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Abstract: Owing to their high intrinsic safety, dispersed fuel particles are an important fuel pattern
for fourth-generation nuclear reactors. Due to the unique cladding layers and the random dispersion
characteristics, dispersed fuel particles significantly differ from pressurized water reactors regarding
operation-induced uncertainty. This study quantitatively analyzed overall uncertainty while con-
sidering a random distribution of dispersed fuel particles, material thickness, and fuel enrichment.
The results demonstrated that, for all packing fractions, the uncertainty induced by the random
dispersion of dispersed fuel particles was below 0.03%. For every packing fraction, the differences
between the results obtained by the regular and the random distribution models increased, and then
decreased, until reaching its maximum (1.297%) at 15%. Keff decreased as the radius of the UO2

kernel increased; Keff increased as the thickness of the cladding layer increased; the uncertainty of
Keff was 1.003% when a random distribution of particles, material thickness, and fuel enrichment
were taken into consideration; the uncertainty of the power distribution of reactor core assemblies
was maximized (1.495%) at the edge of the reactor core. Quantitative analysis of uncertainty provides
references for the optimization of design and safety margin analysis for reactors.

Keywords: Monte Carlo; dispersed fuel particles; engineering parameters; uncertainty quantification

1. Introduction

In the context of global carbon emissions and the development of carbon-neutral
energy, clean energy has become crucial in addressing the challenges posed by energy
structure and climate change [1]. Nuclear energy is a green and clean source with high
energy density, efficient power generation, and low carbon emissions [2]. Compared to
other forms of clean energy, such as wind and solar power, nuclear energy is less susceptible
to natural environmental factors, and its efficiency and stability more effectively meet the
demand for sustainable energy [3,4]. Despite its numerous advantages, nuclear energy
has many safety concerns [5]. Therefore, future developments in nuclear technology will
prioritize intrinsic safety measures and minimize radioactive material leakage rates [6,7].

With advancements in fourth-generation nuclear technology. Tri-structural isotropic
coated fuel particles (referred to as TRISO-dispersed fuel particles) are widely used in
advanced reactors [8]. TRISO is an abbreviation of Tri-structural ISOtropic fuel particles,
which is a new type of reactor fuel. Tri-structural means that fuel particles are composed of
three different structural layers: the fuel core, pyrolytic carbon coating layer and silicon
carbide coating layer. The multilayer structure is used to improve the safety and operation
performance of nuclear reactors. Isotropic means that the structure of TRISO particles is
homogeneous and isotropic in all directions.
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The main purpose of TRISO fuel particle design is to improve the intrinsic safety and
stability of nuclear reactor fuel. Intrinsic safety means that the reactor has its own safety
attributes in design and manufacture. This safety attribute is not disturbed by the outside
world and can maintain stable and safe operation even in the case of being out of control or
in an accident. For dispersed fuel particles, the coating layer has a certain sealing function,
which can effectively prevent the leakage of radioactive fuel and products in the fuel
core [9]; the porous structure of the loose pyrolytic carbon coating layer provides storage
space for gaseous fission products, while absorbing the core swelling [9] caused by fuel
core depletion, reducing the risk of fuel element damage. Consequently, TRISO-dispersed
fuel particles offer a new direction in enhancing intrinsic safety features and optimizing the
use of nuclear energy. Combined with passive heat removal systems, they become essential
technologies for small modular reactors (SMR) and micro-reactors.

However, the engineering application of TRISO-dispersed fuel particles also has many
shortcomings. For example, the complex engineering structure introduces a significant
number of engineering uncertainties. Research on TRISO-dispersed fuel particle intrinsic
uncertainty has become a significant issue. The most recent research project addressing this
is the International Atomic Energy Agency’s International Coordinated Research Program
on Modeling Uncertainty Analysis for High-Temperature Gas-Cooled Reactors (IAEA
HTGR UAM CRP) [10]. The results show that the uncertainty induced by the random
distribution of TRISO-dispersed fuel particles is not very large, especially for the reactor’s
effective multiplication factor (Keff), which does not exceed 30 pcm [11]. However, the
fuel manufacturing tolerances and geometrical information induce significant uncertainty
in the calculation. Chen Youying, Master of Science from Harbin Engineering University,
investigated the influences of the packing fraction of dispersed fuel particles and random
dispersion on the uncertainty induced by the transport calculation using different models
for a high-temperature gas-cooled reactor with a spherical bed at the fuel sphere scale [12].
Lou Lei, a researcher of the Nuclear Power Institute of China, investigated the relationship
between the deviation of the dispersed fuel uniform mixing model and the diameter of
fuel particles and fuel enrichment using the reactor Monte Carlo program (RMC). When
the fuel enrichment or particle size is large, the uniform mixing model will bring a large
calculation deviation [13]. Zhang Yongdong, Master of the Shanghai Institute of Applied
Physics, Chinese Academy of Sciences, explored the effects of kernel radius and cladding
layer thickness distribution on the probability of failure using random sampling [14]
and found that the effective combustion depth of fuel was significantly reduced due to
the spatial self-shielding effect and the scattering probability of each layer of material
thickness. Dr. Fan Kai, from the Institute of Nuclear Energy and New Energy Technology,
Tsinghua University, established a geometric model of the appropriate fuel particle random
distribution using the MCNP code and compared it with the regular distribution model to
analyze the effect of distribution randomness on the effective multiplication factor [15]. The
results showed that the fuel particles’ random distribution leads to a slightly larger effective
multiplication factor than that of the regular model, and the main reason for the deviation
between the two models is the difference in the spatial and angular distribution of the
two-particle arrangements [15]. G. Kepisty of AGH University of Science and Technology
used 100 independent copies of Monte Carlo burnup simulations to study the statistical
error propagation of the full-core HTR model [16]. The results show that the actual and
apparent changes of Keff are close to each other from the beginning of irradiation to high
burnup. It is difficult to use Keff to observe statistical error propagation in high burnup.
The increasing real variation of Keff has been detected with a delay after entering the regime
of unstable simulation at a high burnup.

The above research demonstrates that the current international research situation
mainly studies the influence of single-factor uncertainty, especially for the spatially random
effect of dispersed fuel particles. However, there are few studies on the comprehensive
influence of multiple factors combined with engineering parameters. Therefore, this study
focuses on the quantitative analysis of multi-factor comprehensive uncertainty, specifically
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the following three points: (1) random dispersion uncertainty of the random distribution
model and the difference between models under different packing fractions; (2) the effect
of material thickness of each layer of TRISO-dispersed fuel particles; and (3) combined
with fuel enrichment random sampling, the overall uncertainty of the combination of
the random distribution of material thickness in each layer of particles and the spatially
random distribution. In the manufacturing process, the errors introduced by materials,
processes, equipment and environmental conditions are difficult to completely control and
the accuracy can only be controlled within a reasonable range. Therefore, the uncertainty
of engineering parameters studied in this paper is accidental uncertainty, which cannot be
avoided and has nothing to do with the calculation process itself.

This study concludes that the overall uncertainty of engineering parameters on the
transport calculation and the power distribution, which can help to improve nuclear energy
safety, can be comprehensively assessed by uncertainty analysis of key parameters and
can retain sufficient margins and corresponding measures to ensure the safe operation
of the reactor. In addition, it can help to optimize reactor design and operation and
enable understanding of potential fluctuations during operation, thus optimizing system
performance and efficiency, improving reactor energy efficiency, reducing operating costs,
and minimizing environmental impact. In summary, uncertainty analysis is indispensable
to TRISO-dispersed fuel particles in nuclear energy engineering.

2. Uncertainty Quantification
2.1. Statistical Sampling Method

The uncertainty analysis method based on Statistical Sampling Theory is widely used
in modeling and simulation to quantify uncertainty. For any nuclear reactor modeling
and simulation, the uncertainty of the input parameters will be transferred to the system’s
response along with the calculation process. The mapping relationship between the system
response and input parameters can be simply expressed as follows:

R(α) = [R1(α), R2(α) . . . RnR(α)]
T= f (α)

where R is the response vector of the system, nR is the number of system responses,
α = (α1, α2. . . αnα)T is the input parameter vector, nα is the number of input parameters,
and f is the system response as a function of input parameters.

Since the true value of the input parameters in the transport calculation is uncertain,
and the measured values inevitably have errors, it is usually necessary to assign a specific
distribution function to the input parameters to describe the possible value range and
probability distribution of the true value of the input parameters. In statistics, the above
input parameters are equivalent to continuous random variables, and the entire real number
set composed of the value range is the population. Because it is impossible to fully calculate
the population, in order to study the impact of the input parameter population, it is
necessary to extract a certain number of individuals from the population for calculation.
The process is called sampling and the total number of individuals extracted is called the
sample, and the number of samples is called the sample size [17]. In the uncertainty analysis
of nuclear reactor calculations, how to accurately reflect the distribution characteristics of
input parameters through efficient sampling methods is very important.

Latin Hypercube Sampling (LHS) is an improved stratified importance sampling. Its
basic idea is to divide the population into several equal probability sub-intervals, and then
randomly select a sample in each sub-interval. Latin hypercube sampling combines the
advantages of simple random sampling and hierarchical importance sampling. It can not
only make the samples cover the distribution range of input parameters evenly, but also
does not need to allocate the weight of each layer in advance. Moreover, even in the case of
a small number of samples, Latin hypercube sampling can also accurately and reasonably
characterize the uncertainty of input parameters [18]. Compared with simple random
sampling, Latin hypercube sampling can complete uncertainty quantification with fewer
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samples and has a significant improvement in the estimation of mean and variance. When
obtaining the calculation results at the same confidence level, the calculation time required
is significantly reduced [19]. The sampling diagram is shown in Figure 1. Therefore, Latin
hypercube sampling is the preferred method for this uncertainty analysis.
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2.2. Development of an Uncertainty Analysis Tool

This study uses the open-source transport calculation program OpenMC to build a
Monte Carlo model of a reactor loaded with TRISO-dispersed fuel particles. OpenMC
provides a python module to build transport calculation models for different engineering
parameters efficiently. At the same time, this research develops high-performance engi-
neering parameters’ sampling tools and related interfaces based on the Linux operating
system, using the Python-3.8.10 programming language combined with the NumPy library,
pyDOE library, and SciPy library. The number of samples and the overall distribution pa-
rameters are set through the input window. The sampling program performs the sampling
process and outputs the sample results to the specified output file. The sample results
are imported into the OpenMC transport program through the interface to model and
calculate. The calculation results are output and statistically analyzed with the sample
input. Finally, an automated uncertainty analysis program of parameter sampling-transport
calculation-statistical analysis was constructed. The program execution process is shown in
Figure 2.
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The research content and methodological flow of this study are shown in Figure 3. The
research content includes the quantitative analysis of the comprehensive uncertainty of the
packing fraction, material thickness and binding enrichment. The computational condition
in this study is 300/50,000/100, where 300 is the number of cycles, 50,000 is the number
of source particles per cycle, and 100 is the number of skipped cycles. This allows us to
accurately evaluate the engineering parameters’ uncertainty of dispersed fuel particles
without placing undue strain on computational resources [12].
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3. Quantitative Analysis of Uncertainty
3.1. Transport Calculation Model

Particulate fuel of a small modularized pressurized water reactor (SMR) is used as
the calculation model. The reactor core consists of 89 fuel assemblies, each arranged in a
5 × 5 fuel rod arrangement. The specific parameters of the reactor are shown in Table 1,
and the model is shown in Figure 4 [20].

The TRISO-dispersed fuel particles are a special type of composite fuel particle com-
monly used in designing advanced reactor cores, such as high-temperature gas-cooled
reactors. TRISO-dispersed fuel particles are composed of a fuel kernel and four cladding
layers. The cladding consists of four layers arranged from inner to outer as follows: low-
density pyrolytic carbon (Buffer layer), high-density isotropic carbon (IPyC layer), silicon
carbide (SiC layer), and high-density isotropic pyrolytic carbon (OPyC layer) [21]; these
structures are shown in Figure 5.
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Table 1. Key parameters of particulate fuel of an SMR.

Parameter Value Parameter Value

Power 25 MWth Fuel type TRISO
Height of reactor core 170 cm 235U enrichment 15%

Reactor core equivalent diameter 220 cm Number of assemblies 89
Height of active zone 150 cm Number of assembly cells 5 × 5

Grid spacing 3 cm Assembly without control rod 80
Diameter of fuel rod 2 cm Assembly with control rods 9

Thickness of the cladding layer 0.15 cm Number of control rods 45
Packing fraction 30% Packing matrix SiC

Moderator/coolant Light water Fuel UO2

3.2. Analysis of Variances under Different Packing Fractions

TRISO fuel particles are randomly embedded in the matrix material. Random dis-
persion is used to describe a distribution pattern, including the random filling of objects,
events or data points in the spatial position or range, which means that the position of
each point is randomly selected, and there is no obvious regularity or concentration trend.
In physics, random dispersion represents the dispersion effect caused by the disordered
filling of particles or particles in the medium. Hence, the random dispersion of TRISO fuel
particles constitutes the first uncertainty in transport calculation [22]. Regular or random
distribution models are usually adopted in the TRISO fuel particle transportation calcula-
tion. The regular distribution model refers to the model in which the fuel particles are filled
sequentially according to a certain rule, and the positions and spacing of the fuel particles
are regular, usually uniformly distributed, or arranged according to a specific rule, as
shown in Figure 6. The deterministic spatial distribution of this model loses consideration
of the random distribution, and the calculation results will deviate from the real results
to a certain extent. The random distribution model refers to the model in which the fuel
particles are filled according to random dispersion, and the center position and spacing of
the fuel particles are generated randomly, as shown in Figure 7. This model is closer to the
actual engineering–production situation and fully considers the uncertainty brought by
random distribution.

During the modeling process, the random dispersion of TRISO fuel particles in a fixed
fuel region mainly depends on the total number of fuel particles or the packing fraction [12],
and the packing fraction significantly affects the random dispersion. The packing fraction
refers to the volume fraction of all dispersed fuel particles in the matrix material. The
variation in the packing fraction may lead to a regular change in the difference between the
regular distribution model and the random distribution model. The randomness of the fuel
particle position should increase with the increase in the number of TRISO fuel particles,
but when the fuel rod is filled with fuel particles (74.048%), the fuel particle position has
only one arrangement, so its randomness is close to zero [12]. Therefore, the randomness
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introduced by the dispersion distribution should increase first and then decrease with the
increase in the packing fraction, and there exists an ideal packing fraction that maximizes
the randomness introduced by the dispersion distribution of fuel particles [12] and thus,
introduces the largest difference in the calculation results for the two models.
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In this study, ten sets of regular distribution models and random distribution models
with packing fractions of 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, and 45% are
constructed for comparison. The random distribution models construct ten different
distributions to calculate their mean value and standard deviation of Keff, aiming to quantify
the difference in random dispersion under different packing fractions for the two models.
The results are shown in Table 2.

The calculation results show a significant difference between the regular distribution
model and the random distribution model in transport calculation, and the transport
calculation results of the random distribution model are generally larger than those of the
regular distribution model. As the packing fraction increased, the uncertainty induced by
the random dispersion of fuel particles increased and then decreased; when the packing
fraction was between 25 and 30%, the random distribution calculated by the random
distribution model was maximized, with a standard deviation of 0.029%. The difference
between the regular and random distribution models also increased and decreased; when
the packing fraction is 5%, the relative difference between the regular distribution model
and the random distribution model is 2.066%. The reason for the large difference between
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the two models is that in the regular distribution model with a small packing fraction,
the distance between the fuel particles is much smaller than the average free path in the
neutron fuel rod. In this case, the neutrons escaping from the fuel particles may not be
slowed down or not fully enter into the adjacent fuel particles, which will increase the
probability of neutron and fuel nucleus collision and resonance absorption. The interaction
between adjacent fuel rods in this actual grid is usually called the mutual screening effect
or Dancoff effect. The cross-screen effect leads to a large number of neutron (n, γ) reactions
without fission, so the neutron utilization rate decreases. The distance between the fuel
particles in the random distribution model is random, so that the spatial mutual shielding
effects will not appear in large numbers, and the proportion of (n, γ) reactions will not be
large. Therefore, the transportation calculation results of the random distribution model
are generally larger than those of the regular distribution model.

Table 2. The regular distribution model under different packing fractions and transport calculation
results were obtained by the random distribution model.

Packing
Fraction

Keff of Regular
Model

Keff Mean of
Random Model

Standard Deviation
of Random

Model (pcm)

Relative
Difference of
Model (pcm)

1% 0.11842 0.12029 4.2 1554.6
5% 0.43368 0.44283 22.2 2066.3
10% 0.69283 0.70579 23.7 1836.2
15% 0.86609 0.87906 24.3 1475.4
20% 0.99748 1.00910 26.1 1151.5
25% 1.09436 1.10332 29.5 812.1
30% 1.16899 1.17629 29.0 620.5
35% 1.22304 1.22864 22.2 455.7
40% 1.27725 1.28052 28.6 255.3
45% 1.31643 1.31869 21.6 171.3

3.3. Regularity Analysis of Material Thickness

The fuel kernel and cladding layer of TRISO particles was produced by sol–gel and
chemical vapor deposition methods, respectively, and the actual dimensions of the kernel
and cladding layer obey the Gaussian distribution and slightly deviate from the standard
design dimensions due to the manufacturing process [21]. Table 3 details the kernel radius,
Buffer cladding layer, IPyC/OPyC cladding layer, and SiC cladding layer thickness [23],
along with their standard deviation [21] for the TRISO-dispersed fuel particles under the
existing fabrication process conditions.

Table 3. Material thickness parameters of each layer.

Material Layer Designed Thickness (mm) Standard Deviation of
Thickness (µm)

Kernel radius 0.200 12.76
Buffer cladding layer 0.100 22.96
IPyC cladding layer 0.050 10.20
SiC cladding layer 0.035 5.10

OPyC cladding layer 0.050 10.20

The change in material thickness will directly affect the interaction between neutrons
and different material layers, thus affecting the whole neutron transport calculations [24].
After reviewing the literature, among the four cladding layers of fuel particles, the loose
pyrolytic carbon layer (Buffer) and the inner dense pyrolytic carbon layer (IPyC) have a
greater effect on the effective multiplication factor [25]. Therefore, this study focuses on
the regularity of the kernel radius, loose pyrolytic carbon layer (Buffer), and inner dense
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pyrolytic carbon layer (IPyC) to determine the influence of material thickness on neutron
transport calculation.

The material thickness of each layer is constructed in 0.5σ increments with five layers,
and the total loading of UO2 is guaranteed to be constant. Table 4 shows the transport
calculation results and Figure 8 depicts their regularity.

Table 4. Material thickness variation transport calculation results.

Designed
Thickness (mm)

Number of Fuel
Particles

Transport Calculation
Results (Keff)

Kernel

0.018724 60,993 1.17990 ± 0.00029
0.019362 55,160 1.17826 ± 0.00029

0.02 50,048 1.17684 ± 0.00030
0.020638 45,548 1.17622 ± 0.00027
0.021276 41,573 1.17470 ± 0.00030

Buffer cladding layer

0.007704 50,048 1.17325 ± 0.00027
0.008852 50,048 1.17526 ± 0.00028

0.01 50,048 1.17699 ± 0.00028
0.011148 50,048 1.17879 ± 0.00027
0.012296 50,048 1.18145 ± 0.00030

IPyC cladding layer

0.00398 50,048 1.17539 ± 0.00029
0.00449 50,048 1.17653 ± 0.00029
0.005 50,048 1.17723 ± 0.00029

0.00551 50,048 1.17812 ± 0.00029
0.00602 50,048 1.17889 ± 0.00028

Energies 2024, 17, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 8. Effect of material thickness on transport calculation. 

It is demonstrated that with the increase in UO2 kernel radius, the Keff becomes 
smaller with the constant UO2 loading, and the reason is related to the spatial self-shield-
ing effect of fuel and the fuel utilization rate. A smaller kernel size reduces the spatial self-
shielding effect of the UO2 kernel [26] and improves the fuel utilization rate but also in-
creases the packing fraction under the same total amount of fuel. In comparison, a larger 
kernel size leads to an increase in the spatial self-shielding effect of the UO2 kernel and a 
lower fuel utilization rate. For the Buffer and IPyC cladding layers, as the thickness in-
creases, the Keff gradually increases; the reason is related to the moderating ability and 
scattering probability. The thinner cladding layer reduces the moderating effect of the 
cladding material on the neutron and the scattering probability of the neutron to the fuel 
kernel, which reduces the possibility of the neutron being absorbed by the fuel. The 
thicker layer increases the moderating ability and scattering probability of the cladding 
material for neutrons and increases the probability that neutrons will be scattered back to 
the UO2 kernel to undergo a fission reaction. In order to confirm the specific mathematical 
relationship between the material thickness and Keff, the stats module in the Scipy library 
is used to complete the regression analysis. The mathematical model is used to determine 
the specific relationship form, and then the influence of the three is analyzed. The results 
of regression analysis are shown in Table 5. As shown in Table 5, the material thickness 
of each layer is close to a linear relationship with the effective multiplication coefficient, 
the fuel core is negatively correlated, and the cladding layer is positively correlated. From 
the slope of the regression line, the influence of the outer coating material on transport 
calculation gradually decreases. 

Table 5. Results of regression analysis. 

Regression Analysis Parameters Kernel Buffer Cladding Layer IPyC Cladding 
Layer 

Slope −1.94984 1.73606 1.68431 
Intercept 1.21618 1.15979 1.16881 

Coefficient of determination (R2) 0.98241 0.99333 0.99400 
p value 0.00010 0.00023 0.00019 

Standard error 0.15060 0.08215 0.07549 

3.4. Multi-Engineering Parameter Quantitative Analysis of Overall Uncertainty 
The core of TRISO fuel particles is usually a spherical core composed of UO2 fuel. 

Due to variations in the chemical and isotopic composition of the uranium feedstock from 
different sources, suppliers, and enrichment processes, nuclear fuel enrichment uncer-
tainty is introduced. Nuclear fuel enrichment is critical to transport calculations, and this 

Figure 8. Effect of material thickness on transport calculation.

It is demonstrated that with the increase in UO2 kernel radius, the Keff becomes smaller
with the constant UO2 loading, and the reason is related to the spatial self-shielding effect
of fuel and the fuel utilization rate. A smaller kernel size reduces the spatial self-shielding
effect of the UO2 kernel [26] and improves the fuel utilization rate but also increases the
packing fraction under the same total amount of fuel. In comparison, a larger kernel size
leads to an increase in the spatial self-shielding effect of the UO2 kernel and a lower fuel
utilization rate. For the Buffer and IPyC cladding layers, as the thickness increases, the Keff
gradually increases; the reason is related to the moderating ability and scattering probability.
The thinner cladding layer reduces the moderating effect of the cladding material on the
neutron and the scattering probability of the neutron to the fuel kernel, which reduces
the possibility of the neutron being absorbed by the fuel. The thicker layer increases the
moderating ability and scattering probability of the cladding material for neutrons and
increases the probability that neutrons will be scattered back to the UO2 kernel to undergo
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a fission reaction. In order to confirm the specific mathematical relationship between the
material thickness and Keff, the stats module in the Scipy library is used to complete the
regression analysis. The mathematical model is used to determine the specific relationship
form, and then the influence of the three is analyzed. The results of regression analysis are
shown in Table 5. As shown in Table 5, the material thickness of each layer is close to a
linear relationship with the effective multiplication coefficient, the fuel core is negatively
correlated, and the cladding layer is positively correlated. From the slope of the regression
line, the influence of the outer coating material on transport calculation gradually decreases.

Table 5. Results of regression analysis.

Regression Analysis Parameters Kernel Buffer Cladding
Layer

IPyC Cladding
Layer

Slope −1.94984 1.73606 1.68431
Intercept 1.21618 1.15979 1.16881

Coefficient of determination (R2) 0.98241 0.99333 0.99400
p value 0.00010 0.00023 0.00019

Standard error 0.15060 0.08215 0.07549

3.4. Multi-Engineering Parameter Quantitative Analysis of Overall Uncertainty

The core of TRISO fuel particles is usually a spherical core composed of UO2 fuel.
Due to variations in the chemical and isotopic composition of the uranium feedstock
from different sources, suppliers, and enrichment processes, nuclear fuel enrichment
uncertainty is introduced. Nuclear fuel enrichment is critical to transport calculations, and
this uncertainty directly impacts the amount of 235U in the nuclear fuel and thus, the overall
calculations of the reactor core. Therefore, the combination of enrichment uncertainty,
including random distribution of material thickness and random distribution of spatial
position in the multi-engineering parameter, is essential for assessing the uncertainty of
fuel particles’ performance and behavior.

Sampling tools extract the enrichment sample space, and the enrichment samples
are converted into nuclide density one by one. The nuclide density is imported into the
OpenMC Monte Carlo transport program for transport calculation using random particle
sizes. This study uses a Gaussian distribution for enrichment, with a mean of 15% and a
standard deviation of 0.3333%, consistent with engineering applications. Valid intervals of
(14%, 16%) covering 99.74% of the overall intervals are selected, and the sampling results
are shown in Figure 9. The material thickness is modeled by constructing a sampling
function in the geometry module of the OpenMC program. This involves setting the mean
µ, and variance σ, of the Gaussian distribution for the material thickness of each layer
and establishing the distribution interval (µ − σ, µ + σ) for the material thickness of each
layer. Then, the samples are drawn from the distribution of each layer’s thickness, and the
TRISO fuel particles are constructed by cyclically superimposing the thicknesses until all
the TRISO fuel particles are modeled with random thicknesses. Considering the accuracy
of the transport calculation and the reasonableness of the calculation time, only 100 samples
are set for the transport calculation, and the distribution of the obtained results is shown in
Figure 10.

As shown in Figure 10, the transport calculation results are similar to a normal distribu-
tion, but the fitting curve is distorted. Figures 8 and 9 show that the effect of enrichment on
transport calculation is much larger than that of material thickness and random dispersion,
and the uncertainty of material thickness and random dispersion leads to a large distortion
of the results.

The transport calculation results are first examined for their distribution using the K–S
test method to determine the type of distribution. It compares the cumulative probability
density function (CDF) of the calculation results with specific distributions (e.g., normal,
uniform, and triangular) [12]. Table 6 summarizes the enrichment sample’s K–S test and
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transport calculation results. As indicated, both the enrichment sample and the transport
calculation results are normally distributed.
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Table 6. K–S test results of enrichment sample and transport calculation.

Calculation Data Mean Extreme
Difference

Significance Level (p-Value)

Uniform
Distribution

Normal
Distribution

Triangular
Distribution

Enrichment sample 14.998% 1.7728% 5.9257 × 10−4 1.00000 0
Transport calculation results 1.17862 0.04996 6.4101 × 10−4 0.85763 0

After determining the distribution type of transport calculation results, we can use
mathematical and statistical methods to obtain the mean, standard deviation, and other
statistical parameters to quantify the uncertainty associated with the distribution type. The
results are shown in Table 7. The enrichment sample and transport calculation results are
shown in Figure 11. The 95% CI indicates that the overall parameter has a 95% probability
of being within the confidence interval. The correlation coefficient is a statistic used to
measure the strength of the linear relationship between two variables [10]. These include the
Pearson correlation coefficient, Spearman’s rank correlation, and Kendall’s rank correlation
coefficient. The Pearson correlation coefficient measures the strength and direction of the
linear relationship between two continuous variables, with values ranging from −1 to 1 [10].
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Spearman’s rank correlation coefficient and Kendall’s rank correlation coefficient are used
to measure the rank relationship between two variables. They are similar to the Pearson
correlation coefficient but are more suitable for non-linear relationships or outliers. All
three correlation coefficients are close to 1, indicating a strong positive correlation between
transport calculation results and the enrichment sample [10].

Table 7. Multi-engineering parameter quantitative results of overall uncertainty.

Parameter Calculation Result

Mean 1.17862 ± 0.00028
Extreme difference 0.04996
Standard deviation 0.01003

Relative standard deviation 0.851%
95% confidence interval of mean 1.15896/1.19828

Pearson correlation coefficient 0.91443
Spearman’s rank correlation coefficient 0.90890
Kendall’s rank correlation coefficient 0.74088
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3.5. Multi-Engineering Parameter Quantitative Analysis of Uncertainty in the Power Distribution

Uncertainty of engineering parameters also greatly influences the reactor power distri-
bution [27]. First, the spatial dispersion of fuel particles impacts the power distribution,
and the homogeneous spatial distribution may lead to changes in the compactness of the
fuel stack, which in turn affects the fuel’s heat transfer and combustion efficiency. Then,
the uncertainty of fuel particle size affects the power distribution, and different sizes of
fuel particles lead to different heat conduction paths and combustion characteristics, which
in turn affects the spatial distribution of the power distribution and peak power. Finally,
different enrichments of fuel particles lead to a different neutron absorption and scattering
cross-sections, affecting the shape of the power distribution and peak power. Therefore,
in this study, a mesh tally is used to count the deposition energy of each reactor core
assembly. Each assembly’s deposition energy is normalized by the power distribution to
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accurately assess the range of the power distribution uncertainty, and its normalized power
distribution is shown in Figure 12.
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As shown in Figure 12, in the power distribution, the uncertainty in the core region of
the reactor core is small and gradually increases towards the periphery of the reactor core,
and the maximum uncertainty in the edge region of the reactor core is 1.495%. The reasons
for this are as follows:

(1) Neutron transport behaviors in the edge region of the reactor core are affected by
boundary effects, and geometric and material boundaries increase uncertainty induced
by engineering parameters.

(2) The flow paths of neutrons in the edge region of the reactor core are more complex,
thus increasing the uncertainty induced by engineering parameters.

(3) The magnitude of the neutron flux in the core region is large, and uncertainty induced
by engineering parameters has a small effect on it. In contrast, the magnitude of the
deposition energy in the edge region is small, and uncertainty induced by engineering
parameters has a large effect on it.

Therefore, in the reactor loaded with dispersed fuel particles, more attention should
be paid to the uncertainty of the edge region or the power level of the edge region should
be increased to make the power distribution of the core as flat as possible in the radial
direction [28] so that the power distribution of the whole reactor is more uniform and the
influence of engineering parameters on the edge region is reduced.
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4. Conclusions

In this study, uncertainty quantification of engineering parameters of TRISO-dispersed
fuel particles was conducted, and significant results were obtained. Firstly, the differ-
ences between the regular distribution model of the TRISO-dispersed fuel particles and
the random distribution model at different packing fractions were analyzed due to the
uncertainty introduced by the random distribution and the differences between the two
models. Secondly, the effect of the thickness of TRISO-dispersed fuel particles on the
transport calculation was investigated. Additionally, quantitative uncertainty analysis
was performed by sampling the enrichment sample space, combined with a high-fidelity
random model of spatial location random dispersion and multilayer material randomness.

As demonstrated, there is a difference between the regular and random distribution
models in transportation calculation, but the difference is not obvious. As the packing
fraction increased, the uncertainty induced by the random dispersion of fuel particles
increased and then decreased; when the packing fraction was between 25 and 30%, the
uncertainty induced by random distribution was maximized (0.029%). The maximum
relative difference between the regular distribution model and the random distribution
model is 2.066% when the packing fraction is 5%. Under constant UO2 loading, as the
radius of the UO2 kernel increases, Keff becomes smaller due to the spatial self-shielding
effect and the decrease in fuel utilization. As the thicknesses of Buffer and IPyC cladding
layers gradually increase, Keff increases due to the enhancement of moderating ability and
increased scattering probability. The quantitative uncertainty induced analysis of uncer-
tainty on engineering parameters such as enrichment, random dispersion, and thickness
using the Sampling Statistics Theory showed that the extreme difference is 0.04996, the
standard deviation is 0.01003, the relative standard deviation is 0.851%, the 95% confidence
interval is (1.15896, 1.19828), and there is a strong positive correlation between the transport
calculation results and enrichment samples. In the power distribution, the uncertainty
induced by engineering parameters is small in the center region of the reactor core and
gradually increases to the periphery of the reactor core, and the maximum is 1.495% in the
edge region of the reactor core.

The results of this study show that the transport calculation of TRISO-dispersed fuel
particles is affected by several uncertainty factors, the most important of which is fuel
enrichment. At the same time, fuel enrichment will be coupled with other engineering
parameters to form overall uncertainty. These results provide an important reference for the
engineering design and optimization analysis of the TRISO-dispersed fuel particle reactor.
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