}. In the same way,
selecting the same amount as the spectrum of x1 in t1 as t1m, and the other components as
H2, it can be expressed as: {

t1m = 0
H2 = b2e · ejτ + b3e · ejτ + c.c

(30)

Substituting f 1m, t1m, H1, and R1 into the second equation of Equation (20), it can be
reverted to:

(G01 + G1b0)a11 = (−G1b1a00 + G2b1e) (31)

where G01 = G0[(jω)α1, (jω)α2, (jω)β1, (jω)β2], a11 can be obtained by the matrix transforma-
tion of Formula (31).

3.2.3. Solve the Second-Order Correction Amount x2

According to R2 and H2, it is known that the set of harmonic components of the second-
order correction amount x2 is {E2r} = {0, 2, 3}; then, the expression of the second-order
correction amount is:

x2 = a20 + a22ej2τ + a23ej3τ + c.c (32)

The DC component in the second-order correction is a20 = [I20, I’20, V20, V’20]T, the
second harmonic is a22 = [I22, I’22, V22, V’22]T, and the third harmonic is a23 = [I23, I’23, V23,
V’23]T. Substituting x0, x1, x2, δ0, δ1, and δ2 into f 2 and t2, it can be expressed as:{

f2m = b0a20 + (b0a22 + b1a23 + b3a11)ej2τ + (b0a23 + b1a22 + b2a11)ej3τ + c.c
R3 = (b1a20 + b1a22 + b2a11)ejτ + (b1a23 + b3a11 + b4a00)ej4τ + b5a00ej5τ + c.c

(33)

{
t2m = 0
H3 = b4e · ej4τ + b5e · ej5τ + c.c

(34)

Bringing x2, R2, f 2m, H2, and t2m into the third formula of Formula (20), it can be
expressed as: 

(G00 + G1b0)a20 = −G1(b1a11 + b1a11)
(G02 + G1b0)a22 = −G1(b1a11 + b2a00 + b3a11) + G2b2e
(G03 + G1b0)a23 = −G1(b1a22 + b2a11 + b3a00) + G2b3e

(35)

The matrix G0k = [(jkω)α1, (jkω)α2, (jkω)β1, (jkω)β2] (k = 0, 2, 3) in Equation (35), a20,
a22 and a23 can be obtained by matrix transformation.

3.2.4. Solving the Third-Order Correction Amount x3

According to R3 and H3, it can be seen that the set of harmonic components of the
third-order correction amount x3 is {E3r} = {1, 4, 5}; then, the expression of the third-order
correction amount is:

x3 = a31ejτ + a34ej4τ + a35ej5τ + c.c (36)
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The fundamental harmonic, fourth harmonic, and fifth harmonic in the third-order
correction amount are, respectively, a31 = [I31, I’31, V31, V’31]T, a34 = [I34, I’34, V34, V’34]T,
and a35 = [I35, I’35, V35, V’35]T. Substituting x0, x1, x2, x3, δ0, δ1, δ2, and δ3 into f 3 and t3, it
can be reverted to:

f3m = (b0a31 + b3a22)ejτ + (b0a34 + b1a35 + b2a22 + b5a11)ej4τ

+(b0a35 + b1a34 + b2a23 + b3a22 + b4a11)ej5τ + c.c
R4 = b1a31 + b2a22 + b3a23 + (b1a31 + b2a20)ej2τ + (b1a34 + b3a20 + b4a11)ej3τ + c.c

(37)

t3m = 0 (38)

Bringing x3, R3, f 3m, H3, and t3m into the fourth formula of Formula (20), it can be
expressed as:

(G01 + G1b0)a31 = −G1(b1a20 + b3a22 + b1a22 + b2a11)
(G04 + G1b0)a34 = −G1(b1a23 + b2a22 + b3a11 + b4a00 + b5a11) + G2b4e
(G05 + G1b0)a35 = −G1(b0a35 + b1a34 + b2a23 + b3a22 + b4a11 + b5a00) + G2b5e

(39)

In the coefficient matrix G0k = G1[(jkω)α1, (jkω)α2, (jkω)β1, (jkω)β2] (k = 1, 4, 5) in
Formula (39), a31, a34, and a35 can all be passed through matrix transformation.

According to the above process, aik = [Iik, I’ik, Vik, V’ik] can be obtained. According to
the obtained main oscillation component x0, first-order correction amount x1, second-order
correction amount x2 and third-order correction amount x3, then the analytical expression
of the state vector x can be obtained as:

x = a00 + a20 + (a11 + a31)ejτ + a22ej2τ + a23ej3τ + a34ej4τ + a35ej5τ + c.c (40)

The expressions of state variables iL1, iL2, vC1, and vC2 are:

iL1 ≈ (I00 + I20) + 2(ReI11 cos ωt− ImI11 sin ωt + ReI22 cos 2ωt
−ImI22 sin 2ωt + ReI23 cos 3ωt− ImI23 sin 3ωt + ReI31 cos ωt
−ImI31 sin ωt + ReI34 cos 4ωt− ImI34 sin 4ωt + ReI35 cos 5ωt− ImI35 sin 5ωt)
iL2 ≈ (I′00 + I′20) + 2(ReI′11 cos ωt− ImI′11 sin ωt + ReI′22 cos 2ωt
−ImI′22 sin 2ωt + ReI′23 cos 3ωt− ImI′23 sin 3ωt + ReI′31 cos ωt
−ImI′31 sin ωt + ReI′34 cos 4ωt− ImI′34 sin 4ωt + ReI′35 cos 5ωt− ImI′35 sin 5ωt)
vC1 ≈ (V00 + V20) + 2(ReV11 cos ωt− ImV11 sin ωt + ReV22 cos 2ωt
−ImV22 sin 2ωt + ReV23 cos 3ωt− ImV23 sin 3ωt + ReV31 cos ωt
−ImV31 sin ωt + ReV34 cos 4ωt− ImV34 sin 4ωt + ReV35 cos 5ωt− ImV35 sin 5ωt)
vC2 ≈ (V′00 + V′20) + 2(ReV′11 cos ωt− ImV′11 sin ωt + ReV′22 cos 2ωt
−ImV′22 sin 2ωt + ReV′23 cos 3ωt− ImV′23 sin 3ωt + ReV′31 cos ωt
−ImV′31 sin ωt + ReV′34 cos 4ωt− ImV′34 sin 4ωt + ReV′35 cos 5ωt− ImV′35 sin 5ωt)

(41)

where Re and Im represent the real and imaginary parts, respectively.

4. Simulation Comparison and Validation of Different Methods
4.1. Design Equation of Zeta Converter

Applying Kirchhoff’s voltage law on the Zeta converter circuit for the first and second
mode, the equations are derived below. The ripple of the current through the energy
transferring (input) inductor can be expressed as,

∆IL1 =
DVin
fsL1

, L1 =
DVin
fs∆IL1

(42)

The output inductor current ripple can be expressed as,

∆IL2 =
DVin
fsL1

, L2 =
DVin
fs∆IL2

(43)
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The capacitor ripple voltages ∆VC1 & ∆VC2 can be derived from the Kirchhoff’s current
law for first and second mode as

∆VC1 =
1

C1

Ton∫
0

iC1dt, C1 =
DV0

fsRL∆VC1
(44)

∆VC2 =
1

C2

T/2∫
0

∆IL2

4
dt, C2 =

DVin
8 f 2

s L2∆VC2
(45)

where V0 = VC2.
The simulation parameters of Figure 1 are shown in Table 1.

Table 1. Simulation parameters.

Parameters Values

Vin 12 V
R 10 Ω
D 0.4
f s 25,000 Hz
L1 2 mH
L2 2 mH
C1 10−5 F
C2 10−5 F

4.2. DC Components and Ripple Analysis

The fractional-order CCM Zeta converter is modeled on the Oustaloup’s filter-based
approximation method [20], and the simulation model is shown in Figure 4.
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Figure 4. Simulation model of fractional-order CCM Zeta converter.

Using the Oustaloup’s filter-based approximation method, the fractional-order induc-
tor and capacitor in Figure 4 are replaced by the equivalent circuit of the fractional-resistance
chain. The fractional-resistance chain of fractional-order inductor is constructed, as shown
in Figure 5a. The fractional-resistance chain of fractional-order capacitor is shown in
Figure 5b.
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Figure 5. Equivalent circuit of fractional element. (a) Fractional-order inductor; (b) fractional-order
capacitor.

The DC components of the state variables obtained by the Oustaloup’s filter-based
approximation method and ESPM are shown in Table 2.

Table 2. Comparison of DC components of state variables.

Order (α1, α2, β1, β2) ESPM (a00 + a20) Oustaloup’s Method

(0.85, 0.85, 0.85, 0.85) (0.5574, 0.7515, −7.5145, 7.5145) (0.6040, 0.7536, −7.5270, 7.530)
(0.9, 0.9, 0.9, 0.9) (0.5417, 0.7836, −7.8359, 7.8359) (0.5676, 0.7826, −7.8250, 7.8230)

(0.9, 0.9, 0.95, 0.95) (0.5494, 0.7948, −7.9478, 7.9478) (0.5813, 0.7954, −7.950, 7.950)
(0.95, 0.95, 0.95, 0.95) (0.5354, 0.7955, −7.9546, 7.9546) (0.5596, 0.7956, −7.9530, 7.9530)

(0.95, 0.95, 1, 1) (0.5383, 0.7995, −7.9955, 7.9955) (0.5625, 0.7998, −7.9940, 7.9950)
(1, 1, 1, 1) (0.5330, 0.7998, −7.9975, 7.9975) (0.5497, 0.8009, −7.990, 7.9970)

It can be seen from Table 2 that the difference between the results of the inductor
current and capacitor voltage DC components obtained by ESPM and the Oustaloup’s
filter-based approximation method is relatively small, and the changing trends are the same.

The waveform of inductor current and capacitor voltage of different orders obtained by
the Oustaloup’s filter-based approximation method and ESPM are shown in Figures 6 and 7,
respectively. The figure’s green solid line and the red dotted line in the figure are the curves
obtained by the Oustaloup’s filter-based approximation method and ESPM, respectively.
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ΔiL1/A 0.3012 0.3132 0.3435 
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Table 4. Ripple error percentage. 

Order (α1, α2, β1, β2) ΔiL ESPM Oustaloup 

(1, 1, 1, 1) 
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ΔiL2/A 8.02% 1.14% 

(0.95, 0.95, 1, 1) 
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ΔiL2/A 1.23% 8.75% 
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Figure 7. Capacitance voltage waveform of different orders: (a) (α1, α2, β1, β2) = (1, 1, 1, 1); (b) (α1,
α2, β1, β2) = (0.95, 0.95, 1, 1); (c) (α1, α2, β1, β2) = (0.95, 0.95, 0.95, 0.95); (d) (α1, α2, β1, β2) = (0.9, 0.9,
0.95, 0.95); (e) (α1, α2, β1, β2) = (0.9, 0.9, 0.9, 0.9); (f) (α1, α2, β1, β2) = (0.85, 0.85, 0.85, 0.85).

It can be seen from Figures 6 and 7 that the values of the inductor current and capacitor
voltage are consistent with the trends shown in Table 2. Furthermore, the steady-state
ripples from the Oustaloup’s approximation method and the ESPM are compared, where
the green solid lines represent the results from the Oustaloup’s approximation method, and
the red dotted lines represent the results from the ESPM. The harmonic magnitudes are
also order dependent. Specifically, the harmonic magnitudes of iL and vC increase with the
decreases of α and β, respectively. Waveforms coming from these two methods show good
agreement with each other, which proves the accuracy and feasibility of ESPM modeling of
the fractional CCM Zeta converter.

The inductance current increment of the circuit model can be measured from Figures 6
and 7, and the corresponding theoretical values can be obtained according to the formula
for ripple given in Equation (46), and the comparison between the theoretical and simulated
values is shown in Table 3. The ripple error percentage is shown in Table 4.

Table 3. Comparison of the theoretical value and the simulation value.

Order (α1, α2, β1, β2) ∆iL Theoretical Value ESPM Oustaloup

(1, 1, 1, 1) ∆iL1/A 0.096 0.087 0.09501
∆iL2/A 0.096 0.0883 0.0949

(0.95, 0.95, 1, 1) ∆iL1/A 0.1702 0.1812 0.1858
∆iL2/A 0.1702 0.1723 0.1851

(0.95, 0.95, 0.95, 0.95) ∆iL1/A 0.1702 0.1853 0.1874
∆iL2/A 0.1702 0.1678 0.1839

(0.9, 0.9, 0.95, 0.95) ∆iL1/A 0.3012 0.313 0.3435
∆iL2/A 0.3012 0.2968 0.3358

(0.9, 0.9, 0.9, 0.9) ∆iL1/A 0.3012 0.3132 0.3435
∆iL2/A 0.3012 0.2918 0.3201

(0.85, 0.85, 0.85, 0.85) ∆iL1/A 0.532 0.5716 0.5825
∆iL2/A 0.532 0.5246 0.5637

Table 4. Ripple error percentage.

Order (α1, α2, β1, β2) ∆iL ESPM Oustaloup

(1, 1, 1, 1) ∆iL1/A 9.37% 1.03%
∆iL2/A 8.02% 1.14%

(0.95, 0.95, 1, 1) ∆iL1/A 6.46% 9.16%
∆iL2/A 1.23% 8.75%

(0.95, 0.95, 0.95, 0.95) ∆iL1/A 8.87% 10.1%
∆iL2/A 1.41% 8.05%

(0.9, 0.9, 0.95, 0.95) ∆iL1/A 3.91% 14.04%
∆iL2/A 1.46% 11.48%

(0.9, 0.9, 0.9, 0.9) ∆iL1/A 3.98% 14.04%
∆iL2/A 3.12% 6.27%

(0.85, 0.85, 0.85, 0.85) ∆iL1/A 7.44% 9.49%
∆iL2/A 1.39% 5.95%
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Combining Tables 2–4 it can be seen that the DC components of the inductor current
and capacitor voltage are basically not affected by the fractional order in a steady state.
The fractional order mainly affects the ripple of the inductor current and capacitor voltage,
and the ripple amplitude increases sharply as the order decreases. Analysis of the data in
Table 3 shows that there is a certain error between the simulated and theoretical values, but
the error is small and stays in a reasonable range. The comparison between the theoretical
and simulated values fully verifies the correctness of the fractional order model and the
theoretical derivation.

4.3. Fractional-Order Zeta Converter CCM Discriminant

From the method of reference [21], the expressions for the fractional order inductance
currents ∆iL1 and ∆iL2 can be obtained as:

∆iL1 =
Vin(DT)α1

L1α1Γ(α1)

∆iL2 =
(Vin −VC1 −VC2)(DT)α2

L2α2Γ(α2)

(46)

In Equation (46), Г(α) is the gamma function. Additionally, VC1 = −VC2, so by taking L
= L1 = L2, α = α1 = α2, the fractional order inductor L1

α1 and L2
α2 current ripple calculation

formula can be expressed uniformly as follows.

∆iL = ∆iL1 = ∆iL2 =
Vin(DT)α

LαΓ(α)
(47)

Equation (47) shows that when the fractional-order inductors L1
α1 and L2

α2 have equal
inductance values and orders, the inductor current ripple is calculated by the same formula,
and the inductor current ripple is related to its order. The curve of inductor current ripple
∆iL with order α can be obtained by using Matlab software, as shown in Figure 8. As the
order decreases, the inductor current ripple ∆iL increases sharply, and the lower the order,
the faster the ripple increases.

Energies 2023, 16, x FOR PEER REVIEW 17 of 21 
 

 

 

Figure 8. The relationship between inductance current ripple and inductance order. 

For a fractional-order Zeta converter to operate in CCM, the current flowing through 

the converter diode SD must always be greater than 0 in the ( ) ( 1)
S S

n D T t n T+   +  inter-

val. In the ( ) ( 1)
S S

n D T t n T+   +  interval, the current flowing through the diode is equal 

to the sum of the two inductor currents. 

= +
1 2DS L L

i i i
 (48)

 

The diode current iD is always greater than 0. Equivalently, the DC component of the 

inductor current should always be greater than half of its current ripple amplitude, yield-

ing the following expression: 

−  + −  
1 1 2 2

1 1
( ) ( ) 0

2 2L L L L
I i I i

 
(49) 

Substituting Equation (46) into Equation (49) and simplifying it can be expressed in 

the following form: 

 

   
+ − + 

 

1 2

1 2

1 1 1 2 2 2

( ) ( )
( ) [ ] 0

2 ( ) ( )
in

L L

V DT DT
I I

L L  (50) 

The effect of order α1 and α2 of the fractional-order inductor on the converter opera-

tion mode can be obtained from Equation (50), as shown in Figure 9. 

  

(a) (b) 

Figure 9. Influence of inductor order on operation mode of the converter. (a) Three-dimensional 

graph. (b) Boundary between CCM and DCM. 

Figure 8. The relationship between inductance current ripple and inductance order.

For a fractional-order Zeta converter to operate in CCM, the current flowing through
the converter diode SD must always be greater than 0 in the (n + D)TS < t ≤ (n + 1)TS
interval. In the (n + D)TS < t ≤ (n + 1)TS interval, the current flowing through the diode
is equal to the sum of the two inductor currents.

iSD = iL1 + iL2 (48)
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The diode current iD is always greater than 0. Equivalently, the DC component of
the inductor current should always be greater than half of its current ripple amplitude,
yielding the following expression:

(IL1 −
1
2

∆iL1) + (IL2 −
1
2

∆iL2) > 0 (49)

Substituting Equation (46) into Equation (49) and simplifying it can be expressed in
the following form:

(IL1 + IL2)−
Vin
2

[
(DT)α1

L1α1Γ(α1)
+

(DT)α2

L2α2Γ(α2)
] > 0 (50)

The effect of order α1 and α2 of the fractional-order inductor on the converter operation
mode can be obtained from Equation (50), as shown in Figure 9.

Energies 2023, 16, x FOR PEER REVIEW 17 of 21 
 

 

 

Figure 8. The relationship between inductance current ripple and inductance order. 

For a fractional-order Zeta converter to operate in CCM, the current flowing through 

the converter diode SD must always be greater than 0 in the ( ) ( 1)
S S

n D T t n T+   +  inter-

val. In the ( ) ( 1)
S S

n D T t n T+   +  interval, the current flowing through the diode is equal 

to the sum of the two inductor currents. 

= +
1 2DS L L

i i i
 (48)

 

The diode current iD is always greater than 0. Equivalently, the DC component of the 

inductor current should always be greater than half of its current ripple amplitude, yield-

ing the following expression: 

−  + −  
1 1 2 2

1 1
( ) ( ) 0

2 2L L L L
I i I i

 
(49) 

Substituting Equation (46) into Equation (49) and simplifying it can be expressed in 

the following form: 

 

   
+ − + 

 

1 2

1 2

1 1 1 2 2 2

( ) ( )
( ) [ ] 0

2 ( ) ( )
in

L L

V DT DT
I I

L L  (50) 

The effect of order α1 and α2 of the fractional-order inductor on the converter opera-

tion mode can be obtained from Equation (50), as shown in Figure 9. 

  

(a) (b) 

Figure 9. Influence of inductor order on operation mode of the converter. (a) Three-dimensional 

graph. (b) Boundary between CCM and DCM. 
Figure 9. Influence of inductor order on operation mode of the converter. (a) Three-dimensional
graph. (b) Boundary between CCM and DCM.

Figure 9a shows the three-dimensional diagram of the current relative to the order
α1-α2 plane change of Equation (50). When this current is greater than 0, it indicates that
the converter is operating in CCM mode; when this current is less than 0, it indicates that
the converter is operating in DCM mode; when this current is equal to 0, it indicates that it
is operating in the critical state of CCM and DCM; the boundary lines of the two operating
modes are shown in Figure 9b. From Figure 9b, the intersection coordinates (0.71, 1) and
(1, 0.71) of the dividing line and the edge of α1-α2 plane can be obtained. Only when the
inductance order is greater than 0.71 order can the converter run in CCM mode.

5. Analysis of Harmonic Components in Different Orders

The steady-state approximate analytical solution of the fractional-order CCM Zeta
converter is obtained through the analytical modeling method in Section 2. It is observed
that both the DC component and the ripple of the energy storage element are related to
the order of the energy storage element in the study. The specific change rule is as follows:
when the order of the energy storage element decreases, the ripple amplitude of the state
variable increases; in the contrary, the ripple amplitude of the state variable decreases.
When the inductor and capacitor are in different orders, the harmonic amplitudes of the
converter inductor current and capacitor voltage are obtained, as shown in Figures 10
and 11, respectively.
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Figure 10. Harmonic components of inductor currents with different orders in the CCM region.
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Figure 11. Harmonic components of capacitor voltages with different orders in the CCM region.

From Figures 10 and 11, as the order of the inductor and capacitor elements decreases,
the amplitudes of the fundamental, second, third, fourth, and fifth harmonics of the
inductor current and capacitor voltage increase. Since the ripple of the state variable is
jointly affected by the harmonics, the changing trend of the harmonics in the state variable
is consistent with the changing trend of the ripple amplitude. The change in the inductance
order greatly influences the inductor current, while the change in the capacitance order has
a relatively small influence on the inductor current.

The modified termination criterion of the analytical solution proposed in Equation (21)
is verified by the change in each harmonic amplitude. The condition of the discriminant
stability were analyzed with respect to the harmonic components. The effective values
of the harmonic components of the converter inductor current and capacitor voltage, as
a percentage of the fundamental component, were obtained, as shown in Figure 12. As
can be seen from Figure 12, the value of the modified termination discriminant condition
increases as the fractional order of the inductor and capacitor decreases.
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6. Conclusions

Based on the extended harmonic balance principle and the idea of disturbance, ESPM
was used to model the fractional CCM zeta converter. The steady-state analytical expression
was obtained. According to the steady-state analytical expression, the fractional-order CCM
Zeta converter was modeled in MATLAB and compared with the Oustaloup’s filter-based
approximation method. Furthermore, the harmonic amplitude of each order of the state
variables of the fractional CCM Zeta converter was obtained, and the influence of the order
of the energy storage element on the harmonic components of each order was analyzed.
The obtained results show that:

(1) ESPM can avoid the discussion of the applicability of several fractional calculus defi-
nitions to the upper and lower limits of the integration under different circumstances,
and overcome the problem that it is difficult for the fractional system to obtain specific
expressions. The obtained solutions conclude practical physical significance, and the
analysis results are consistent with those obtained by the Oustaloup’s filter-based
approximation method.

(2) The amplitude of each harmonic of the fractional converter is related to the order of
the inductance and capacitance components. With all other parameters unchanged,
when the fractional order of inductance and capacitance decreases, the amplitude
of the harmonic components of each order in the state variable increases, increasing
the amplitude of the inductor current and capacitance voltage ripple of the fractional
order converter.

(3) Compared with the numerical simulation method, the proposed method can better
describe the change in the state variable ripple. The computational complexity is
significantly reduced, the simulation speed is fast, and the memory consumption
is small.

The ESPM is a fast algorithm for solving the steady-state periodic solution of Zeta
circuits. The algorithm is a symbolic algorithm which overcomes the drawback of too
many variable symbols in similar symbolic algorithms and uses matrix operations to make
the whole solution process intuitive and clear. However, the equivalent small parameter
method also has some problems; for example, the modeling of a high-order converter
is complicated, and the converter with low-order-of-energy storage components needs
to derive the high-order correction. This paper uses ESPM to model and analyze the
fractional-order Zeta converter in CCM mode, and deduces the boundary conditions of
the CCM mode and DCM mode. The modeling method proposed in this paper can be
easily extended and applied to the fractional-order Zeta converter in DCM mode and other
converter circuits.
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