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Abstract: This work studies the DC-DC conversion stage in solid-state transformers (SST). The
traditional two- or three-level dual active bridge (DAB) topology faces limitations in microgrid
interconnection due to power and voltage limitations. For this reason, the use of multilevel topologies
such as active neutral point clamped (ANPC) is a promising alternative. Additionally, the efficiency
of the SSTs is a recurring concern, and reducing losses in the DC-DC stage is a subject to be studied.
In this context, this work presents a new control technique based on an adaptive model- based
predictive control (AMPC) to select the modulation technique of an ANPC-DAB DC-DC converter
aimed at reducing losses and increasing efficiency. The single-phase shift (SPS), triangular, and
trapezoidal modulation techniques are used according to the converter output power with the aim
of maximizing the number of soft-switching points per cycle. The performance of the proposed
control technique is demonstrated through real-time simulation and a reduced-scale experimental
setup. The findings indicate the effectiveness of the AMPC control technique in mitigating voltage
source perturbations. This technique has low output impedance and is robust to converter parameter
variations. Prototyping tests revealed that, in steady-state, the AMPC significantly improves converter
efficiency without compromising dynamic performance. Despite its advantages, the computational
cost of AMPC is not significantly higher than that of traditional model predictive control (MPC),
allowing for the allocation of time to other applications.

Keywords: Dual Active Bridge (DAB) converter; active neutral point clamped (ANPC); model
predictive control (MPC); power electronics; switching losses; adaptive control

1. Introduction

The solid-state transformer (SST) is becoming an important technology and is founda-
tional to applications that include traction systems, offshore energy generation, DC grids
and especially microgrids. Its advantages, such as accurate output-voltage regulation,
short-circuit current limitation, power factor compensation, reduced weight and volume
in comparison with traditional transformers, and voltage-dip immunity under certain
limitations, enable the construction of a new paradigm in electric power systems [1].

The future of the electric power system seems to be a smart grid with power-flow
management, incorporated energy storage systems, quick transient response and high
integration of renewable energy [2]. All of these features can be incorporated through the
utilization of SST. However, this device still has opportunities for improvement, mainly
related to cost reduction, reliability, and efficiency [3].
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The usual topology of the SST is presented in Figure 1. It shows the AC-DC conversion
(Stage 1), DC-DC conversion (Stage 2), and DC-AC conversion (Stage 3), with the high-
voltage utility grid on the left and the low-voltage microgrid on the right and all stages
allowing bidirectional power flow. Stage 2 traditionally employs a DC-DC converter
through a resonant magnetic link to connect high-voltage DC to low-voltage DC, and the
efficiency of SST is closely related to losses in this stage.
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Figure 1. SST Topology.

The dual active bridge (DAB) is the general term for the isolated converter formed by
the union of two active bridges through an inductor and a high-frequency transformer.

The requirements for building a DAB controller are a fast transient response, minimum
steady-state error and reduced losses on the power converter. Hence, an adaptive model
predictive control (AMPC) is proposed for a DAB converter in this work. The topology
adopted in this work is shown in Figure 2 and operates with an active neutral point
clamped (ANPC) converter on the high-voltage side and a H-bridge on the low-voltage
side. In this work, it is referred to as ANPC-DAB. Its performance is evaluated through a
8 kW prototype.
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1.1. Literature Review
1.1.1. DAB Converter Topology

The H-bridge two-level DAB is the most commonly used topology for Stage 2 of an
SST. Despite the many advantages of this structure, it is unable to deal with high power
and high voltage, being limited by semiconductor technology.

The main solution to this difficulty is the series and parallel connection of the con-
verters; however, additional challenges arise in equalizing voltages and sharing currents.
Another alternative is the cascade connection of multiple DAB converters, which increases
the number of power switches and the complexity of the control scheme. Hence, the
utilization of multilevel structures seems to be the best solution. Many multilevel structures
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have been widely used with success. Various three-level (3L) topologies have been applied
to the DAB converter: flying capacitor, neutral point clamped (NPC), and ANPC [4].

The NPC topology is still widely employed in the industrial sector, notably for operat-
ing medium-voltage electric motors [5]. However, the 3L-NPC has some limitations that
affect its performance. Some of the switches must withstand higher voltages than others [6],
and the power loss in each semiconductor is highly unbalanced [6].

The ANPC converter was proposed to overcome these problems by replacing the
clamping diodes with active switches generating redundant switching stages [7]. These
redundant stages are used to equalize the voltage and reduce unbalanced losses in each
switch, increasing the power-processing capacity of the converter.

1.1.2. Modulation Techniques for Loss Reduction

Traditionally, the single-phase shift (SPS) modulation is used in DAB converters. The
main advantage of this strategy is that it allows for zero voltage switching (ZVS) over a
wide operating range [8]. However, when the relationship between the input and output
voltage is far from unity, especially under small loads, these soft-switching techniques
are not possible. Additionally, the converter experiences significant backflow-power in
this scenario, leading to high circulating currents and increased stress on the switches and
conduction losses. In conclusion, the SPS modulation may not ensure high efficiency of the
DAB converter over its entire operating range.

A previous work has shown the improvements obtained through the utilization of
trapezoidal and triangular modulation techniques [9,10]. These techniques can naturally
extend the DAB’s soft-switching operation and consist of the utilization of pulse widths
different from 50% [11]. Their proper application can increase the number of soft commuta-
tions to four (for trapezoidal modulation) or six (for triangular modulation) out of a total of
eight in a cycle, even during operation with reduced loads.

In the AC-DC conversion literature, various balancing control strategies have been
proposed to optimize the loss distribution of the ANPC circuit [7,12,13]. The voltage
synthesized by the rectifier takes on VDC (P) or zero (Z) during the positive cycle of the
electrical grid, resulting in P ↔ Z type commutations for half of the grid period. During
the negative cycle of the electrical grid, the voltage synthesized by the rectifier takes on
−VDC (N) or zero (Z), resulting in N ↔ Z type commutations for the other half of the grid
period. However, in the case of the DAB converter, the ANPC bridge losses distribution
is carried out at each sampling time, with P ↔ Z ↔ N switches occurring within each
sampling period. As a result, all six switches are used within each switching period of the
DAB converter.

The literature includes studies on ANPC-DAB switching for loss distribution among
the converter switches. Some states involving the transition between the current path
through the clamping diode and through the active switch of the converter are presented
in [4]. In [14], a modulation is proposed to minimize the number of switching actions,
realizing the ZVS turn-ON for all switches and avoiding hard switching turn-OFF in specific
switches. In [15], the electromagnetic interference (EMI) caused by zero voltage switching
in the ANPC-DAB converter was evaluated.

1.2. Contributions

The literature review revealed that work on DAB converters can be divided into
two groups. The first group involves the development of modulation strategies to enhance
the efficiency of the power converter, while the second group deals with novel control
techniques to improve the transient and steady-state response. In this paper, both goals are
pursued simultaneously through a novel scheme pf control and modulation.

The control proposal was developed to manage the DAB converter and is based on
model predictive control (MPC), which incorporates a variable phase-shift adjustment
depending on the error between the desired value and the measured variable. However,
it has been enhanced for AMPC control. In this new configuration, the control is capable
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of selecting operation modes (trapezoidal and triangular) in order to minimize losses and
thus enhance converter efficiency. The proposed AMPC is applied to an ANPC-DAB, and
the results are validated through an experimental setup.

Going beyond previously published work found in the literature, this analysis includes
the following: the utilization of a realistic switching frequency (20 kHz); a compensation
scheme for the AMPC delay; tests with load disturbance rejection; an improved cost
function that considers capacitor discharge; and a quantitative study of the influence of
parameter variation.

1.3. Paper Organization

The paper is organized as follows: Section 2 presents the mathematical modeling of
the SPS and the triangular and trapezoidal modulations. The proposed control scheme
is detailed in Section 3. Section 4 shows the results of the computational simulation. The
experimental results are shown and discussed in Section 5. Finally, Section 6 shows the
conclusions of this work.

2. ANPC-DAB Topology and Modulations

The DAB converter is formed by two active bridges connected through a high-
frequency transformer. In this study, an ANPC converter is used on the high-voltage
side, operating as an inverter. There is an H-bridge on the low-voltage side, operating as a
rectifier. Together, they form the ANPC-DAB topology, as shown in Figure 2a.

Figure 2b shows a generic representation of the three-level voltages vAC1 and vAC2
synthesized by the active bridges using a centralized PWM. The dashed line represents the
voltage generated by SPS modulation. The phase shift δ and inner phase shift τ1 and τ2 are
defined in Equation (1): 

−90◦ < δ < 90◦

0 < τ1 < 180◦

0 < τ2 < 180◦
(1)

One of the fundamental characteristics of the DAB converter is its ability to operate
with ZVS in a large part of its operating range when operating in SPS modulation [8,16],
and this ability can be extended to the entire operating range when using modulations with
greater degrees of freedom [17,18].

The ZVS conditions of the ANPC-DAB are consistent with the ZVS conditions of a dual
H-bridge DAB [4,14]. Thus, when they use the same phase-angle shift modulation method,
the ANPC-DAB, DNPC-DAB, and H-bridge DAB circuits have the same phase-shift ranges
for the ZVS of all switches [19].

The next section analyzes the switching used in the ANPC-DAB converter. Section 2.2
contains an analysis of the operating points at which the ZVS occurs in the SPS modu-
lation. Section 2.3 contains an analysis of the ZVS involving triangular and trapezoidal
modulations, the basis of AMPC.

2.1. ANPC-DAB State Switching

The 3L-ANPC topology has one active switch connected in parallel with each clamp
diode. These two switches allow the AC terminal to be connected to the midpoint DC
link (neutral point) in more than one switching state. The four resultant zero states are
presented in Table 1 and described as ZOH1, ZOH2, ZOL1, and ZOL2. This configuration
allows for a more even distribution of switch losses in the converter, increasing its energy-
processing capacity.
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Table 1. Switching sequences of the 3L-ANPC converter.

AC Side Switching State
Switch Sequence

S1 S2 S3 S4 S5 S6

VDC1 P 1 1 0 0 0 1
0 ZOH1 0 1 0 1 1 0
0 ZOH2 0 1 0 0 1 0
0 ZOL1 1 0 1 0 0 1
0 ZOL2 0 0 1 0 0 1

−VDC2 N 0 0 1 1 1 0

The switching scheme used in this work is shown in Figure 3. The vAC1 and vAC2
voltage synthesized and the trigger pulses on the switches for both sides of converter are
own, highlighting the positive cycle in red and the negative cycle in blue.
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2.2. SPS Modulation

SPS modulation is the main modulation used by the ANPC-DAB converter. The only
control variable is the phase shift, that is, τ1 = τ2 = 180◦. In this work, the voltages on
the ANPC-DAB input capacitors will be the same, that is, V1 = V2 = VDC1. The power
transferred using SPS modulation, for a given operating point, is shown in (2).

PSPS =
4·n·VDC1·VDC2·sinδ

π3· fsw·L
(2)

where L is power transfer inductance; n is the transformer ratio (n = N1/N2); fsw is the
switching frequency of the converter; and VDC1 and VDC2 are the input and output voltage
on capacitors, respectively.
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The power boundaries for the ZVS actuation of the primary and secondary active
bridges are presented in (3). If the DAB’s power is above PZVS2 or below PZVS1, the DAB
converter cannot operate with ZVS [20]. PZVS1 =

(
VDC1

2·δ
2·π· fsw ·L·Φ

)
·
(

π−|δ|
π−2·|δ|

)
PZVS2 =

(
VDC1

2· δ
2·π· fsw ·L·Φ

)
·
(

π−|δ|
π

)
·
(

π−2·|δ|
π

) (3)

where Φ is the rated phase shift.
The DAB transformation ratio d is defined in (4). When d = 1, the DAB operates in

ZVS over the whole power range. When d > 1, the primary bridge operates with hard
switching. When d < 1, the secondary bridge operates with hard switching.

d =
N1·VDC2

N2·VDC1
(4)

Figure 4 shows the DAB power curve as a function of various values of d to highlight
the ZVS region. The solid blue and red lines indicate the power limits within which the
primary and secondary bridges, respectively, can operate in soft switching. The solid black
line represents d = 1, where the converter operates in soft switching. The dashed lines
show the operating points for d ̸= 1. For this analysis, we assumed that Φ = 45◦.
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These curves show that small phase shifts and significant deviations from unity in the
DAB transformation ratio make it difficult to operate the converter in ZVS and decrease its
efficiency at those points. Thus, SPS modulation is insufficient to ensure high-efficiency
operation of the DAB converter over its entire operational range.

2.3. Triangular and Trapezoidal Modulation

An alternative method by which to extend soft switching to regions where SPS modu-
lation does not allow ZVS operation is to apply triangular and trapezoidal modulation.

Triangular modulation has the advantage of allowing soft switching on six transitions,
for a total of eight switchings. However, it cannot be used over the entire operating range
of the converter because its power transmission capacity is limited, and it is possible to
transfer power only when d ̸= 1.

When d < 1, the phase shift δ and inner phase shift τ1 and τ2 are calculated so that
the current in the inductor IL is zero when there are simultaneous changes of state: Z → P
in the primary and secondary bridge and P → Z in the secondary bridge. When d > 1,
the phase shift δ and inner phase shift τ1 and τ2 are calculated so that the current in the
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inductor IL is zero when there are simultaneous changes of state: Z → P in the primary
bridge and P → Z in the primary and secondary bridges. In the negative half-cycle, the
procedure is repeated, replacing P with N. Figure 5 shows the waveforms of the voltages
vAC1 and n·vAC2 on the active bridges and the inductor current IL.
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The values of the inner phase shift τ1 and τ2 for the triangular modulation are calcu-
lated from the voltages and phase shift. When d < 1, the calculation is done as shown in
(5). When d > 1, the calculation is done as shown in (6).τ1 = 2·δ·

(
n·VDC2

VDC1−n·VDC2

)
τ2 = 2·δ·

(
VDC1

VDC1−n·VDC2

) (5)

τ1 = 2·δ·
(

n·VDC2
n·VDC2−VDC1

)
τ2 = 2·δ·

(
VDC1

n·VDC2−VDC1

) (6)

When triangular modulation cannot supply the necessary power for a given operating
point, trapezoidal modulation is used. Trapezoidal modulation is an extension of triangle
modulation, which ensures smooth transition between modulations [11]. In addition, soft
switching occurs in four out of the eight switchings per cycle. Moreover, this modulation is
possible for any value of d. Figure 6 shows the waveforms of the voltages vAC1 and n·vAC2
on the active bridges and the inductor current IL for the trapezoidal modulation.
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The values of the inner phase shift τ1 and τ2 for the trapezoidal modulation are
calculated from the voltages and phase shift, as shown in (7).τ1 = 2·(π − δ)·

(
n·VDC2

n·VDC2+VDC1

)
τ2 = 2·(π − δ)·

(
VDC1

n·VDC2+VDC1

) (7)
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The natural transition between triangular and trapezoidal modulations is shown in
Figure 7a, where the power transferred by the converter is plotted as a function of the
phase shift, τ1 and τ2. Figure 7b shows the values of τ1 and τ2 as a function of δ.
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3. Proposed Adaptive Model Predictive Control (AMPC)

In power electronics, contemporary control methods are frequently employed. MPC is
one notable example.

Control methodologies that aim to reduce switching losses in the converter usually
require complex algorithms to define the three control variables (δ, τ1 and τ2) to achieve
the desired output voltage. In a deviation from these methods, the AMPC control uses
triangular and trapezoidal modulations to reduce switching losses in the converter. The
control defines the modulation to be used according to the converter operating point. The
great advantage of this strategy is that there is no need for complex algorithms to define the
optimal operating point. In addition, the power transfer in the converter happens smoothly
and continuously during switching between triangular and trapezoidal modulations.

3.1. Mathematical Modeling

The power transferred by the converter depends on the voltages synthesized by the
active bridges. In general, phase shift δ and inner phase shift, represented by τ1 and τ2,
may be present in the pulses generated by bridges. In this case, either the phase shift or
the variation in the inner phase shift may be used to regulate the power flow between the
bridges. In this work, the voltages synthesized by the active bridges vAC1 and vAC2 were
generated through a centralized PWM, as depicted in Figure 2b.

The average value of ANPC-DAB output current IDC2 is obtained from phasor theory
and is calculated as in (8).

⟨IDC2⟩Ts
=

4.n.VDC1·sin τ1
2 ·sin τ2

2 ·sinδ

π3· fsw·L
(8)

where Ts is sample time and fsw = 1/Ts is the switching frequency.
The average output capacitor quasi-instantaneous voltage is calculated as in (9).

C2
d⟨VDC2⟩Ts

dt
= ⟨IDC2⟩Ts

− ⟨I0⟩Ts
(9)

where I0 and C2 are the measure output load current and the output capacitance of ANPC-
DAB converter, respectively.
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The discretization of (9), using the Euler method, defines the predicted voltage
output (10).

VDC2(k + 1) = VDC2(k) +
IDC2 − I0(k)

C2· fsw
(10)

where I0(k) and VDC2(k) are measured at time k and IDC2 is the defined current output
derived from (8).

At instant (k + 1), there will be a synthesized voltage due to the state of the switches
defined by the control at instant k. Between instants k and (k + 1), the calculation will
estimate the voltages for the next cycle, i.e., at time (k + 2). Therefore, this calculation must
be done using the state voltage at time (k + 1), when the control will decide the new state
of the switches. To this end, a delay compensation is determined by calculating the voltage
that will be synthesized at time (k + 1) so that all possible predictions for instant (k + 2)
can be analyzed. Thus, it is necessary to calculate references for two time steps because
predicting variables for only one time step is insufficient to account for the processing delay
of signals.

Assuming that a sampling period’s load current does not change significantly, i.e.,
I0(k) = I0(k + 1), the N possible output voltages at time (k + 2) are obtained from N
output current possibilities IN

DC2, as shown in (11).

VN
DC2(k + 2) = VDC2(k + 1) +

IN
DC2 − I0(k)

C2· fsw
(11)

3.2. Definition of Phase Shift and Inner Phase Shift

In this work, the main objective of the AMPC strategy is to control the output voltage
VDC2 ensuring the lowest losses in the active bridges.

The first step is to define the value of the phase shift. The procedure consists of
discretizing the entire operating range of the DAB converter into three phase-shift options,
where one must be selected. The phase shift adopted is a compromise between the controller
precision and the system transient response. These three phase-shift options are set based
on the last angle taken by the control, as shown in (12).

δN =
[(

δold − δstep
)
; δold;

(
δold + δstep

)]
(12)

where δold is the phase shift applied at the previous instant and δstep is dynamically evalu-
ated according to (13), the result of which determines whether to increase or decrease the
transferred power [21].

δstep = δmin·
(

1 + α·Vadp

)
(13)

where

Vadp =

{
|V∗ − VDC2|; i f |V∗ − VDC2| ≤ Vm

Vm; i f |V∗ − VDC2| > Vm
(14)

where V∗ is the value the control will track, α is a gain, the lowest phase-shift angle is δmin
and the greatest value for Vadp is Vm.

The dynamic choice of the δstep value ensures that when the controlled variable’s error
is high, the response is accelerated by using the larger phase shift. On the other hand, small
angles are used to increase precision when the error is small. The advantages of utilizing
this adaptive technique include a low computational burden.

The next step is to define the modulation, i.e., the values of τ1 and τ2. The control
system will verify whether it is possible to operate with triangular modulation at the
current operating point of the DAB converter, considering that this modulation promotes
six soft switchings of eight commutations in one cycle. The maximum power transferred by
triangular modulation occurs when the value of τ1 reaches 180◦. If it is not possible to trans-
fer the required power to the DAB converter through triangular modulation, trapezoidal
modulation is used instead. Trapezoidal modulation can transfer more power than triangu-
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lar modulation, but in each cycle (eight commutations), there are four soft-switching events.
The values of the inner phase shift will be calculated for each value of δN , generating the
sets τN

1 and τN
2 .

The modulation and inner phase-shift selection algorithm are shown in Figure 8.
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3.3. Loop Compensation and Cost Function

Normally, the application of predictive control requires additional techniques to
compensate for prediction errors in the controlled variables. One way to reduce these errors
is to improve the mathematical model used in the control [22,23]. However, this solution
increases the computational burden because it uses high-order models. Another method
involves feedback compensation. This method has been used in several works [24–27]. In
this work, the error compensation V∗ is shown in (15). The difference between the desired
and measured values of the DAB converter output voltage is added to the desired value,
resulting in a compensated reference value that reduces the steady-state inaccuracy [28].

V∗ = Vre f +
(

Vre f − VDC2

)
(15)

where Vre f is the desired voltage.
Finally, the optimal phase shift and its inner phase shift are defined by the smallest

value of the cost function through the comparison between the desired value and the
N = 3 values predicted by the AMPC. The cost function G is defined in (16).

G = α1·G1 + α2·G2 (16){
G1 =

(
V∗ − VN

DC2(k + 2)
)2

G2 =
(

IN
DC2 − I0

)2 (17)

where α1 and α2 are the voltage and current gains, V∗ is the compensate reference, VN
DC2 is

the N = 3 possibilities of output voltage value predicted, IN
DC2 is the N = 3 possibilities of

output current value predicted, and I0 is the measure output current.
The first term, G1, is responsible for regulating the voltage. When the output voltage

is far from the target value, this term becomes dominant. As the voltage approaches the
reference value, the second term, G2, assumes a dominant role, preventing resonance in
the output voltage. This oscillation occurs when the control variable (δ, τ1 and τ2) deviates
from the desired operating point. The adjustment of α1 and α2 is carried out similarly to
the adjustment presented in [29] and is defined as α1 = 1 and α2 = 2.

In addition, a penalty is imposed on the cost function if the voltage on the input
capacitors drops below 80% of the nominal value. This penalty prevents the control from
selecting the δold and

(
δold + δstep

)
phase shift presented in (12), ensuring that the converter

is able to operate without drastic reduction in the voltage on the input capacitors and
preventing the MOSFET’s trigger driver protection from activating due to control action.
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3.4. Flow Chart of AMPC

Figure 9 shows an overview of the AMPC for output voltage, where δopt is the optimal
phase shift and τ1

(
δopt

)
and τ2

(
δopt

)
are the inner phase shifts calculated as functions of δopt.

The ANPC-DAB converter switches are triggered by the modulation control block based
on the phase shift and inner phase shift delivered by the cost function. The construction of
the modulation control block is described in detail in [10].
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The flow chart of the proposed AMPC is presented in Figure 10, which illustrates the
calculation of AMPC from control period k to (k + 1).
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The process starts by reading the sensors and saving the optimal phase shift applied
at instant k. The next step is to apply the compensation delay. Next, the δstep is calculated
and the three phase shifts contained in δN are defined. Once δN is defined, the values of τN

1
and τN

2 are calculated to define the modulation for each phase shift. The output voltage is
then predicted for N = 3 possibilities. The next step is to apply the reference compensation
and calculate the cost function for N = 3 possibilities. If the voltage on the ANPC input ca-
pacitors is below 80% of the Vin/2 value, the value of δopt is adjusted to δopt =

(
δold − δstep

)
with their respective τ1

(
δopt

)
and τ2

(
δopt

)
, causing the power transmitted by the DAB to

be reduced. Otherwise, δopt is adjusted so that the cost function is minimized with their
respective τ1

(
δopt

)
and τ2

(
δopt

)
.

4. Performance Analysis

This section details a performance analysis of the proposed AMPC control. Real-time
simulation results using OPAL OP5700 were used to evaluate the proposed control. The
specifications of the ANPC-DAB converter under evaluation are listed in Table 2.

Table 2. DAB converter parameters.

Variable Symbol Value

Switch Frequency fsw 20 kHz
Voltage Input DAB VIN 800 V

Voltage Output DAB VDC2 400 V
Rated Phase Shift Φ 45◦

Rated Power Transformer S 15 kVA
HFT Transformer Ratio n = N1/N2 1.2

Leakage Inductor L 32 H
Input Capacitor C1 = C2 120 F

Output Capacitor C3 160 F
Lowest Phase-Shift Angle δmin 0.05◦

Gain α 1 rad/V
Maximum Value for Vadp Vm 10 V

The ANPC-DAB converter may be affected by power-supply noise and load distur-
bances in real-world scenarios. Therefore, this section examines the load disturbance
rejection (LDR) and source voltage disturbance rejection (SVDR), which assess the perfor-
mance of the AMPC control in real-world conditions.

Another common situation in the real world involves variation in the converter pa-
rameters due to temperature. Consequently, this section evaluates the AMPC’s response to
variations in the inductance and capacitance of the ANPC-DAB converter. Additionally, it
examines the significance of item G2 in the cost function.

The real-time simulation data were plotted using a graphical tool for better presenta-
tion. The original values were preserved, and no manipulations were carried out.

4.1. Source Voltage Disturbance Rejection (SVDR)

Figure 11 illustrates the circuit used in the simulation to assess the SVDR. The input
voltage of the ANPC-DAB converter was decomposed into a DC component (VDC) and an
AC component (vAC). The DC component represents the nominal input voltage, while vAC
simulates source voltage disturbances. The experiment involved introducing a sinusoidal
voltage with a peak value of 80 V in series with a DC source set at 800 V.
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Figure 11. Real-time simulation to evaluate SVDR.

SVDR analysis involves Equation (18), where the output voltage VDC2 is measured for
each injected frequency.

Gsvdr = 20·log
vout_peak( f )

vAC( f )
(18)

where vout_peak( f ) is the ripple value of VDC2 at frequency f and vAC( f ) = 80 V for all
analyzed frequencies. Figure 12 shows the frequency response for SVDR analysis.
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Figure 12. AMPC frequency response: SVRD analysis.

The AMPC control demonstrates exceptional performance in rejecting source distur-
bances. In the low-frequency band, the AMPC has a lower Gsvdr amplitude, with a value of
−80 dB at 10 Hz. The most significant degradation occurs at 200 Hz, with a higher Gsvdr
value of −13 dB.

4.2. Load Disturbance Rejection (LDR)

When the DAB converter is applied in an SST, it can power a variety of switched loads,
such as three-phase inverters, electric vehicle charging stations, and other direct current
loads. Therefore, it is important to analyze the LDR of the ANPC-DAB converter. The
metric used in this study was the output impedance analysis.

To illustrate this point, the converter was represented by a Vout source connected in
series with the Zout output impedance, as depicted in Figure 13.



Energies 2024, 17, 12 14 of 25

Energies 2024, 16, x FOR PEER REVIEW 14 of 25 
 

 

 

Figure 12. AMPC frequency response: SVRD analysis. 

The AMPC control demonstrates exceptional performance in rejecting source dis-

turbances. In the low-frequency band, the AMPC has a lower 𝐺𝑠𝑣𝑑𝑟  amplitude, with a 

value of -80 dB at 10 Hz. The most significant degradation occurs at 200 Hz, with a higher 

𝐺𝑠𝑣𝑑𝑟  value of −13 dB. 

4.2. Load Disturbance Rejection (LDR) 

When the DAB converter is applied in an SST, it can power a variety of switched 

loads, such as three-phase inverters, electric vehicle charging stations, and other direct 

current loads. Therefore, it is important to analyze the LDR of the ANPC-DAB converter. 

The metric used in this study was the output impedance analysis. 

To illustrate this point, the converter was represented by a 𝑉𝑜𝑢𝑡 source connected in 

series with the 𝑍𝑜𝑢𝑡 output impedance, as depicted in Figure 13. 

ANCP-DAB

+
-
VOUT

VDC2

iout
f=1/T

iACIDC2

ZOUT

iout

IDC2

imax

imin

iAC

 

Figure 13. Real-time simulation to evaluate LDR. 

During the analysis, the 𝐼𝐷𝐶2 current was set to 8 𝐴 and the current 𝑖𝐴𝐶  was added 

as a disturbance to simulate the load disturbance. The 𝑖𝐴𝐶  value was chosen to induce a 

change of modulation. The output impedance was then calculated using Equation (19). 

𝑍𝑜𝑢𝑡 =
𝑣𝑜𝑢𝑡_𝑝𝑒𝑎𝑘(𝑓) 

𝑖𝐴𝐶(𝑓)
 (19) 

where 𝑣𝑜𝑢𝑡_𝑝𝑒𝑎𝑘 is the ripple value of 𝑉𝐷𝐶2 at frequency f and 𝑖𝐴𝐶(𝑓) = 7 √2⁄ 𝐴 for all an-

alyzed frequencies. Figure 14 shows the frequency response for LDR analysis. 

Figure 13. Real-time simulation to evaluate LDR.

During the analysis, the IDC2 current was set to 8 A and the current iAC was added
as a disturbance to simulate the load disturbance. The iAC value was chosen to induce a
change of modulation. The output impedance was then calculated using Equation (19).

Zout =
vout_peak( f )

iAC( f )
(19)

where vout_peak is the ripple value of VDC2 at frequency f and iAC( f ) = 7/
√

2A for all
analyzed frequencies. Figure 14 shows the frequency response for LDR analysis.
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Figure 14. AMPC Frequency Response: Real-time simulation results of LDR analysis of the ANPC-
DAB converter.

The AMPC control exhibits excellent performance in load disturbance rejection. The
output impedance (Zout) increases from −100 dB to −20 dB in the frequency range of 10 Hz
to 200 Hz.

4.3. Variations of Circuit Parameters

This section evaluates the robustness of the AMPC algorithm against variations in
the ANPC-DAB converter parameters. The analysis is particularly significant because
the converter parameters can change in real-world scenarios [7]. For this experiment, the
voltage VDC2 was varied from 380 V to 400 V, considering a variation of ±50% in the values
of L and C3. Figure 15a,b depicts the behavior of the output voltage in response to changes
in capacitance C3 and inductance L, respectively.
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Figure 15. Behavior of the output voltage for variation parameters (a) inductance, L (b) capaci-
tance, C3.

Upon analysis of Figure 15, it is apparent that variations in capacitance and inductance
have minimal impacts when the circuit is in a steady state. Table 3 presents the primary
quantitative results of the ANPC-DAB converter for all the analyzed scenarios. The mean
absolute error (MAE) of the VDC2 voltages for each scenario is calculated using Equation
(20), where M denotes the total number of collected samples, and y∗k and yk represent the
reference and measured signals, respectively, at instant k.

MAE =
∑M

k=1

∣∣y∗k − yk
∣∣

M
(20)

Table 3. Quantitative analysis of output voltage.

Inductor MAE (VDC2) Capacitor MAE (VDC2)

Lr = 0.5·L 6.10 V (1.52%) Cr = 0.5·C3 6.96 V (1.74%)
Lr = 0.6·L 5.19 V (1.29%) Cr = 0.6·C3 5.75 V (1.44%)
Lr = 0.7·L 4.56 V (1.14%) Cr = 0.7·C3 4.95 V (1.23%)
Lr = 0.8·L 4.05 V (1.01%) Cr = 0.8·C3 4.27 V (1.06%)
Lr = 0.9·L 3.69 V (0.92%) Cr = 0.9·C3 3.80 V (0.95%)
Lr = 0.1·L 3.52 V (0.88%) Cr = 0.1·C3 3.53 V (0.88%)
Lr = 1.1·L 3.57 V (0.89%) Cr = 1.1·C3 3.61 V (0.90%)
Lr = 1.2·L 3.71 V (0.92%) Cr = 1.2·C3 3.78 V (0.94%)
Lr = 1.3·L 3.86 V (0.97%) Cr = 1.3·C3 3.94 V (0.98%)
Lr = 1.4·L 3.99 V (0.99%) Cr = 1.4·C3 4.12 V (1.03%)
Lr = 1.5·L 4.09 V (1.02%) Cr = 1.5·C3 4.25 V (1.06%)

The results show that the control is more robust to inductor variation, yielding an
MAE of 1.52%. For capacitor variations, the MAE was 1.74%.

4.4. Cost-Function Analysis

As mentioned earlier, the term G2 in the cost function is intended to reduce the
resonance at the output voltage VDC2. To demonstrate its effectiveness, the G2 term was
negated by setting α2 = 0 during a real-time simulation, and the measured resonance
frequency in this case was 1 kHz.

Figure 16 shows the impact of the G2 term on the behavior of the output voltage of
the DAB converter, and it is clear that steady-state resonance is attenuated. This resonance
reduction results in a decrease in acoustic noise emitted by the transformer, as well as a
reduction in transformer losses.
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5. Experimental Results

The AMPC control strategy was validated in a downscaled prototype in an ANPC-
DAB converter operating at 8 kW 20 kHz 800 V/400 V. The experimental setup is shown
in Figure 17. The platform consists of the ANPC-DAB converter, control system, load
simulator and DC source.

The ANPC-DAB converter employs isolated voltage sensors, LEM DVC 1000-P (two
for the ANPC input capacitors and one for the output voltage), and a current sensor,
LEM LA 55-P, to monitor the output current. The ANPC and H-bridge were built using
CREE CAS120M12BM2 modules, with three modules for ANPC and two modules for the
H-bridge. Capacitor M119550731 77 G, 10 µF, 1.3 kV, forms one of the input capacitor
banks (two blocks of 12 capacitors—C1 = C2 = 120 µF) and output capacitor banks
(16 capacitors—C3 = 160 µF). The high-frequency transformer (HFT) has a turns ratio of
n = 1.2 and a power of 15 kVA.

The ANPC-DAB output load was simulated using a Cinergia GE&EL-50, a power
electronics device that is capable of simulating both AC and DC electrical networks. In
this study, the device was configured to simulate resistive loads. To power the converter,
two ePower model SPS 15 kW programmable DC sources were used.

The control system is based on the OPAL OP5700-RCP/HIL Virtex7 FPGA-based Real-
Time Simulator, which is equipped with an Intel Xeon E5 processor with 8 cores, 3.2 GHz
frequency, and 20 MB cache. The test bench was developed at Laboratory of Electronic
Engineering Applied to Renewable Energies, University of Alcalá de Henares, Madrid,
Spain. The four analog signals from the DAB sensors are received and processed by OPAL,
which generates the pulses to trigger the MOSFETs. The trigger signal is transmitted over
fiber optics between OPAL and ANPC-DAB.

This study includes steady-state and transient-behavior analysis, as well as assessment
of the computational burden. The steady-state performance of the ANPC-DAB converter
was evaluated in terms of output voltage, AC voltages, inductor current, and global losses.
Global losses were calculated by measuring the input and output power when the converter
operates in steady state.

The transient behavior for d > 1 using AMPC control was analyzed observing the
converter output voltage. In addition, all experiments were performed with traditional
MPC, referred to here as MPC, for comparisons with AMPC.

The goal was to simulate the behavior of the DC-DC stage of an SST in which one side
operates at 800 V and the other at 400 V, with the ANPC-DAB converter stabilizing the
voltage on the 400 V side.
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5.1. Computational Burden

The computation time of the proposed AMPC was measured with OPAL resources.
The AMPC controller takes 9.5 µs to run, while the time to run MPC was 8.7 µs. The AMPC
does not use complex optimization techniques, instead requires almost the same time as
the traditional MPC. When a 20 kHz switching frequency is utilized, 50 µs is available in
a single sampling period. Thus, there is enough time to implement other functionalities,
such as protections, MODBUS communication etc.

5.2. Steady-State Analysis

The steady-state analysis aims to compare the overall performance of the converter
using AMPC to that using MPC. In the first test, the load was set to 7.36 kW. At this point,
the AMPC operates with triangular modulation. Waveforms of vAC1(t), vAC2(t) and IL(t)
using AMPC and MPC are shown in Figures 18a and 18b, respectively.
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Figure 18. Waveforms of vAC1(t), vAC2(t) and IL(t). (a) MPC Control (b) AMPC Control.

The second test load was set to 8.4 kW. At this point, the AMPC operates with
trapezoidal modulation. Waveforms of vAC1(t), vAC2(t) and IL(t) using MPC and AMPC
are shown in Figures 19a and 19b, respectively.
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Qualitatively, Figures 18b and 19b show that the converter operating with the MPC
has hard switching in state changes (P, Z, and N), whereas this change occurs in the
presence of current, dissipating more power in the switches. In contrast, the AMPC control
causes the converter to operate with soft switching, i.e., six soft switchings out of the eight
commutations in one cycle when the control chooses triangular modulation and four soft
switchings out of the eight commutations in one cycle when the control chooses trapezoidal
modulation.

Table 4 presents values of input voltage, output voltage, input current, and output
current for the two operating points mentioned above with MPC and AMPC control.

Table 4. Global losses in ANPC-DAB for AMPC and MPC control.

MPC AMPC

Load = 7.36 kW

VIN = 800.8 V VIN = 800.6 V
IIN = 9.75 A IIN = 9.53 A

VDC2 = 396.3 V VDC2 = 394.5 V
IDC2 = 18.23 A IDC2 = 18.13 A

η = 92.53% η = 93.77%

Load = 8.4 kW

VIN = 800.6 V VIN = 800.5 V
IIN = 11.02 A IIN = 10.83 A

VDC2 = 396.2 V VDC2 = 394.8 V
IDC2 = 20.8 A IDC2 = 20.71 A

η = 93.37% η = 94.33%

The proposed AMPC control demonstrated accurate response, with less than 1.4% er-
ror on the output voltage mean value. This control increased the converter’s global effi-
ciency without changing the hardware or increasing computational efforts. In microgrid
applications, where the SST operates at low loads for extended periods, high efficiency is
essential. The AMPC control strategy can save approximately 600 kWh of energy in one
year of operation (8.4 kW, 18 h of low load per day), equivalent to the monthly consumption
of three houses with a 200 kWh usage, simply through use of the AMPC control.

5.3. Transient Analysis

The transient behavior of the AMPC control was analyzed for load and voltage step on
the converter. The MPC control was subjected to the same analyses for comparison purposes.

In the first experiment, the load was changed from 7.36 kW to 8.40 kW to evaluate
the response of the AMPC to a modulation change, which is a critical situation. In order
to visualize the chosen modulation on the scope within other DAB variables, an analog
output was used, where 3 V indicates triangular modulation, 4 V indicates trapezoidal
modulation, and 5 V indicates SPS modulation (used in MPC).

Figures 20 and 21 show the behavior of the output voltage for AMPC and the MPC
controls, respectively, where the purple, blue, and yellow lines are the VDC2 voltage, the
IDC2 current, and the modulation used by the control, respectively.

The AMPC control can keep the output voltage stable and choose between triangular
and trapezoidal modulations according to the operating point, ensuring better converter
efficiency. The response time was less than 282 ms with an overshoot of less than 6.86%.
Comparing traditional MPC with AMPC, the differences in transient behavior are small.
The summarized results of the experiment are shown in Table 5.

In the second experiment, the Vre f voltage was changed from 380 V to 400 V.
Figures 22 and 23 show the behavior of the AMPC and the MPC controls, respectively,
where the purple, blue, yellow, and red lines are the VDC2 voltage, the IDC2 current, the
modulation used by the control, and the desired value for the output voltage Vre f , respectively.
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Table 5. Load-step results: comparison of AMPC × MPC.

Transition AMPC
Settling Time

MPC
Settling Time

AMPC
Overshoot

MPC
Overshoot

7.36 kW → 8.40 kW 214 ms 182 ms (400−387.5)
400 = 3.1% (400−366.5)

400 = 8.4%

8.40 kW → 7.36 kW 282 ms 242 ms (400−429.5)
400 = −7.4% (400−423.5)

400 = −5.9%
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In this scenario, the AMPC strategy dynamically changes the phase shift and inner
phase shift in order to charge the output capacitor so that the VDC2 voltage reach the new
requested reference value.

AMPC and MPC showed similar performance. However, in the transition
Vre f = 400V → 380V, there was no undervoltage and the settling time was much shorter
than in the MPC. The summarized results of the experiment are shown in Table 6.

Table 6. Voltage step results: comparison of AMPC and MPC.

Transition AMPC
Settling Time

MPC
Settling Time

AMPC
Overshoot

MPC
Overshoot

380 V → 400 V 190 ms 178 ms (400−425)
400 = −6.3% (400−440)

400 = −10%

400 V → 380 V 16 ms 358 ms (380−380)
380 = 0.00% (380−346)

380 = 8.95%

Unlike a simulated environment, the converter’s transient power transfer is limited,
which delays the response time in relation to other topologies. The insertion of the penalty
in the cost function prevents the ANPC input capacitor from discharging to levels that
cause the MOSFET’s protection trigger drivers to activate.
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6. Discussion

The DAB converter has many advantages for use in SSTs, including galvanic isolation,
bidirectional power flow, high power density, and the ability to operate as a buck or boost
with ZVS over a wide range. However, low loads and high voltages can pose challenges to
its efficiency and operation capacity. To address this difficulty, multilevel topologies such
as the ANPC-DAB can be used. In this topology, ANPC is applied on the high-voltage
side and an H-bridge is used on the low-voltage side. Experiments were conducted on an
8 kW 20 kHz 800 V/400 V prototype.

The traditional control method used in the DAB converter controls only the phase shift,
limiting its efficiency at low loads. To improve efficiency at low loads, different modulations
can be used to enable soft switching throughout the operating range. However, these
solutions require the selection of voltage values for the converter’s active bridges, which
involves complex optimization methods that can increase computational costs and hinder
practical application.

MPC is an advanced technique used in many electrical systems. Unlike conventional
control, it predicts the system’s future behavior using mathematical modeling and calculates
an optimal control signal to maintain the desired output. To enhance efficiency at low
loads, AMPC control, which employs triangular and trapezoidal modulations, is used. The
natural transition between these modulations results in a gradual change in the inductor’s
current waveform from triangular to trapezoidal or vice versa. This method is used to
obtain the highest efficiency when the DAB converter operates at low loads.

Real-time simulation was used to evaluate the frequency response and robustness of
the AMPC applied to the ANPC-DAB topology. The converter attenuates voltage-source
noise by −80 dB at low frequencies, with the worst case at 200 Hz, at which it attenuates
the disturbance by −13 dB. Additionally, AMPC offers low output impedance, allowing
for high-intensity output current without significant voltage drops, which is essential for
maintaining output current stability in applications with load variations.
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Robustness tests were conducted by varying the power transfer inductance and output
capacitance. There are several approaches to designing predictive controllers that are robust
to converter parameter variations. In this work, the reference is adjusted to ensure lower
error when the converter operates in steady state. Mean absolute error (MAE) values of
1.54% and 1.74% were obtained for a 50% variation in the nominal values for the inductor
and capacitor, respectively.

The impact of the G2 term in the cost function on the output voltage was demonstrated.
When α2 = 0, a resonance occurs in the output voltage, even in steady state. Resonance can
cause system instability, low performance, electrical noise, and electromagnetic interference,
which can affect nearby electronic systems. Therefore, the importance of the G2 term in
reducing oscillations in the system is evident.

Experimental results from the prototype indicate a significant improvement in con-
verter efficiency with the AMPC control, achieving 94.33% at 8.4 kW and 93.77% at 7.36 kW
in steady state, compared to 93.37% and 92.53%, respectively, with the MPC. While the
dynamic response of the AMPC control did not differ significantly from that of the MPC,
the MPC was faster and the AMPC showed smaller overshoots in most of the tests.

Finally, an important advantage of AMPC is that it eliminates the need for complex
optimization processes to choose the phase shift and inner phase shift, while also avoiding
the need for intense computational efforts. This study shows that the processing time
difference between MPC and AMPC is only 0.7 µs.

For future work, the control methodology discussed in this study can be applied to
input series output parallel (ISOP) structures to verify the energy efficiency of the structure
and evaluate the control behavior for transient situations and steady-state operation.

7. Conclusions

The present article proposes the application of the advanced AMPC control technique
in the ANPC-DAB topology. This topology enables the converter to operate at high voltages,
providing an alternative to ISOP structures, which operate in series and parallel.

Several real-time simulated analyses have shown that the AMPC control has high
capacity for voltage-source noise rejection and exhibits low output impedance. Additionally,
dynamic reference adjustment has improved the control’s robustness to variations in
converter parameters.

The experimental results from the prototype showed excellent dynamic and steady-
state performance. The AMPC exhibited dynamic response similar to that of the MPC.
However, in steady state, the efficiency of the converter was significantly improved with use
of the AMPC, reaching 94.33% at 8.4 kW and 93.77% at 7.36 kW in steady state, compared
to 93.37% and 92.53%, respectively, without the AMPC. Additionally, the control achieved
error rates below 1.4% in relation to the desired value.

Despite the benefits of using AMPC, the computational cost was not significantly
increased compared to MPC. The processing time was measured using OPAL resources,
which showed that the MPC processing time was 8.7 µs, while that of the AMPC was 9.5 µs.
Considering that the processor has 50 µs available (T = 1/20 kHz), applying AMPC leaves
enough time for other applications, such as protections and data communication.
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