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Abstract: To realize the low-carbon operation of integrated energy systems (IESs), this paper proposes
a low-carbon optimal scheduling method. First of all, considering the integrated demand response
of price-based electricity and heating, an economic scheduling model of the IES integrated demand
response based on chance-constrained programming is proposed to minimize the integrated operating
cost in an uncertain environment. Through the comprehensive demand response model, the impact
of the demand response ratio on the operating economy of the IES is explored. Afterward, the carbon
emission index is introduced, and gas turbines and energy storage devices are used as the actuators
of multi-energy coupling to further explore the potential interactions between the coupling capacities
of various heterogeneous energy sources and carbon emissions. Finally, the original uncertainty
model is transformed into a mixed-integer linear-programming model and solved using sequence
operation theory and the linearization method. The results show that the operating economy of the
IES is improved by coordinating the uncertainty of the integrated demand response and renewable
energy. In addition, the tradeoff between the working economy and reliability of the EIS can be
balanced via the setting of an appropriate confidence level for the opportunity constraints.

Keywords: integrated energy system; demand response; opportunity constraint; distributed-energy-
source uncertainties

1. Introduction

To fulfill the goal of Carbon Peak and Carbon Neutrality, traditional power systems
are changing into integrated energy systems (IESs), with a large number of distributed
energy sources (DERs) with uncertainties, such as wind power and photovoltaic (PV)
power generation [1–3]. At the same time, many time-varying loads, like electric vehicles
(EVs), also introduce uncertainties into the IES and bring new challenges to its optimal
scheduling [4–6]. As a supply and marketing system, the IES can couple different energy
structures, including electricity distribution systems, gas networks and heating systems.
The establishment of an IES in an uncertain environment is crucial to the realization of
China’s low-carbon commitment. Therefore, the optimal scheduling of the IES has attracted
the broad interest of many researchers and has become a research hotspot [7–9].

Currently, many studies report on dealing with the multi-uncertainties of the IES.
The problem is that some DERs, like wind and solar energy, are intermittent and have
intrinsic uncertainty, which may threaten the safe operation of the network. To overcome
this deficiency, an economic operation strategy for a hydrogen-centric IES, which considers

Energies 2024, 17, 245. https://doi.org/10.3390/en17010245 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17010245
https://doi.org/10.3390/en17010245
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-9379-1224
https://doi.org/10.3390/en17010245
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17010245?type=check_update&version=1


Energies 2024, 17, 245 2 of 20

the uncertainty of the PV output, is proposed in [10]. In [11], a segmentation method is
proposed to model the power output and load demand of the DERs to ensure system
safety. To further reveal the impact of the PV intermittence on the IES, a risk-aware
energy-scheduling and stochastic optimization method has been proposed by Liu et al. [12].
In [13], a method combining machine learning and distributed robust optimization (DRO)
is proposed, which can obtain stable decision solutions in terms of uncertainty assumptions.
Actually, for IESs, the greatest challenge lies in balancing the uncertainties in both the
source and load sides efficiently and economically. Therefore, optimal scheduling models
or strategies optimized with robust methods are proposed [14–16]. To solve the problem of
the insufficient operational flexibility of the IES, a robust stochastic optimization model
of the IES with advanced adiabatic compressed-air energy storage is proposed in [17],
and a data-driven stochastic collaborative optimization model for a power–gas IES was
developed by Zheng et al. in [16]. In addition, to minimize the overall energy consumption
cost, Zhao et al. [18] propose a stochastic scheduling expectation model, while Cui et al. [19]
establish a multi-objective optimal scheduling model under multi-uncertainties.

With the development and expansion of the energy market, the comprehensive de-
mand response and carbon trading have become hot topics. To achieve the low-carbon and
economic operation of the IES and thereby improve the optimization management level, a
multi-time-scale, low-carbon, optimal operation strategy considering the DRO of electricity,
gas, heat and hydrogen and the stepped carbon emission charging mechanism are proposed
in [20]. Moreover, an accurate model of typical controllable loads and an uncertainty model
for the response of transferable and replaceable loads are also introduced in [21–23].

According to the temperature perception fuzziness of heat users and the thermal inertia
of heating buildings, an adjustable heat load response model considering the uncertainty
of the light intensity has been established, and an optimal scheduling strategy based on
comprehensive DRO has been developed [24,25]. To cope with the uncertainty of the price
and demand of electricity, a scenario-oriented method is used in [26]. Similarly, the demand
response is also unneglectable for the schedulable microgrid, and model predictive control
(MPC) is commonly used [27–29].

The abovementioned literature has designed and characterized the uncertainties of
the IES model from different aspects. However, chance-constrained programming has not
been used to model the uncertainty of IES scheduling. Chance-constrained programming
has received extensive attention in solving the uncertainty in IES operations for its ability
to deal with the uncertainty more appropriately, especially under probability constraints.

Although there has been a lot of research on the optimal scheduling of integrated
energy systems, and the basic optimal scheduling problem has been solved, the following
research gap in this field still exists: the uncertainties of the DERs and time-varying loads
have a significant impact on the optimal scheduling strategy. To ensure the operational
reliability of the integrated energy system, previous works have mainly considered the
rotating reserve capacity as a deterministic constraint related to the minimum reserve
required by the system. However, if all uncertainties, such as fluctuations in the DERs,
power load and system faults, are considered, how to skillfully describe the uncertainty
problem and further deal with the constraints is still challenging. In response to this
challenge, this paper constructs a response scheduling model for the integrated electricity–
heat demand of the IES based on chance-constrained planning in an uncertain environment.
The main contributions are as follows:

1. Combined with the IES under multi-uncertainties, the price-based comprehensive
demand response model and the model of DERs with uncertainty are established. Fur-
thermore, considering the economy and decarbonization of the system, an integrated
demand response scheduling model based on chance-constrained programming in an
uncertain environment is constructed;

2. The sequence operation theory is used to transform the opportunity constraint into a
deterministic constraint. Then, the original model is transformed into a mixed-integer
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linear-programming model via a linearization method, which has high effectiveness
for solving the opportunity constraint;

3. The effectiveness of coordinating the integrated demand response and the uncertainty
of the DERs in reducing carbon emissions and improving the economic efficiency of
integrated energy systems is verified with simulation. By setting the right confidence
level, a balance can be achieved between the operational economics and operational
reliability of an IES.

The rest of this paper is organized as follows: Section 2 introduces the demand
response and uncertainty modeling of the IES. Section 3 elaborates on the optimization
scheduling model and solution of the IES. Section 4 verifies the effectiveness of the proposed
scheme by comparing the results of different real-case scenarios. Finally, the conclusions
are drawn in Section 5.

2. IES Model with Multi-Uncertainties

This section describes the system architecture of the proposed IES scheduling model
and accurately models the mathematical models of each link in the IES.

2.1. Architecture of the IES

The system architecture of the electricity–heat IES considering multi-uncertainties in
this paper is shown in Figure 1. The power sources in the IES mainly include uncertain
sources, like wind turbines (WTs) and PV panels, a traditional thermal power (TP) plant,
combined heat and power (CHP), a gas turbine (GT), a gas boiler (GB), a lithium bromide
refrigerator (LBR), an EV-charging station (EVCS), electrical energy storage (EES), thermal
energy storage (TES) and an air tank (AT). The loads are the electric load (EL) and heat
load (HL), according to the energy properties. According to the actual situation of energy
consumption, loads can be divided into residential loads, industrial loads and EVs.
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Figure 1. System architecture of electricity–heat IES.

In Figure 1, the gas turbine and energy storage device are used as the connection
carriers of different energy sources. The power grid and heat supply network are coupled
to optimize and coordinate the production, transmission, distribution and consumption
of various energy sources. The power load includes a constant load, interruptible load
and time-shifting load, while the electric power is provided by the power grid, DERs, gas
turbine and EES devices. The thermal load also includes a constant load and time-shifting
load, while the thermal energy is provided by the power grid, DERs, bromine cooler and
thermal energy storage devices. EVs are devices that can obtain electricity from power
grids, DERs and gas turbines. Considering the randomness and intermittence of the DERs,
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to suppress their uncertainty, the IES improves the flexibility and reliability of the system
by reserving a certain amount of the spinning-reserve capacity from the power grid, gas
turbine and EES in advance, which helps the system obtain the maximum benefit.

2.2. Price-Based Demand Response

The demand response of the IES mainly includes the electricity price demand response
and incentive demand response [30–32]. The price-based demand response focuses on
resources that cannot be directly dispatched, mainly including the EV-charging and other
electricity consumption behaviors of users. Adjusting the electricity price at the load peak
and valley can help stabilize the system load. The demand response elasticity coefficient
can be used to describe the user response to the electricity price, as in Equation (1):

ε =
∆Pt,t+∆t

Pt
· qt

∆qt,t+∆t
(1)

where Pt and qt are the electrical power and electricity price in the previous t period,
respectively, and ∆Pt,t+∆t and ∆qt,t+∆t are the changes in the electrical power and electricity
price after the demand response.

By analyzing the load curve, a reasonable time-of-use price can effectively reduce
the difference between the load peak and valley. According to the load curve, the users’
loads will be divided into three periods: the load peak, normal period and load valley.
The electricity prices of these periods are set for demand-side response analysis using
Equations (2) and (3): ∆PF

∆PP
∆PG

 =

εFF εFP εFG
εPF εPP εPG
εGF εGP εGG

∆qF
∆qP
∆qG

 (2)

E =

εFF εFP εFG
εPF εPP εPG
εGF εGP εGG

 (3)

where ∆P and ∆q are the change matrix of the average demands of different periods
and the electricity price, respectively; E is the demand elasticity matrix; εFF, εPP and εGG
are the self-elastic coefficients; and εFG, εPG and εFP are the mutual-elasticity coefficients,
respectively.

2.3. Demand Response Modeling of Electricity–Heat Loads

In the IES, the main loads include rigid loads and flexible loads [33,34]. The flexi-
ble loads can participate in the demand response to control the total load profile of the
system, improve the energy consumption quality of the system and reduce the cost. The
flexible loads can be divided into reducible loads and time-shifting loads, according to the
regulation mode.

2.3.1. Interruptible Electrical Load

The interruptible electrical load has a quick response to the system’s demand. On the
premise that users sign agreements with the power sector, it can promote the balance be-
tween the supply and demand of the system during peak power consumption hours, while
considering the system’s reliability. The specific mathematical model for the interruptible
electrical load can be expressed as Equation (4):

PIL
t = (1 − θ)PIL

t,max, 0 ≤ θ ≤ 1 (4)

where PTL
t and PTL

t,max are, respectively, the maximum value of the interruptible load power
and its maximum value in period t, while θ represents the reduction ratio of the interruptible
load in period t.
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2.3.2. Time-Shifting Electrical and Thermal Loads

There are partial loads in IESs that have load transfer capabilities, and these loads can
be divided into three categories. The first category is continuous-production and -operation
enterprises, such as the chemical, metallurgy and steel industries, which can only adjust
the production process, but the change in the process is very limited. The second category
is high-energy-consuming enterprises, characterized by the fact that the electricity costs
account for a large proportion of the enterprise operating costs and are extremely sensitive
to energy prices. The third category is small- and medium-sized enterprises with relatively
flexible production processes, which are characterized by the flexible arrangement of the
production plans in low-electricity-price periods. In addition, the residential electricity
consumption is smaller than the industrial and commercial energy consumption, but the
electricity consumption of EVs, mobile phones and household appliances can be shifted to
night to a certain extent. The specific mathematical model of transferable electric or thermal
loads can be modeled as Equations (5) and (6):{

PTS
t,EL,min ≤ PTS

t,EL ≤ PTS
t,EL,max

PTS
t,HL,min ≤ PTS

t,HL ≤ PTS
t,HL,max

(5)


T
∑

t=1
PTS

t,EL = 0

T
∑

t=1
PTS

t,HL = 0
(6)

where PTS
t,EL and PTS

t,HL are the transferable power of the electrical load and thermal load in
period T, respectively; PTS

t,EL,min and PTS
t,EL,max are the minimum and maximum values of the

transferable power of the electric load in period T; PTS
t,HL,min and PTS

t,HL,max are the minimum
and maximum values of the transferable power of the heat load in period T.

From Equation (6), it is clear that the total transferable electric or thermal load in a
dispatching period is 0, which means that the total loads transferred in and out of the
system are equal.

2.4. Uncertainty Modeling of DERs
2.4.1. Probability Model of Wind Power Generation

According to statistics, the wind speed follows the Weibull distribution at a certain
time. Therefore, the wind power output probability density function (PDF) can be derived
from the wind speed PDF and the output power as Equation (7). The specific derivation
process of the probability density function for the fan output is in the Appendix A.

f1(PWT) =


(kcvci/a × P∗)[((1 + cPWT/P∗)vci)/a]k−1

× exp
{
−[((1 + cPWT/P∗)vci)/a]k

}
, PWT ∈ [0, P∗]

0 , otherwise

(7)

where c = (v* − vci)/vci, and v is the actual wind speed; k is the shape coefficient (dimen-
sionless), which describes the PDF shape of the wind speed; a is the scaling factor; vci is the
cut-in wind speed; vco is the cut-out wind speed; v* is the rated wind speed; P* is the rated
output power of the wind generator; PWT is the output of the wind power.

2.4.2. Probability Model of PV Power Generation

According to statistics, the solar illumination intensity meets the beta distribution, and
the PDF of the PV output can be derived from the PDF of the solar illumination intensity



Energies 2024, 17, 245 6 of 20

and PV output power, as in Equation (8). The specific derivation process of the probability
density function for the photovoltaic output is shown in the Appendix A.

f (PPV) =
Γ(α) + (β)

Γ(α)Γ(β)

(
PPV

PPV,max

)α−1(
1 − PPV

PPV,max

)β−1
(8)

where Γ is the gamma function; α and β are the shape factors of the beta distribution curve,
respectively; PPV and PPV,max are the actual PV output and its maximum value, respectively.

2.5. Coupling Equipment Modeling
2.5.1. Model of the CHP Unit

The CHP unit is an energy supply system that integrates the power generation and
heat supply. Typical CHP units mainly include gas turbines and bromine coolers. The
mathematical model of a CHP unit is expressed as Equation (9) [35]:{

QGT
t = PGT

t (1 − µloss)

PLB
t = QGT

t ηrec
LB λLB

(9)

where QGT
t is the residual heat of the gas released from the gas turbine; PGT

t is the output
of the gas turbine; µloss is the heat dissipation loss coefficient of the gas turbine; PLB

t is the
thermal power of the bromine cooler; ηrec and λLB are the waste heat recovery efficiency
and the thermal efficiency of the bromine cooler.

2.5.2. Electrical and Thermal Energy Storage Model

To reduce the influence of uncertain factors in the IES, it is necessary to introduce
electric energy storage and thermal energy storage equipment. The operation modes of
the energy storage devices are the same. Taking electric energy storage as an example, its
mathematical model can be denoted as Equation (10):

Dt+1,ESS = Dt,ESS + (PCH
t,ESSηCH

ESS − PDC
t,ESS/ηDC

ESS)∆t
T
∑

t=1
(PCH

t,ESSηCH
ESS − PDC

t,ESS/ηDC
ESS)∆t = 0

(10)

where Dt,ESS and Dt+1,ESS are the energy of the electric energy storage device at time t and
time t + 1, respectively; DCH

t,ESS and DDC
t,ESS are the charging and discharging powers of the

electric energy storage; and ηCH
ESS and ηDC

ESS are the charging and discharging efficiencies of
the electric energy storage, respectively.

3. IES Optimal Scheduling Model with Multi-Uncertainties

This section establishes an IES scheduling model that considers multiple uncertainties,
mainly including the objective function, constraint conditions and model solving process.

3.1. Objective Function

The electricity–heat IES in this paper comprehensively considers the cost of the energy,
the cost of the system backup, the cost of the energy storage operation and maintenance,
the cost of the EV charging, the cost of the carbon trading and the cost of the gas turbine
startup and shutdown. The cost function is shown in Equation (11):

minC = min(C1 + C2 + C3 + C4 + C5 + C6) (11)
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(1) Cost of energy

The energy cost of the IES mainly includes the cost of the purchasing power from
the power utility for both the electric load and thermal load, which can be expressed as
Equation (12):

C1 =
T

∑
t=1

[
sst_price,t·

(
PGL

t + PTS
t,EL + PHL

t − PTS
t,HL + PIL

t

)]
(12)

where sst_price,t is the price of the electricity at different times; PGL
t and PHL

t are the constant
electrical load and thermal load, respectively; PTS

t,EL and PTS
t,HL stand for the time-shifting

electrical load and thermal load, respectively; PIL
t is the constant heat load in period t;

(2) Cost of system backup

The system backup cost mainly considers the operation cost of the power grid, EES
and rotating backup reserved by the gas turbine, which can be expressed as Equation (13):

C2 =
T

∑
t=1

(
sgrid

re_price·R
grid
t + sESS

re_price·RESS
t

+sGT
re_price·RGT

t

)
(13)

where sgrid
re_price, sESS

re_price and sGT
re_price are the unit power reserve prices of the power grid, EES

and gas turbine, respectively; Rgrid
t , RESS

t and RGT
t are the reserve capacities of the power

grid, EES and gas turbine, respectively;

(3) Energy storage operation and maintenance cost

The operation and maintenance cost of the EES is described as Equation (14):

C3 =
T

∑
t=1

sESS
dp_price·P

ESS
t (14)

where sESS
dp_price is the maintenance cost of the EES per unit of power, and PESS

t is the EES
charging power;

(4) Cost of EV charging

The cost of EV charging can be denoted as Equation (15):

C4 =
T

∑
t=1

sst_price,t·PEV
t (15)

where sst_price is the electricity price of EVs at different times, and PEV
t is the charging power

of the EVs;

(5) Cost of carbon transaction

The cost of the carbon transaction is described as Equation (16):

C5 =
T

∑
t=1

sco2(Ec,t − Dc,t) (16)

where sco2 is the carbon-trading price, and Ec,t and Dc,t represent the carbon emissions and
carbon allocations at different times [36];

(6) Operating cost of gas turbine:

C6 =
T

∑
t=1

[
κSt + Ut

(
υ + ψPGT

t

)]
(17)
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where St and Ut are the startup/shutdown variable and state variable of the gas turbine,
respectively; v and ψ stand for the consumption coefficients of the gas turbine; κ is the
startup and shutdown cost of the gas turbine.

3.2. Constraint Conditions
3.2.1. Power Supply System Constraints

The constraints of the power supply system constitute the power balance, electric load
demand response, grid and gas turbine output, EES charging and discharging powers, EES
capacity, EES start and stop states and EV-charging power and capacity.

(1) Constraints of electric power balance:
Pe_source = Pgrid

t,EL + PGT
t,EL − PCH

t,ESS + PDC
t,ESS + E

(
PDER

t
)

Pe_load = PGL
t,EL + PEV

t + PTS
t,EL + PCL

t − PIL
t

Pe_source = Pe_load

(18)

where Pe_source and Pe_load are the output of the power source and the total electrical
load; Pgrid

t,EL and PGT
t,EL are the power of grid r and the gas turbine; PCH

t,ESS and PDC
t,ESS are the

EES charging and discharging powers; E(PDER
t ) is the expected value of the DERs; PGL

t,EL,
PEV

t , PTSL
t , PCL

t and PIL
t are the power consumption of the constant electric load, EVs,

time-shifting load, controllable load and interruptible load, respectively;

(2) Constraints of grid output and gas turbine output

Assuming that Pgrid
max and Pgrid

min are the upper and lower limits of the grid output,
respectively, the constraints of the grid output and gas turbine output can be described
as follows: {

Pgrid
min ≤ Pgrid

t ≤ Pgrid
max

PGT
min ≤ PGT

t ≤ PGT
max

(19)

where PGT
max and PGT

min stand for the upper and lower limits of the gas turbine output, respec-
tively;

(3) Constraints of EES charging and discharging powers

Similarly, if PCH
t,ESS and PDC

t,ESS stand for the charging and discharging powers of the EES,
the constraints can be described as Equation (20):{

0 ≤ PCH
t,ESS ≤ PCH

ESS,max

0 ≤ PDC
t,ESS ≤ PDC

ESS,max
(20)

where PCH
ESS,max and PDC

ESS,max are the upper limits of the EES charging and discharging powers,
respectively;

(4) Constraints of EES capacity and EES state

Considering Ct,ESS as the capacity of the EES, while CESS,max and CESS,min stand for the
upper and lower limits of the EES capacity, respectively, the constraints of the EES capacity
and EES state can be described as Equation (21):{

CESS,min ≤ Ct,ESS ≤ CESS,max

CSATART
t,ESS = CEND

t,ESS = C∗
ESS

(21)

where C∗
ESS is the initial EES limit, and CSTART

t,ESS and CEND
t,ESS are the initial and end EES

capacities, respectively;
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(5) Constraints of EV-charging power and capacity

Let PCH
k,t,EV and PCH

k,EV,max denote the charging power and its maximum value of the
k-th EV at time t, and let CEV

k,t , CEV
k,max and CEV

k,min be the battery capacity and the upper and
lower limits of the battery capacity of the EV. The constraints of the EV-charging power
and capacity can be described as Equation (22):{

0 ≤ PCH
k,t,EV ≤ PCH

k,EV,max

CEV
k,min ≤ CEV

k,t ≤ CEV
k,max

(22)

3.2.2. Constraints of Heat System

The constraints of heat systems include the thermal power balance, heat load demand
and electric boiler operation.

(1) Constraint of thermal power balance:

Qt − QCH
t,HSD + QDC

t,HSD + PEB
t = PHL

t (23)

where Qt is the purchased heat power from the supplier; QCH
t,HSD and QDC

t,HSD are the charging
and discharging powers of the heat storage tank, respectively; PEB

t and PHL
t are the output

heat power and the heat load;

(2) Constraints of electric boiler operation:

{
PEB

t = ηEBPEB
t,grid

0 ≤ PEB
t ≤ PEB

t,max
(24)

where PEB
t,grid and PEB

t,max are the output power and maximum power of the electric boiler,
respectively. The performance coefficient of the electric boiler (ηEB) is the ratio of the
heating power to the power consumption.

3.2.3. Constraint System Backup

To deal with the uncertainty of the output of the DERs, this paper sets the parameters
of the power grid, EES and gas turbine to provide the system with a spinning reserve.

(1) The reserve capacity constraint of the EES is shown in Equation (25):

RESS
t ≤ min

{
ηDC

ESS(Dt,ESS − DESS,min)/∆t,
PDC

ESS,max − PDC
t,ESS

}
, ∀t (25)

where RESS
t is the reserve capacity provided by the EES;

(2) The total reserve constraint of the system is described with the opportunity constraint
as Equation (26):

P

{
Rgrid

t + RESS
t + RGT

t ≥ E
(

PRDG
t

)
−Pt,PV − Pt,WT

}
≥ α, ∀t (26)

where α is the confidence level of the system rotation reserve.

3.3. Solving Process
3.3.1. Sequence Operation Theory

The sequence operation theory is based on sequence convolution in the field of digital
signal processing, which extends the original concept of sequence convolution to analyze
random variables in the power system. C. Kang et al. [37] proposed the probabilistic
sequence operation theory based on the sequence operation theory, which represents the
probability distribution of random variables with probabilistic sequences, and then obtains
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new sequences through the operations between sequences. In this process, through the dis-
cretization of the sequence, the merging of the states in the calculation is skillfully realized,
and the calculation speed is greatly improved without reducing the calculation accuracy.

The value of each item in the probabilistic sequence is between 0 and 1, representing
the occurrence probability of the item. In the proposed IES optimal scheduling model, the
DERs are treated as random variables, and their fluctuations follow a certain probability
distribution. The probability distribution is discretized to form a probability sequence, and
the probability sequence of the equivalent value of all the random variables is obtained
through convolution sum and convolution difference operations.

Random variable serialization modeling converts each random variable into a proba-
bilistic sequence according to the requirements of sequence operation theory. If the PDF
of a known random variable is F(i), then its probability sequence can be expressed as
Equation (27):

F(i) =


∫ ∆p/2
−∞ f (p)dp i = 0∫ i∆p+∆p/2
i∆p−∆p/2 f (p)dp 0 < i < NF∫ +∞
i∆p−∆p/2 f (p)dp i = NF

(27)

where NF is the sequence length; NF = [Pmax/∆p] represents an integer no more than
Pmax/∆p; ∆p is the discretization step; Pmax is the maximum value of the random variables,
indicating the WT and PV output.

3.3.2. Chance-Constrained Programming

In this paper, the probabilistic sequence of the DERs is obtained through convolution
summation. According to Equation (27), the probability series of the wind power output
and PV output in period t are a(iat) and b(iat), with sequence lengths of Nat and Nbt,
respectively. The combined output of the DERs is c(ict)= a(iat)⊕b(iat), with a sequence length
of Nct = Nat + Nbt, which can be calculated by convolution summation, as in Equation (28):

c(ict) = ∑
iat+ibt=ict

a(iat)·b(ibt) , ict = 0, 1, · · · , Nct (28)

To facilitate the calculation of the spinning-reserve satisfaction probability, the op-
portunity constraints in Equation (26) need to be handled. The 0–1 variable is defined as
Equation (29):

h(iht) =

{
1 Rt1 ≥ Rt2
0 Rt1 < Rt2

iht = 0, 1, · · · , Nht (29)

where Rt1 = Rgrid
t + RESS

t + RGT
t , Rt2 = E(PRDG

t )-Pt,PV-Pt,WT.
The above equation shows that when the IES meets the reserve constraint, the 0–1

variable equals one; otherwise, it equals zero.
The opportunity constraints can be translated into Equation (30):

β =
Nht

∑
iht

h(iht)· f (iht) (30)

Once β ≥ α, the spinning reserve satisfies the opportunity constraint. To make (29)
compatible with the mixed-integer linear-programming formula, it can be rewritten as
Equation (31): {

Z = Rgrid
t + RESS

t + RGT
t − E

(
PRDG

t
)
− Pt,PV − Pt,WT

Z/ξ ≤ h(iht) ≤ Z/ξ + 1 iht = 0, 1, · · · , Nht, ∀t
(31)

where ξ is a very large positive number.
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Given Rgrid
t + RESS

t + RGT
t ≥ E(PRDG

t ) − Pt,PV − Pt,WT, Equation (31) can be equivalent
to ξ ≤ h(iht) ≤ ξ + 1, where h(iht) is a binary variable (i.e., either 0 or 1). The opportunis-
tic constraint is replaced by Equations (30) and (31), which translate the opportunistic
constraint into a mixed-integer linear-programming (MILP) formula.

3.3.3. Solution Steps

The method framework proposed in this paper is shown in Figure 2. The solution
process of the system is given as follows:
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Figure 2. Framework for optimal scheduling of IES.

Step 1: Establish the IES optimal scheduling model with chance-constrained program-
ming;

Step 2: Discretize the DERs according to their PDFs to generate the corresponding
probability sequence;

Step 3: Obtain the expected value of the DER output based on the change in the
discretization step size;

Step 4: Convert the probabilistic spinning-reserve constraint into a deterministic
constraint;

Step 5: Convert the original chance-constrained-programming-based scheduling
model into MILP format;

Step 6: Input the parameters of the IES;
Step 7: Use the CPLEX solver to solve and obtain the optimal solution;
Step 8: Check whether the optimal solution exists. If so, terminate the solution process;

otherwise, update the confidence level and repeat the process from Step 6;
Step 9: Output the optimal scheduling scheme.
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4. Case Study and Result Analysis

To verify the feasibility of the model and method proposed in this article, this section
takes the comprehensive energy system of a smart park as a specific example for simulation
analysis.

4.1. Configuration of Case Study

The system structure and its load and DER output profiles are shown in Figures 3 and 4,
respectively. Other specific parameters are shown in Table 1.

1 
 

 
Figure 3. Topology of the IES used in the case study.

Energies 2023, 16, x FOR PEER REVIEW 13 of 21 
 

 

sgrid 
re_price CNY 0.06  sESS 

dp_price CNY 0.02/kW h 
sGT 

re_price CNY 0.04  sco2 CNY 0.25/kg 

In this paper, the CPLEX solver is used to optimize the solution, and the system is 
simulated with a cycle of 24 h and a fixed step of one hour. This section compares the 
operating costs under different scenarios. 

Scenario 1: Optimal scheduling of the IES to minimize the overall operation cost of 
the system without considering the comprehensive demand response or EES/thermal en-
ergy storage; 

Scenario 2: Optimal scheduling of the IES to minimize the overall operation cost of 
the system by considering the comprehensive demand response while ignoring the EES 
and thermal energy storage; 

Scenario 3: Optimal scheduling of the IES to minimize the overall operation cost of 
the system by considering the comprehensive demand response and the optimal schedul-
ing in the IES of the EES and thermal energy storage. 

 
Figure 3. Topology of the IES used in the case study. 

 
Figure 4. Electricity–heat load demand and DER output. Figure 4. Electricity–heat load demand and DER output.



Energies 2024, 17, 245 13 of 20

Table 1. Comprehensive energy system parameters.

Parameter Value Parameter Value

Pgrid
max 500 kW CESS,max 160 kW h
P* 500 kW PCH

HSD,max 60 kW
vci 3 m/s PDC

HSD,max 60 kW
vco 25 m/s PEB

t,max 300 kW
v* 15 m/s ηEB 0.99

PPV,max 360 kW PEV 900 kW

CSTART
t,ESS 32 kW h PCH

k,EV,max
60 kW

CESS,min 32 kW h PGT
max

500 kW

CESS,max 160 kW h PGT
min

30 kW

ηCH
ESS 0.9 St

1

ηDC
ESS 0.9 Ut

1.6

PCH
ESS,max 40 kW v 1.2

PDC
ESS,max 40 kW ψ 0.35

sESS
re_price CNY 0.02/kWh κ 1.6

sgrid
re_price

CNY 0.06 sESS
dp_price

CNY 0.02/kW h

sGT
re_price CNY 0.04 sco2

CNY 0.25/kg

In this paper, the CPLEX solver is used to optimize the solution, and the system is
simulated with a cycle of 24 h and a fixed step of one hour. This section compares the
operating costs under different scenarios.

Scenario 1: Optimal scheduling of the IES to minimize the overall operation cost of the
system without considering the comprehensive demand response or EES/thermal energy
storage;

Scenario 2: Optimal scheduling of the IES to minimize the overall operation cost of
the system by considering the comprehensive demand response while ignoring the EES
and thermal energy storage;

Scenario 3: Optimal scheduling of the IES to minimize the overall operation cost of the
system by considering the comprehensive demand response and the optimal scheduling in
the IES of the EES and thermal energy storage.

4.2. Discussion of Optimal Scheduling Results

The daily load curve can be divided into three periods: a peak period (8:00–11:00, 18:00–
21:00), normal period (6:00–7:00, 12:00–17:00) and valley period (01:00–05:00, 22:00–24:00).
The time-of-use prices of the system in this paper are defined as the peak price (CNY
0.805/kWh), normal price (CNY 0.55/kWh) and valley price (CNY 0.295/kWh). The time-
of-use load is transferred under the guidance of the time-of-use price, which increases the
electricity consumption at the valley time. At the same time, the peak electricity price of
the system is high, and the peak load transfer effectively reduces the power consumption
cost of the system at the peak time and improves the economy of the system operation.

It can be seen from Table 2 that by comparing the operation cost of the electricity–heat
IES before and after considering the price-type demand response, the total operation cost
of Scenario 2 is CNY 356.266 (21.01%) lower than that of Scenario 1. The carbon emissions
decreased by 291.959 kg, or 46.69%. It is demonstrated that the demand-side response
plays an important role in low-carbon economic dispatching, as the demand-side response
transfers the peak load to the load valley. Therefore, more economic power can be used in
the load valley, and the load power can be reduced in the load peak, thereby reducing the
system operation cost.
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Table 2. Total costs and carbon emissions under different scenarios.

Parameter Scenario 1 Scenario 2 Scenario 3

Total cost (CNY) 1695.398 1339.132 1140.278
Carbon emissions (kg) 625.202 333.243 116.013

Carbon transaction cost
(CNY) 250.0808 133.2972 46.4052

Compared with Scenario 2, Scenario 3 reduces the total operating cost of the system
by 198.854, or 14.85%. The carbon emissions are reduced by 217.23 kg, or 65.15%. This
indicates that the addition of EES and thermal energy storage can also effectively reduce
the optimal scheduling cost of the system. Figure 5 shows the EES and thermal energy
storage scheduling scheme of the system in Scenario 3. It can be seen that the EES and
thermal energy storage are charged and stored during the load valley, and then discharged
and released during the peak load time. Therefore, the energy consumption of the system
can be improved by scheduling the EES and thermal storage equipment, which plays a role
in reducing the peak and filling the valley.

Energies 2023, 16, x FOR PEER REVIEW 14 of 21 
 

 

4.2. Discussion of Optimal Scheduling Results 
The daily load curve can be divided into three periods: a peak period (8:00–11:00, 

18:00–21:00), normal period (6:00–7:00, 12:00–17:00) and valley period (01:00–05:00, 22:00–
24:00). The time-of-use prices of the system in this paper are defined as the peak price 
(CNY 0.805/kWh), normal price (CNY 0.55/kWh) and valley price (CNY 0.295/kWh). The 
time-of-use load is transferred under the guidance of the time-of-use price, which in-
creases the electricity consumption at the valley time. At the same time, the peak electricity 
price of the system is high, and the peak load transfer effectively reduces the power con-
sumption cost of the system at the peak time and improves the economy of the system 
operation. 

It can be seen from Table 2 that by comparing the operation cost of the electricity–
heat IES before and after considering the price-type demand response, the total operation 
cost of Scenario 2 is CNY 356.266 (21.01%) lower than that of Scenario 1. The carbon emis-
sions decreased by 291.959 kg, or 46.69%. It is demonstrated that the demand-side re-
sponse plays an important role in low-carbon economic dispatching, as the demand-side 
response transfers the peak load to the load valley. Therefore, more economic power can 
be used in the load valley, and the load power can be reduced in the load peak, thereby 
reducing the system operation cost. 

Table 2. Total costs and carbon emissions under different scenarios. 

Parameter Scenario 1 Scenario 2 Scenario 3 
Total cost (CNY)  1695.398 1339.132 1140.278 

Carbon emissions (kg) 625.202 333.243 116.013 
Carbon transaction cost (CNY) 250.0808 133.2972 46.4052 

Compared with Scenario 2, Scenario 3 reduces the total operating cost of the system 
by 198.854, or 14.85%. The carbon emissions are reduced by 217.23 kg, or 65.15%. This 
indicates that the addition of EES and thermal energy storage can also effectively reduce 
the optimal scheduling cost of the system. Figure 5 shows the EES and thermal energy 
storage scheduling scheme of the system in Scenario 3. It can be seen that the EES and 
thermal energy storage are charged and stored during the load valley, and then dis-
charged and released during the peak load time. Therefore, the energy consumption of 
the system can be improved by scheduling the EES and thermal storage equipment, which 
plays a role in reducing the peak and filling the valley. 

 
Figure 5. Scheduling of EES and thermal energy storage. 

4.3. Demand Response Analysis 

Figure 5. Scheduling of EES and thermal energy storage.

4.3. Demand Response Analysis
4.3.1. Impact of Demand Response Ratio on Economy

For Scenario 3, the impact of the demand response ratio on the overall operating cost
of the IES is analyzed. The demand response load of the system available for scheduling is
summarized in Table 3.

Table 3. Total system costs under different demand responses.

No. Parameter Parameter Values Operating Cost
(CNY)

1
PTS

t,EL
PTL

t
PTS

t,HL

[−0.05 × Pe-load, 0.1 × Pe-load]
[0, 0.05Pe-load]

[−0.05 × PHL
t , 0.1 × PHL

t ]
1313.266

2
PTS

t,EL
PTL

t
PTS

t,HL

[−0.1 × Pe-load, 0.2 × Pe-load]
[0, 0.15Pe-load]

[−0.1 × PHL
t , 0.2 × PHL

t ]
1140.277

3
PTS

t,EL
PTL

t
PTS

t,HL

[−0.2 × Pe-load, 0.4 × Pe-load]
[0, 0.35Pe-load]

[−0.2 × PHL
t , 0.4 × PHL

t ]
860.467
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It can be seen from the system operation cost in Table 3 that the overall operation
cost of the system decreases with the increase in the demand response load proportion.
This is because the demand response can flexibly adjust the load according to the energy
consumption of the system, thereby reducing the energy consumption cost of the system. At
present, in actual system operations, the proportion of the demand response load available
for scheduling is generally between 5 and 30% of the total load, so Case 2 simulates the
proportion of the demand response in practical grids. In the future, the energy utilization
rate can be effectively improved, and the energy efficiency of the system can be improved
by increasing the proportion of the flexible load on the load side.

4.3.2. Demand Response

The load curve before and after the system demand response is analyzed based on
the configuration of Case 2. The load curves before and after the comprehensive demand
responses in Scenario 3 are shown in Figure 6.

Energies 2023, 16, x FOR PEER REVIEW 16 of 21 
 

 

  
(a) (b) 

Figure 6. Load curves before and after the comprehensive demand response in Scenario 3. (a) Influ-
ence of demand response on electric load. (b) Influence of demand response on heat load. 

4.4. Influence of Different Confidence Levels 
Different confidence levels from 50% to 100% were selected to investigate the impact 

of the system reserve capacity on the total system operating cost. The corresponding op-
erating costs are calculated and shown in Figure 7. The higher the confidence level, the 
higher the total operating cost of the system. This is because the increase in the confidence 
level will inevitably lead to the IES requiring a greater spinning-reserve capacity to main-
tain the balance between the supply and demand of the system. 

 
Figure 7. System operation costs under different confidence levels. 

Figure 8 shows the backup power required by the system at different confidence lev-
els. It is obvious that the higher the confidence level, the more backup capacity required. 
Therefore, choosing a reasonable confidence level is of great significance to balance the 
economic benefit and reliability of the system operation. It can be seen that the reserve 
capacity required by the system changes with time. The peak occurs in Period 13 and the 
valleys occur in Period 6 and Period 19. The reason is that the DER output in the IES fluc-
tuates over time (as shown in Figure 4). To solve the uncertainty caused by the DER output, 
it is necessary to set a higher reserve capacity in the period with large DER output and a 
lower reserve capacity in the period with small DER output. 

Figure 6. Load curves before and after the comprehensive demand response in Scenario 3. (a) Influ-
ence of demand response on electric load. (b) Influence of demand response on heat load.

It can be seen that the load has a certain time shift in each period after the demand
response, which improves the energy consumption of the system. In Period 13, the initial
power load is at the peak, and the total power load increases after dispatching. The reason
is that the overall load demand in the system is small and the electricity price is the normal
electricity price, so the loads in the other periods are transferred into this period. In Periods
1–4 and 22–24, the load increases after system dispatching because the system energy
consumption is at a low point during this period, and the price of electricity is the lowest.
The time-shifting loads can effectively reduce the overall energy consumption cost of
the system.

4.4. Influence of Different Confidence Levels

Different confidence levels from 50% to 100% were selected to investigate the impact of
the system reserve capacity on the total system operating cost. The corresponding operating
costs are calculated and shown in Figure 7. The higher the confidence level, the higher
the total operating cost of the system. This is because the increase in the confidence level
will inevitably lead to the IES requiring a greater spinning-reserve capacity to maintain the
balance between the supply and demand of the system.
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Figure 8 shows the backup power required by the system at different confidence
levels. It is obvious that the higher the confidence level, the more backup capacity required.
Therefore, choosing a reasonable confidence level is of great significance to balance the
economic benefit and reliability of the system operation. It can be seen that the reserve
capacity required by the system changes with time. The peak occurs in Period 13 and
the valleys occur in Period 6 and Period 19. The reason is that the DER output in the IES
fluctuates over time (as shown in Figure 4). To solve the uncertainty caused by the DER
output, it is necessary to set a higher reserve capacity in the period with large DER output
and a lower reserve capacity in the period with small DER output.
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Figure 8. Reserve capacities at different confidence levels.

Figure 9 shows the reserve capacity of each type of energy when the system confidence
level is 90%. It can be seen from Figure 9 that the reserve capacity provided by the energy
storage for the system is the least, while the capacity of the gas turbine is more than the
energy storage, and that of the power grid is the most. This is mainly because, during
the operation of the IES, as the operating cost of energy storage is minimal, the use of the
energy storage reserve capacity to power the system is preferred. However, due to the
capacity limitation of energy storage itself, the reserve capacity provided by the energy
storage is lower than that of the gas turbine and power grid.
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The reserve capacity of the gas turbine is relatively large, which is mainly because the
capacity of the gas turbine is higher than that of the energy storage. The price of the gas
turbine for supplying power to the system is CNY 0.35/kWh, which is lower than the price
during peak hours and ordinary hours. In addition, the price of the gas turbine reserve
capacity is CNY 0.04/kWh, which is lower than the grid reserve price (CNY 0.06/kWh).
Therefore, only when the system makes full use of the energy obtained from the gas turbine
can the shortfall be obtained from the grid. This is why the reserve provided by the gas
turbine is less than that provided by the grid.

The main reason that the grid owns the largest proportion of the reserve capacity is
that the price and reserve capacity price of the power grid are higher than those of the
energy storage and gas turbines. When the reserve capacity provided by the internal energy
storage and gas turbines of the system is insufficient, the power grid will undertake all the
demand for the lack of reserve capacity of the whole system.

5. Conclusions

To deal with the uncertainty of the DERs and demand response in the IES, this
paper proposes an integrated demand response economic scheduling model based on
opportunity-constrained programming to minimize the overall operating cost in an un-
certain environment. Through the integrated demand response model, the impact of the
demand response ratio on the operating economy of the IES is studied. Based on the case
study results, the following conclusions can be drawn:

(1) The proposed IES scheduling model balances the energy demand of the system
by coordinating the flexible demand response and the uncertainty of the energy storage
equipment and DERs, thereby improving the economy and reducing the carbon emissions
of the system;

(2) The operating economy of the IES increases with the increase in the proportion of
the demand response. The increase in the flexible load on the demand side of the system
not only improves the operating flexibility of the system but also promotes the system’s
economic benefit.

In future work, with the continuous increase in new equipment in IESs, it will be
necessary to introduce electricity–gas and carbon capture equipment to the IES to promote
the regulation of renewable energy production and the complementarity of multiple energy
sources, thereby achieving the economic improvement in and energy utilization efficiency
of IESs.
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Appendix A

The modeling process of the uncertainty in the wind turbine output: according to
statistics, the wind speed follows a two-parameter Weibull distribution within a certain
period of time, and its probability density function is as follows:

f (v) =
k
a

(v
a

)k−1
exp

[
−
(v

a

)k
]

(A1)

where v is the actual wind speed; k is the shape coefficient; a is the shape coefficient of the
wind speed.

The output power of the fan can be calculated from the wind speed as follows:

PWT(v)


0 v < vci, v > vco(

v−vci
v∗−vci

)
·P∗ vci ≤ v < v∗

P∗ v∗ ≤ v < vco

(A2)

where vci is the cut-in wind speed; vco is the cutting wind speed; v* is the rated wind speed;
P* is the rated output power of the fan.

The probability density function of the fan output can be derived from Equations (A1)
and (A2):

f1(PWT) =


(kcvci/a × P∗)[((1 + cPWT/P∗)vci)/a]k−1

× exp
{
−[((1 + cPWT/P∗)vci)/a]k

}
, PWT ∈ [0, P∗]

0 , otherwise

(A3)

where c = (v* − vci)/vci.
The modeling process of the photovoltaic output uncertainty: The photovoltaic output

follows a beta distribution, and the output of a photovoltaic power station depends on the
local solar intensity. The probability density function of the solar intensity is as follows:

f (γ) =
Γ(α + β)

Γ(α)Γ(β)

(
γ

γmax

)α−1(
1 − γ

γmax

)β−1
(A4)

where γ and γmax represent the actual light intensity and the maximum light intensity,
respectively; Γ is the gamma function, which takes the form of Equation (A5); α and β
are the shape factors of the beta distribution curve, denoted by Equations (A6) and (A7),
respectively:

Γ(α) =
∫ +∞

0
λα−1e−λdλ (A5)

α = µPV

(
µPV(1 − µPV)

δ2
PV

− 1

)
(A6)
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β = (1 − µPV)

(
µPV(1 − µPV)

δ2
PV

− 1

)
(A7)

where λ is the integral variables; µPV is the average intensity of the sunlight received by
the photovoltaic power station; δPV is the standard deviation of the sunlight intensity.

The relationship between the photovoltaic output and solar irradiance is as follows:

PPV = ξηmSPVηPV cos θ (A8)

where ξ is the intensity of the solar radiation; ηm is the maximum-power-tracking point;
SPV is the radiation area of photovoltaic modules; ηPV is the energy conversion coefficient;
θ is the angle of the incidence of sunlight.

The photovoltaic output power is linearly related to the solar irradiance intensity, and
the PPV also follows a beta distribution, with the following probability density function:

f (PPV) =
Γ(α) + (β)

Γ(α)Γ(β)

(
PPV

PPV,max

)α−1(
1 − PPV

PPV,max

)β−1
(A9)

where PPV and PPV,max are the actual output and maximum output of the photovoltaic
system, respectively.
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