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Abstract: The electrification of the transport sector has emerged as a game changer in addressing
the issues of climate change caused by global warming. However, the unregulated expansion
and simplistic approach to electric vehicle (EV) charging pose substantial risks to grid stability
and efficiency. Intelligent charging techniques using Information and Communication Technology,
known as smart charging, enable the transformation of the EV fleets from passive consumers to
active participants within the grid ecosystem. This concept facilitates the EV fleet’s contribution to
various grid services, enhancing grid functionality and resilience. This paper investigates the optimal
infrastructure design for a smart charging system within the Monash microgrid (Clayton campus). We
introduce a centralized Grid-to-Vehicle (G2V) algorithm and formulate three optimization problems
utilizing linear and least-squares programming methods. These problems address tariff structures
between the main grid and microgrid, aiming to maximize aggregator profits or minimize load
fluctuations while meeting EV users’ charging needs. Additionally, our framework incorporates
network-aware coordination via the Newton–Raphson method, leveraging EVs’ charging flexibility
to mitigate congestion and node voltage issues. We evaluate the G2V algorithm’s performance
under increasing EV user demand through simulation and analyze the net present value (NPV)
over 15 years. The results highlight the effectiveness of our proposed framework in optimizing grid
operation management. Moreover, our case study offers valuable insights into an efficient investment
strategy for deploying the G2V system on campus.

Keywords: electric vehicle; Grid-to-Vehicle; smart charging algorithm; infrastructure design; network-
aware algorithm

1. Introduction

The increasing international emphasis on tackling the complexities of climate change
has sparked a global commitment to develop sustainable energy infrastructure. This
has prompted a rapid shift towards electrifying the transportation sector, incorporating
timelines for discontinuing internal combustion engine (ICE) vehicles and encouraging the
adoption of electromobility [1].

In 2023, Australia saw an increase in the adoption of EVs, which accounted for 8.4%
of total new car registrations [2], trailing behind the global average of 14%. However, the
Bureau of Infrastructure and Transport Research Economics (BITRE) projected a rapid
increase in EV sales in Australia, estimated at approximately 25% by 2030 and 60% by 2040,
relative to annual new passenger vehicle sales [3]. In this context, the Australian Energy
Market Operator (AEMO) also anticipates a notable surge in EV charging demand of
5.9 TWh (including battery and plug-in hybrid EVs) within the National Electricity Market
in five years and 25.2 TWh in a decade under their green energy exports scenario [4].

The roll-out of uncontrolled EV charging will present significant challenges to energy
systems [5]. Numerous researchers have warned against the simplistic aggregation of EV
charging without any control system, as it could adversely impact grid operations [6].
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Nevertheless, the introduction of coordinated EV charging, facilitated by Information
and Communication Technology (ICT), known as smart charging, can transform EV fleets
from being a grid issue to a potential advantage. This transformation can be achieved
by utilizing smart consumers with unidirectional control (Grid-to-Vehicle, G2V) or smart
prosumers with bidirectional control (Vehicle-to-Grid, V2G), contingent on the specific
charging system implemented [7,8].

Optimization algorithms for controlling aggregated charging loads facilitate the ef-
ficient operation of grid systems and offer multifaceted benefits in developing charging
infrastructure. The regulation of peak loads reduces the necessity for fast chargers, thereby
avoiding unnecessary investment costs and minimizing upgrade expenses for the network
system. Moreover, smart charging systems can tailor flexible optimization strategies to
their specific environments. Given the extensive adoption of solar photovoltaic systems,
the Australian energy market typically experiences lower electricity prices during daytime
hours. Consequently, implementing smart charging systems optimized to maximize the
utilization of solar generation during the day yields significant economic advantages for EV
users while also fostering the establishment of the most eco-friendly charging infrastructure
in Australia.

1.1. Aims of the Research

This research explores the potential application of a G2V algorithm in effectively oper-
ating the increasing number of EVs within the Monash microgrid. This study introduces a
centralized G2V algorithm and formulates three distinct optimization problems based on
different tariff structures imposed on the Monash microgrid.

In the simulation phase, the research varies the number of EV users from 100 to 1000 to
anticipate the growing presence of EVs on the Monash campus. Through the simulation of
microgrid operation issues, including voltage variations, this study aims to identify the
impacts of uncoordinated charging and assess the potential benefits of implementing the
smart G2V system.

Additionally, the financial analysis of the proposed smart charging project is con-
ducted, seeking to determine the optimal configuration of charging infrastructure within
the Monash microgrid from the perspective of an aggregator. The charging systems’ NPV
are analyzed, considering variations in the total number of chargers and the composition
of charger types (level 1 and level 2). By comparing net project profits with an uncontrolled
(convenience) charging case, the study aims to unveil the optimal investment strategy for
the charging infrastructure design of the G2V system and address critical questions below
in the techno-economic aspect.

1. What is the required number of chargers to accommodate the escalating population of
EV users within the Monash microgrid?

2. To optimize overall profits while meeting user preferences, what types of chargers
should the aggregator deploy for maximum effectiveness?

3. How should the configuration of the charging system be strategically devised to maxi-
mize total profits while concurrently catering to users’ requirements and preferences?

The findings demonstrate that the G2V system effectively manages the EV interaction
with the microgrid to avoid violations and facilitates the stable operation of a significant
number of EVs within the existing microgrid network compared to uncontrolled charging
scenarios. Consequently, this results in improved financial outcomes. Results show that a
system with predominantly high-power chargers optimizes algorithm performance, increas-
ing satisfaction among EV users and maximizing daily power trading profits. However,
this only sometimes guarantees better project finance due to its higher capital costs. This
underscores the importance of detailed adjustments in designing the charging system’s
power types.
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1.2. State of the Field/Literature Review

The optimization problems in the smart EV charging research can be broadly classified
into two main categories: grid operation and cost savings perspectives. Each category is
customized to address the specific viewpoints of EV users, aggregators, or grid operators [7,9].

When addressing grid operation challenges, topics such as peak load regulation [10],
integration of distributed energy resources (DERs) like solar photovoltaic (PV) or wind
power [11–13], and grid stability issues due to EV charging, such as network voltage or
frequency [14,15], are widely discussed. While many studies propose well-coordinated
algorithm designs and novel solver techniques to tackle specific optimization problems,
the impact of infrastructure configuration on algorithm performance has yet to be exten-
sively addressed.

In terms of cost-related research, existing studies predominantly concentrate on mini-
mizing the operational costs of the charging system or maximizing daily profits for EV users.
However, a comprehensive examination of project finance for smart charging systems from
the investor’s perspective has yet to be extensively explored.

Author [16] presents a multi-objective optimization problem employing model pre-
dictive control (MPC) to minimize net load fluctuation and operational costs (electricity
generation and power loss) within a low-voltage network comprising 19 households. The
study showcases overall operational cost savings between controlled and uncontrolled
scenarios across various levels of EV penetration (ranging from 16% to 47%). Simulation
results indicate approximately 1% to 2% reduction in generation costs and 7% to 50%
reduction in loss costs. However, the research solely considers a single type of EV charger
(level 1, up to 7 kW), and the impact of different charger types (such as lower or higher
power) on cost-saving effects still needs to be explored.

Reference [17] introduces a two-stage, non-cooperative EV charging game to minimize
net charging costs for five aggregators, each managing 10 EVs. The simulation results
demonstrate a stable cost-saving effect (40% to 50%) for the aggregators and peak power
reduction (50%), regardless of the probability weighting function. However, this research
also solely incorporates single-type chargers (level 2, up to 20 kW) in the simulation
without further discussing how charger configuration affects cost savings. Additionally, the
simulation focuses on a very limited time frame (a single day, from 8 a.m. to 4 p.m.), which
poses limitations on guaranteeing the longer-term performance of the proposed algorithm.

Similarly, reference [18] introduces a non-cooperative hierarchical game competition
among charging stations, aiming to regulate peak load and maximize power trading profits
using particle swarm optimization. A case study is conducted in a distributed residential
network in Milwaukee, featuring four charging stations (32 nodes total) and 2500 EVs
(50,000 vehicles total), providing a highly reliable simulation result through long-term
performance analysis (spanning a year). However, the economic analysis of the charging
system is solely focused on daily revenue, indicating a stable convergence at approximately
$1000 per charging station. Assuming the aggregator’s responsibility for the construction
and operation of the system, a more comprehensive discussion regarding the economic
analysis of project finance is warranted. This should include detailed considerations of
operating profits and the overall system’s investment to provide a deeper understanding
of the financial implications.

Many studies focusing on cost-related objective functions [13,19–23] only address
operational revenue aspects. However, capital investment analysis is also crucial for
commercializing smart charging systems, especially from the investors’ perspective. It is
also imperative to acknowledge that the configuration of the charging infrastructure affects
algorithm performance and directly impacts the project’s economics. Therefore, there is
a critical need for a thorough exploration of the charging system’s configuration design,
equivalent to the level of attention devoted to algorithm design.
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1.3. Contribution of the Research

Currently, smart charging systems are in the conceptual phase, with no commercially
available G2V-enabled charging solutions on the market. However, the G2V system,
operating with unidirectional control, requires minimal upgrades to the onboard chipset in
conventional charging facilities and software packages [24–26]. As a result, the G2V system
emerges as a promising technology for potential implementation shortly, and the scope of
this case study focuses on approximately a decade ahead.

In this context, we assume that the capital costs of G2V solutions will be comparable
to conventional charging facilities, and the novelty of this research lies in the optimal
investment strategy of smart charging systems, including on charging infrastructure design
and tariff structures. This dimension needs to be addressed more extensively in existing
studies, and the key contributions of this paper can be summarized as follows:

1. We present a G2V system designed for daytime charging within a large public parking
garage in Monash University’s Clayton campus. The discussion on smart parking
systems is widespread, attributed to their diverse advantages, including integration
with DERs or the potential to operate as an energy buffer for load control, offering
opportunities to participate in a demand response (DR) market [27].
Considering the typically extended daily parking hours of vehicles on campus, the
university provides an ideal environment for implementing a smart charging system.
In this context, the research conducted serves as a case study, offering valuable insights
into the design of daytime charging systems in workplace environments.

2. In contrast to relying on simplistic assumptions regarding EV charging and parking
patterns, this study ensures the reliability of simulation results by utilizing measured
charging and parking data from the Monash campus spanning 2019. Additionally,
the performance evaluation of the G2V algorithm in this research extends through-
out the entire year (365 days in 2019), guaranteeing a longer-term reliability of the
simulation results.

3. This study discusses an optimal infrastructure design based on analyzing the proposed
system’s entire project finance (15 years) from the aggregator’s (the owner of the mi-
crogrid) perspective rather than relying on short-term economic analysis such as daily
profits. Through simulations, we investigate the most effective investment strategy by
examining the ideal quantity of EV chargers and the optimal configuration of charger
types (levels 1 and 2) based on the total number of EV users on the campus. The
financial analysis encompasses three scenarios contingent on the electricity contract
between the microgrid and the main grid operator. It also aims to identify the most
favorable tariff structure for the G2V system.

The subsequent sections of this paper are structured as follows: Section 2 outlines
the system model and fundamental assumptions guiding the model. Section 3 describes
the objective functions and constraints pertinent to the optimization problems. Section 4
details the sophisticated algorithm structures, presenting pseudo codes for each stage
incorporating dynamic power curtailment. Sections 5 and 6 provide details on simulation
parameters and analysis of results. The paper concludes with a summary of the findings
in Section 7.

2. System Model Description

This section outlines the physical architecture of the proposed Monash microgrid, the
power and cash flow model of the G2V system, and summarizes the EV charging and
parking models and assumptions. The proposed G2V service is presumed to be available
for everyone, including visitors. It exclusively focuses on the campus’s N1 parking facility,
which is designed to accommodate a maximum of 3000 vehicles.
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2.1. System Architecture

The Monash University Clayton campus, approximately 20 km southeast of Mel-
bourne’s central business district, has developed a precinct-scale microgrid platform
through the Australian Renewable Energy Agency (ARENA)-funded Smart Energy City
project. Spanning an area of 1.2 km2, the campus microgrid encompasses academic build-
ings, three libraries, one sports complex, five commercial facilities, two residential areas,
additional entertainment and ancillary facilities, and eight public parking lots, two of which
are under cover [28].

The construction of the microgrid is underway, but it is currently non-operational.
However, if everything goes according to plan, the envisioned architecture of the proposed
microgrid system will resemble the following. The microgrid will include controllable
loads totalling 3.5 MW across 20 mixed-use and multi-tenant buildings with EV chargers.
In addition to the controllable loads, the microgrid system manages two types of DERs
independently. The first is a 1 MW solar PV system incorporating eight separate smaller PV
systems installed on various building rooftops within the microgrid. Although physically
integrated with individual buildings, these PV systems can be independent DERs when
managed. The second DER is a 1 MWh integrated BESS featuring a 120 kW/120 kWh
lithium-ion and 180 kW/900 kWh vanadium flow battery. This system is installed and
combined with one of the buildings but also can independently be managed as a DER. A
smart microgrid platform is implemented to manage the energy output of these DERs and
the microgrid as a whole. Ideally, the microgrid platform concept incorporates four hierar-
chical control layers: DER integration, active grid management, smart energy management,
and TEM governing layer. These control structures enhance the microgrid’s power quality
through aggregated DERs and facilitate close communication with the energy market.
Figure 1 visually represents the physical network of interconnected buildings within the
microgrid, forming a real-world community with diverse load profiles.

Figure 1. Monash microgrid.

The proposed G2V system employs a centralized algorithm. A single aggregator
is tasked with overseeing the total charging requirements of the EV fleet in N1 parking
and facilitating communication with the energy market operator (AEMO) as an integral
component of the Monash microgrid.

The energy market operator oversees power trading activities, manages the balance
between supply and demand, and ensures optimal conditions on the local grid within
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established operating standards through the distributed network service provider (DNSP).
Moreover, the energy market operator facilitates complex interactions among various
grid-connected energy resources by communicating with the transmission network service
provider (TNSP). A pivotal aspect of this role involves conducting periodic biddings
to determine the market price, also referred to as the spot price, of electricity at five-
minute intervals within the National Electricity Market (NEM) based on bids submitted by
electricity generators.

As illustrated in Figure 2, the aggregator optimizes power flow (trading amount and
timing) unidirectionally (from the main grid to EV users) to maximize trading profits based
on communication with the AEMO.

Figure 2. G2V model (power and cash flow).

2.2. EV Charging Model

To better reflect reality, this study simulates the daily variability in EV users’ behavior
on campus. Additionally, it posits that EV users’ yearly parking and charging patterns in
the near future will closely resemble those observed in 2019. Based on these premises, the
subsequent sections outline the estimation of input parameters (EV parking and charging)
for simulation.

We define the index i ∈ I = [1, 2, · · · N] as the number of EVs in N1 parking requiring
charging service within a day. The proposed algorithm formulates charging schedules for
all connected EVs at each time slot t ∈ T = [1, 2, · · · 48], with each time slot representing
half an hour. Upon the arrival of a new EV at the charging bay at a time t, the aggregator
establishes external information variables denoted as ωi for the individual EVi. These
variables then serve as input parameters for the optimization process.

ωi = (tarr
i , tdep

i , Dmin
ch,i , Dmax

ch,i , Pmax
ch,i , Mi) ∀i ∈ I (1)

We assumed that each EV has a unique target state of charging (SoC) level. Rather
than imposing a fixed target SoC level in the optimization problem, we specified varying
minimum and maximum charging requirements for each EV.

Figure 3 presents a histogram delineating the historical charging data encompassing
all charging instances recorded at the N1 parking facility using two installed EV chargers.
Each bar within the graph corresponds to the amount of energy charged in kilowatt-hours,
while the y-axis value denotes the cumulative count of charging events observed over the
entire year in 2019 (the observations show that EV users charged 18.9 kWh per day on
average in 2019).
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Figure 3. Observed EV charging profile in 2019.

The symbol Dmin
ch,i in Equation (1) represents the minimum charging requirement

for each EV, denoted as EVi. Our assumption stipulates that the minimum charging
requirement (Dmin

ch,i ) for the EV fleet served by G2V charging of a day will adhere to the
distribution outlined in Figure 3, ranging from 8 kWh to 30 kWh, and the estimation of Dmin

ch,i
is carried out through Monte Carlo simulation. Furthermore, we estimate the maximum
charging requirement (Dmax

ch,i ) to be 1.5 times the minimum requirement, ensuring it does
not surpass 40 kWh. This consideration accounts for the physical limitations imposed by
the battery size of the EVs, which is set at 50 kWh.

8 kWh ≤ Dmin
ch,i ≤ 30 kWh ∀i ∈ I

Dmax
ch,i = 1.5 × Dmin

ch,i ∀i ∈ I

Dmax
ch,i ≤ 40 kWh ∀i ∈ I

To cater to the diverse charging needs of EV owners and optimize economic benefits
for both the aggregator and EV users, the proposed G2V framework integrates two charger
types: 2 kW (Level 1, L1) and 7 kW (Level 2, L2). Our analysis reveals that the average power
for EV charging is approximately 3 kW, considering an average charging requirement of
18.9 kWh and an average parking duration of around 7 h in 2019. Consequently, combining
2 kW and 7 kW chargers is sufficient for the G2V service.

The charging power allocation for EVi is contingent upon factors such as the duration
of parking and the charging demand. In the charging model, EVs must fulfil a minimum
requirement, Dmin

ch,i , by the end of the parking period, with the charging power constrained
between 0 and Pmax

ch,i . By default, if the 2 kW (L1) charger is capable of meeting the minimum
charging needs of the EV, users are more likely to select the 2 kW (L1) charger, given its
lower unit price compared to the 7 kW (L2) charger.

Dmin
ch,i ≤

tdep
i

∑
tarr
i

Pch,i(t) · ∆t · ηch ≤ Dmax
ch,i ∀i ∈ I (2)



Energies 2024, 17, 2267 8 of 26

s.t. Pch,i(t) ⊆ [0, Pmax
ch,i ] ∀i ∈ I, t ∈ T

Pmax
ch,i = 2 kWh if 0 ≤ Pch,i(t) ≤ 2 ∀i ∈ I, t ∈ T

Pmax
ch,i = 7 kWh if 2 < Pch,i(t) ≤ 7 ∀i ∈ I, t ∈ T

ηch = 90% (round-trip charging efficiency)

However, owing to the limited number of chargers, specific drivers may need help in
selecting their preferred charging power. They may need to opt for an alternative or give up
charging altogether. This constraint can result in user dissatisfaction, as individual EV users
may need to compromise on their desired SoC level (Mode 3) or accept a higher charging
fee (Mode 2), given that the unit charging price for L2 is higher than L1. Consequently,
the aggregator classifies EVs into three distinct charging modes, Mi, and imposes specific
constraints in the optimization process.

Mode 1(M1) : EVs opting for the charger of their need

Mode 2(M2) : EVs opting for higher charging power than they need

Mode 3(M3) : EVs opting for lower charging power than they need

2.3. EV Parking Model

This research recognizes the daily variability in EV users’ parking behaviors on campus
premises. In the parking model, we assume the parking behavior of the EV fleet aligns
with that of non-EV users. The N1 parking facility utilizes sonic sensors installed at each
parking bay to monitor the arrival and departure of the entire vehicle fleet at 15-min
intervals. To estimate the daily parking patterns of EVs in our simulation, we relied on
daily parking data (conventional vehicles) observed in 2019 and employed Monte Carlo
simulation techniques.

In Figure 4, illustrative depictions of daily vehicle parking on 29 March 2019 (left)
and the yearly trend of maximum parking numbers (right) are presented. The left figure
highlights notable instances, such as the peak entry (orange) at 9 a.m. with 695 vehicles
per hour (Vehicleenter(t)) , the peak exit (yellow) at 6 p.m. with 599 vehicles per hour
(Vehicleexit(t)) , and the maximum parking number (blue) reached at noon (red circle, left)
with 2006 vehicles (Nmax

daily).

Figure 4. Daily parking profile (left, 29 March 2019) and yearly maximum daily parking trend (right)
in N1 parking.

The parking behavior observed within the N1 parking facility displays substantial
daily fluctuations. As depicted in Figure 4, a distinct annual pattern emerges in the
maximum parking capacity, reaching a peak of over 2500 vehicles during the semester
and 2006 vehicles on 29 March (red circle, right), only to decline sharply on weekends
and during off-semester periods. Consequently, the outcome generated by the proposed
algorithm will inevitably manifest significant daily variability. Hence, it is imperative to
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conduct comprehensive long-term tests incorporating realistic parking profiles to ensure
the sustained reliability of simulations over extended periods.

In this context, our approach involves estimating the daily EV parking behaviors
by leveraging Monte Carlo simulation, utilizing the dataset observed from daily records
of vehicle parking for the whole year span in 2019. We also assume that EVs enter (tarr

i )

and exit (tdep
i ) within the same day, with no consideration for overnight parking in the

optimization problem. Furthermore, it is assumed that participants availing the proposed
charging service engage in parking for at least 4 h, and parking is at most 20 h per day.

48

∑
t=1

Vehicleenter(t) =
48

∑
t=1

Vehicleexit(t) (3)

Ndaily(t) =
48

∑
t=1

(Vehicleenter(t)− Vehicleexit(t)) ∀t ∈ T

Nmax
daily = max(Ndaily(t)) ∀t ∈ T

(4)

4hrs ≤ tdep
i − tarr

i ≤ 20hrs ∀i ∈ I

tarr
i : arrival time of EVi ∀i ∈ I

tdep
i : departure time of EVi ∀i ∈ I

2.4. Energy Supply Model

Let Pch(t) represent the total charging load of the EV fleet during the time slot t. We
assume that the main grid fulfils all charging requirements for EVs and the microgrid does
not engage in any DR market activities. Consequently, the total power consumption of the
microgrid, denoted as Ptotal(t), is the sum of the base load (Pbase(t)), solar PV generation
(Ppv(t)), and the aggregate EV charging (Pch(t)). The capacity limit of the transformer
between the substation and microgrid, denoted as Plimit

TF , 11.5 MW, establishes the physical
constraint on power trading. Ptotal(t) must not exceed this transformer constraint.

Ptotal(t) ≤ Plimit
TF ∀t ∈ T (5)

s.t. Ptotal(t) = Pbase(t)− Ppv(t) + Pch(t) ∀t ∈ T

Pch(t) =
I

∑
i

Pch,i(t) ∀t ∈ T

Plimit
TF = 11.5MW

3. Problem Formulation

This study constructs the offline optimization problem under the assumption of pos-
sessing foreknowledge for all of the information variables ωi, encompassing EVs’ parking
and charging details. This study incorporates three scenarios based on the electricity tariff
structure between the grid operator and the microgrid, as detailed in Section 5.2. The objec-
tive function for the optimization process is determined as either maxJpro f its or maxJsmooth,
depending on the electricity tariff structure below.

maxJ = d1 · maxJMonash
pro f its + d2 · maxJMonash

smooth (6)

3.1. Objective Function 1: JMonash
pro f its

The aggregator generates profits by capitalizing on the unit price differentials between
selling power to EV users and purchasing from the main grid. Figure 5 illustrates the
cash flow of the proposed G2V service. Employing the cost function maxJpro f its, the



Energies 2024, 17, 2267 10 of 26

aggregator seeks to determine the optimal charging schedule solution, denoted as Pch,i(t),
for individual EVi, to maximize trading profits. This formulation depends on the prior
knowledge of EV profiles and the offline optimization problem, where maxJpro f its can be
articulated as follows:

maxJMonash
pro f its = max

I

∑
i

tdep
i

∑
tarr
i

{(Pricepower
ch,i (t)− Costtari f f

ch (t)) · Pch,i(t) · ∆t · ηch} (7)

s.t. Pch,i(t) = δi(t) · Pmax
i ∀i ∈ I, t ∈ T

Pmax
i = [2 kWh, 7 kWh] ∀i ∈ I

0 ≤ δi(t) ≤ 1 ∀i ∈ I, t ∈ T

ηch = 90% (round-trip charging efficiency)

Price2kW
ch (t) = $0.2/kWh ∀t ∈ T

Price7kW
ch (t) = $0.25/kWh ∀t ∈ T

Costtari f f
ch (t) = RRP or ToU ($/kWh) ∀t ∈ T

where pricepower
ch,i represents the unit charging price in Australian dollars per kilowatt-hour

(AUD/kWh), a fixed value dependent on the charger types (L1 or L2). Costtari f f
ch (t) denotes

the unit electricity costs (AUD/kWh) at time slot t, varying according to different tariff
structures. To alleviate grid stress, Price2kW

ch,i is set to be lower than Price7kW
ch,i , incentivizing

EV owners to opt for the more economical 2 kW(L1) charger as long as it fulfils their
charging requirements.

Figure 5. Cash flow of G2V system.

We define the variable δi(t) as an optimization variable, signifying the charging power
ratio for EVi. As this study centers explicitly on the G2V strategy, we stipulate this variable
as continuous values within the positive range of 0 to 1. Consequently, Pch,i(t) signifies the
adequate charging power, varying from 0 to Pmax

ch,i during each time slot t. The principal
objective is to ascertain the optimal set of δi(t) across the entire parking duration from tarr

i

to tdep
i .

Upon the arrival of an EVi at the charging bay at the specified time tarr
i , we optimize

the charging schedule to fulfil the EV users’ requirements, ensuring its designated SOC
level within the prescribed lower and upper requirements for EV Mode 1 and Mode 2 in
Table 1. Nevertheless, applying Dmin

ch,i to EV Mode 3 is infeasible and thus, Mode 3 has a
distinct constraint of charging requirement for the optimization as guided by the following.

Mode 3 : Fully charging (no optimization)

Table 1. EV Charging modes.

Mode 1 Mode 2 Mode 3

Pmax
ch,i = 2 Pmax

ch,i = 2 Pmax
ch,i = 7 -

Pmax
ch,i = 7 Pmax

ch,i = 7 - Pmax
ch,i = 2



Energies 2024, 17, 2267 11 of 26

3.2. Objective Function 2: JMonash
smooth

In the case of flat-rate tariffs, the aggregator consistently generates the same profits
for power trading, given that both the unit charging price and the power purchasing
price in Equation (7) remain fixed. Hence, by employing the cost function maxJMonash

smooth , the
aggregator aims to identify the optimal charging schedule solution, denoted as Pch,i(t), to
minimize the fluctuation of the total load, inclusive of EVs’ charging. Similar to JMonash

pro f its ,
the primary objective of the optimization is to determine the optimal variable set of δi(t) as
expressed in Equation (7) throughout the entire parking duration, from tarr

i to tdep
i .

maxJMonash
smooth = max(−

48

∑
t=1

(Ptotal(t)− Ptotal)
2) (8)

s.t. Ptotal =
1
48

·
48

∑
t=1

Ptotal(t)

Equation (7) represents a linear problem, while Equation (8) constitutes a linear least-
squares problem. The solution set for δi(t) can be determined by utilizing an optimization
solver when the information variable ωi is given. In our research, we used the MATLAB
platform and two distinct Gurobi solvers, namely ’linprog’ and ’lsqlin,’ to address these
optimization problems. Table 2 delineates the categorization of the objective functions
according to the electricity tariff agreement.

Table 2. The objective functions.

Electricity Tariff

Flat Rate Time of Use (ToU) Spot Price

d1 0 1 1
d2 1 0 0

Objective Function (J) maxJMonash
smooth maxJMonash

pro f its maxJMonash
pro f its

3.3. The Voltage Magnitude Control

Furthermore, with the escalating number of EVs connected to the microgrid, main-
taining voltage levels within acceptable levels at all network nodes (n ∈ N) becomes more
complex. In response to this challenge, this study introduces a network-aware charging
strategy to address the node voltage issues in the campus as the number of connected
EVs grows.

|Vn(t)| ≤ V limit ∀n ∈ N, t ∈ T (9)

where vlimit in this context represents the per unit (p.u.) voltage deviation limit at the
Monash microgrid and is constrained to 0.1 as stipulated in this paper. We conducted a
power flow analysis of the microgrid using the Newton–Raphson method in a single phase.
This approach seeks a close-to-optimal solution for the power flow equation in each time
slot, and detailed explanations will be provided in Section 4.

4. G2V Algorithm

This section outlines the systematic progression and organization of the proposed
G2V algorithm. The algorithm is structured into two key components: Algorithm 1, which
tackles the scheduling optimization problem by solving either Equation (7) or Equation (8),
and Algorithm 2, which encompasses functions of node voltage control as expressed in
Equation (9). Figure 6 furnishes an overview of the proposed architectural framework of
the G2V system, elucidating the execution flow.
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Figure 6. Algorithm structure.

Algorithm 1: Charging schedule optimization with load congestion management
Data: ωi
Result: Pch,i(t)

Set the objective function

for t = 1:48 do
for i = 1:n do

Set: Pmax
i (2 or 7kW)

Optimization: δi(t), Pch,i(t)
Compute: Ptotal(t)
if Dmin

ch,i (t) ≤ ∑ Pch,i(t) ≤ Dmin
ch,i (t) then

if Ptotal(t) ≤ Plimit
TF then

Update: Pch,i(t)

else
Re-Optimization: δi(t), Pch,i(t)
Update: Pch,i(t)

Algorithm 2: Voltage management

Data: Bus data, line data, Ptotal(t)
Result: Vm,i, δi, Pch,i(t)

Set the bus admittance

for t = 1:48 do
for i = 1:n do

for j = 1:max iteration do
Compute: Pch,i(t), ∆P, ∆Q, J, ∆|V|, ∆δ, Vm,i
if (|∆P|, |∆Q| ≤ ε) & (j ≤ max iteration) then

if V ≤ Vm,i ≤ V then
Update: Vm,i, δi, Pch,i(t)

else
Pch,i(t) = Pch,i(t) - ∆P
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4.1. Algorithm 1: Charging Schedule Optimization

Algorithm 1 adopts a heuristic rolling horizon control strategy expressed in Figure 7,
aiming to determine the optimal charging schedule for the objective Equation (7) or (9).
The structure of Algorithm 1 adheres to the principles outlined in [29,30]. The algorithm
initiates the generation of an m by n parking index matrix, denoted as λmn(t) with values
of 0 or 1, based on the set of ωi at t. Here, m represents the number of parked EVs at t,
and n denotes the last parking slot among the parked EVs. Additionally, matrix δmn(t) is
introduced to represent the set of optimization variables of δi(t) in Equation (7) for m EVs.

Figure 7. λmn(t) and Λmn(t) for the rolling horizon process.

λmn(t) = (amn) =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 δmn(t) = (δmn) =

 δ11 · · · δ1n
...

. . .
...

δm1 · · · δmn

 ∀t ∈ T (10)

s.t. amn = [0, 1]

δmn = {set of δi(t)} ∀i ∈ m, t ∈ n

Adhering to the principle of the moving horizon, Algorithm 1 refines suboptimal pre-
dictions of Λmn(t) at each time slot based on the solution set of δmn(t) in Equation (7) or (8).
Consequently, Λmn(t) and bmn represent the suboptimal prediction set and charging power
for the of m EVs, respectively. In the absence of TL violations at time t, as expressed in
Equation (5), Algorithm 1 retains only the solution set of the current time t, Λm1(t), while
disregarding the rest. This process subsequently updates the Λmn(t + 1) set until the last
time slot.

Λmn(t) = (bmn) =

 b11 · · · b1n
...

. . .
...

bm1 · · · bmn

 Λm1(t) = (bm1) =

 b11
...

bm1

 ∀t ∈ T (11)

s.t. bmn = amn × δmn × Pmax
ch,i ∀i ∈ m, Pmax

ch,i ∈ [2, 7]

0 ≤ bmn ≤ Pmax
ch,i ∀i ∈ m, Pmax

ch,i ∈ [2, 7]

This investigation focuses on a centralized algorithm, where the aggregator takes on
the responsibility of optimizing the charging schedule. Additionally, this study delves
into an offline algorithm that considers the perfect accuracy of all EV-related information,
including ωi, treating Λmn(t) as a global solution. However, as Algorithm 1 lacks voltage
control considerations, potential voltage issues may arise in the microgrid. Consequently,
the computed suboptimal charging solution at the current time t, Λm1(t), serves as input
parameters for Algorithm 2 to evaluate node voltage in the microgrid.
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4.2. Algorithm 2: Voltage Control

Algorithm 2 introduces a network-aware and dynamic power curtailment technique
for EV charging. This approach aims to tackle the issue of maintaining satisfactory voltage
levels across all microgrid nodes amidst the increasing connection of EVs to the network.
The algorithm performs the power flow analysis, utilizing the Newton–Raphson method
to allow the aggregator to maintain voltage levels within acceptable ranges, ensuring
reliable and efficient grid operation. The Newton–Raphson method involves an iterative
approach utilizing an initial approximation and the application of Taylor’s series expansion,
constituting a successive approximation procedure [31].

The proposed method for controlling node voltage focuses on analyzing an intercon-
nected power system during normal operation, particularly in a steady state. The power
system assumes that the microgrid operates under balanced conditions and is expressed by
a single-phase network model. The Monash microgrid measures five distinct nodes’ active
and reactive power consumption every 15 min. Therefore, we added one additional node
of the load bus (N1 parking) and formulated the power flow equation below.

Ij =
n

∑
k=1

|Yjk||Vk| (12)

s.t. Yjk =
n

∑
k=0

yjk(j ̸= k), yjk =
1

zjk
∀j ∈ n

The formulation of complex power at bus j is represented by Equation (12), which
comprises a set of nonlinear algebraic equations utilizing the nodal admittance matrix
(ybus) expressed in voltage magnitude per unit and phase angle in radians. Here, the bus
admittance is the reciprocal of the impedance of the connection line between two nodes
(j and k), and Yjk represents the matrix form of the bus admittance expressed in Equation (12).

Pj − jQj = V∗
j Ij (13)

s.t. Pj =
n

∑
k=1

|Vj||Vk||Yjk|cos(θjk − δj + δk) ∀j ∈ n

Qj = −
n

∑
k=1

|Vj||Vk||Yjk|sin(θjk − δj + δk) ∀j ∈ n

Expanding Pj in Equation (13) through Taylor’s series centered at the initial approxi-
mation of v(0), considering a negligible error ∆v(0) and higher-order terms, results in a set
of linear equations relating ∆P and ∆v below.

P(v) = P(v(0) + ∆v(0)) = P(v(0)) + ∆P(0) = P(v(0)) + (
dP
dv

)(0)∆v(0) (14)

s.t. ∆P(l) ≃ (
dP
dV

)(l)∆v(l)

v(l+1) = v(l) + ∆v(l)

Consequently, the Jacobian matrix in n dimensions (Jn), which characterizes the partial
derivatives of P and Q assessed at ∆δ

(n)
j and ∆|V(n)

j |, establishes a linearized connection
between variations in phase angle and voltage magnitude and the small changes in active
(∆P(n)

j ) and reactive (∆Q(n)
j ) power below.[

∆P
∆Q

]
=

[
J1 J2
J3 J4

]
·
[

∆δ
∆|V|

]
(15)
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Utilizing Newton’s method to address the nonlinear power flow equations within the
Monash microgrid system improves accuracy by transforming the problem into a system of
linear equations. The subsequent steps delineate obtaining power flow solutions for load
buses through Algorithm 2.

1. Set the total EV charging at t (Psch
j = Λm1(t))

2. Set |V(0)
j | and δ

(0)
j equal to be 1 and 0 (the slack bus)

3. Calculate ∆Pj = Psch
j − Pj from Equations (13) and (14)

4. Calculate Jacobian matrix (J1,J2,J3, and J4 in Table 3)

5. Calculate |V(l+1)
j | = |V(l)

j |+ ∆|V(l)
j |

6. Iterate the process until the absolute value of ∆P(l)
j is below the predetermined threshold

|∆P(l)
j |, |∆Q(l)

j | ≤ Threshold

Table 3. Jacobian matrix elements.

J1 J2 J3 J4

Diagonal dPj
dδj

dPj
d|Vj|

dQj
dδj

dQj
d|Vj|

Off-diagonal dPj
dδk

dPj
d|Vk|

dQj
dδk

dQj
d|Vk|

Ensuring optimal control of voltage magnitudes across all nodes (j ∈ n) within the
Monash microgrid requires meticulous supervision to maintain specified threshold levels
denoted by |vlimit|. In the event of a voltage violation within the microgrid, Algorithm 2
adjusts the cumulative charging requirements, Λm1(t), using a curtailing ratio, β. This
process enables Algorithm 2 to dynamically modify EV charging, effectively addressing
voltage-related issues while simultaneously ensuring fairness among EV users through the
uniform application of β for all charging requirements. In the absence of voltage violation
issues, Algorithm 2 confirms either Λm1(t) or Λ∗

m1(t) as a global charging solution at t.

Λ∗
m1(t) = Λm1(t)× β =

 b11
...

bm1

× β =

 b∗11
...

b∗m1

 ∀t ∈ T (16)

s.t. b∗m1(t) = β × bm1(t) ∀t ∈ T

0 ≤ β < 1

5. Simulation Settings

This study explicitly assesses the algorithm’s performance in 2019, focusing on the
total simulation period spanning 365 days, from 1 January to 31 December 2019. We utilize
the exact EV model with a battery size of 50 kWh and two types of EV chargers, namely L1
(2 kW) and L2 (7 kW). The primary objective of the simulation is to identify the optimal
infrastructure design for the G2V service in the Monash microgrid. To achieve this, we
generate various scenarios related to EV users, chargers, and tariff structures, except for
the EV model (battery size). Subsequent sections elaborate on fundamental assumptions
and provide details about the specifics of EV-related scenarios for the simulation. MATLAB
Simulink is employed as the primary tool for evaluating the G2V algorithm.

5.1. EV Parking Numbers and Chargers

Utilizing historical parking data from N1 parking, we modeled the maximum daily
parking (Nmax

daily) based on annual trends as delineated in Equation (4). Figure 8 illustrates
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the yearly trajectory of Nmax
daily, reaching its peak at 2884 vehicles on 28 May (red circle, right),

with an average of 1171 vehicles per day throughout 2019.
In the context of the presented parking trend, our initial assumption involved deter-

mining the total number of EV users (NEV
users) on the campus, ranging from 100 to 1500.

Subsequently, we made two key assumptions: (1) the EV fleet would exhibit the same
parking profile as non-EV users, and (2) on the day with the highest value of Nmax

daily (28 May),
it is assumed that 100% of EV users exclusively utilize the N1 parking facility. Consequently,
the estimation of the maximum EV parking on a day (Nmax

EV,daily) is derived from the number
of EV users and the ratio between Nmax

daily (on that day) and 2884 (the yearly maximum of
Nmax

daily). Equation (17) calculates the maximum EV parking on 29 March (red circle (left) in
Figure 8) with 100 EV users on the campus.

Figure 8. Yearly trend of maximum daily parking.

Furthermore, we varied the total number of EV chargers (Ntotal
charger) based on the ratio of

total EV users, ranging from 10% to 100%. Additionally, we varied the ratio of the two types
of chargers (L1 and L2) based on Ntotal

charger. All assumptions related to EV scenarios are
summarized in Table 4.

Nmax
EV,daily =

Nmax
daily

2884
× NEV

users =
2006
2884

× 100 ≃ 70EVs (on 29 March) (17)

s.t. Ntotal
users = 100

Table 4. Variable parameters.

Input Parameters Scenarios

Total EV users (Ntotal
users) 100~1000 users

Total EVSE * Numbers (Ntotal
charger) 10~100% of Ntotal

users

L1 Charger Numbers (NL1
EVSE) 10~100% of Ntotal

charger
L2 Charger Numbers (NL2

EVSE) Ntotal
charger − NL1

EVSE

* Electric vehicle supply equipment.

5.2. Assumptions of the Financial Analysis

Historically, the vehicle parking and EV charging patterns at N1 parking have demon-
strated a consistent trend, with stability observed except for 2020 to 2022, impacted by the
COVID-19 pandemic. We assumed that the financial benefits to individual EVs from the



Energies 2024, 17, 2267 17 of 26

proposed G2V system over the entire project duration (15 years) would exhibit minimal
deviation compared to those witnessed in 2019. Based on these assumptions, we evaluated
NPV as part of the financial analysis. In the financial analysis, we formulated three tariff
structures for the electricity trading between the grid operator and the Monash microgrid.
The average spot price in 2019 hovers around $0.1/kWh, leading us to adopt a flat-rate
pricing at this value. For the ToU tariff, we structured it with peak and off-peak periods,
with Victoria’s case in Australia [32], while assigning different prices yet aligning with the
mean value of $0.1/kWh. Detailed explanations of all assumptions utilized in calculating
NPV are provided in Tables 5–7 below with Australian dollar currency in 2023.

Table 5. Tariff structures.

Scenario Tariff Contract Price Time

S1 Spot Price RRP in 2019 24 h

S2 ToU Rate [32] Off peak: $0.06/kWh Rest of time
Peak: $0.16/kWh 9 a.m. to 9 p.m.

S3 Flat Rate $0.1/kWh 24 h

Table 6. Assumptions for EV chargers.

Charger Types Charging Price Capital Cost Installation Cost

L1 (2 kW) $0.2/kWh $1500/charger $1500/charger
L2 (7 kW) $0.25/kWh $5000/charger $4000/charger

Table 7. Assumptions for NPV and IRR calculation.

CPI 5 % Tax Rate 25 %

Discount Rate [33] 6 % Project Duration 15 years

Operating Costs
(annual)

2% from the total
capital costs

Power Line Upgrade
Costs (N1 Parking) $300/kW

6. Results

In this section, our primary focus revolves around assessing the efficacy of G2V charg-
ing within the context of grid operations, explicitly delving into Algorithms 1 and 2. Subse-
quently, we thoroughly evaluate the financial benefits inherent in the G2V system, concur-
rently exploring the optimal infrastructure design strategy through NPV calculations.

In the simulation, we introduced variations in multiple parameters, including the
total number of EV users on campus, the overall count of EV chargers, the ratio between
two charger types (L1 and L2), and the tariff structure as delineated in Tables 4 and 5. To en-
sure a transparent and systematic comparison, we implemented two distinct systems, each
with systematically altered ratios of the two charger types. The specifics of these variations
are comprehensively detailed in Table 8. The L1-dominant system is characterized by a 90%
representation of L1 chargers from the total EV chargers, indicative of a lower charging
power system. Conversely, the L2-dominant system follows a vice-versa configuration.

Table 8. L1 and L2-dominant system.

L1 Charger Ratio L2 Charger Ratio
(from the Total EV Chargers) (from the Total EV Chargers)

L1-dominant 90% 10%(Low-Power System)

L2-dominant 10% 90%(High-Power System)
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6.1. Daily Performance by Scenarios

Figure 9 illustrates a one-day simulation for three distinct G2V scenarios, denoted as S1
(a), S2 (b), and S3 (c), conducted on 29 March 2019, with 1200 EV users (835 in EV parking)
and 1200 EV chargers. Each graph compares convenience and G2V charging in both L1
(black) and L2-dominant (red) systems with a subplot (blue, Costtari f f

ch (t) in Equation (7) or
Ptotal(t) in Equation (8)) .

Figure 9. Daily G2V Simulation.

In the L2-dominant system, convenience charging peaks at 12.9 MW at 10 a.m., sur-
passing the transformer limit and rendering it incapable of accommodating 835 EV parking
requirements for the day. Conversely, G2V charging controls total power consumption
below the transformer limit. The abundance of 7 kW chargers in the L2-dominant system
allows G2V to satisfy over 90% (d in Figure 9) of EV user charging needs, showcasing
substantial flexibility in optimization. However, convenience charging in the L1-dominant
system reaches only 10.2 MW at 10 a.m., not exceeding the transformer limit but fulfilling
approximately 50% (d in Figure 9) of EV user requirements due to a lower number of 7 kW
chargers. The prevalence of 2 kW chargers indicates less optimization flexibility, resulting
in a high similarity between convenience and G2V charging.

Scenario 1 demonstrates the highest daily profits in both systems, with the L2-dominant
system exhibiting a superior profit increase of 9.3% compared to convenience charging.
This is attributed to the high optimization flexibility, enabling the arrangement of more
charging schedules during lower RRP periods and thereby maximizing trading profits more
effectively. Scenario 3 yields identical daily profits to convenience charging, as the energy
trading profit remains fixed. Consequently, as long as the total energy trading amount
remains constant, convenience and G2V charging demonstrate equivalent daily profits. In
summary, the G2V algorithm significantly influences optimization in high-charging power
systems, achieving high charging rates with lower similarity between convenience and
G2V charging. Further details regarding the daily performance of G2V algorithms are
elucidated in Table 9.
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Table 9. Summary: daily performance.

Scenario Charging
Achievement Similarity Daily Profits Profits

Increase

L1-Dominant
G2V (S1) 57.5% 94% $3681 4.4%
G2V (S2) 56.1% 93.7% $2384 1.8%
G2V (S3) 57.8% 94.5% $3135 0%

L2-Dominant
G2V (S1) 94.5% 57% $7535 9.3%
G2V (S2) 94.1% 62% $5236 4.1%
G2V (S3) 94.8% 65% $6735 0%

6.2. Violations: Transformer Limit and Voltage Magnitude Limit

Figure 10 illustrates the annual maximum power demand within the Monash mi-
crogrid for convenience charging and G2V charging, categorized by the number of EV
users in 2019. The power consumption encompasses Monash load, incorporating solar
PV generation, and the cumulative EV charging demand based on L1 and L2-dominant
systems. Notably, the L2-dominant system exhibits a notable surge in total power consump-
tion, attributed to the substantial presence of 7 kW chargers. In the case of convenience
charging, it becomes unfeasible to accommodate more than 500 EVs without violating the
transformer limit in both systems. Conversely, G2V charging demonstrates the capacity to
accommodate over 1500 EVs without breaking the TL violation.

Figure 10. Total demand with number of EV users.

As delineated in Algorithm 2, the assessment of voltage magnitude across individual
nodes within the Monash microgrid is facilitated via power flow analysis. An algorithm
is deployed to ensure that the voltage levels at each node remain within the prescribed
standard range of 0.95 to 1 per unit. The envisaged algorithm for voltage regulation
orchestrates the adjustment of aggregated EVs’ charging capacities within the microgrid,
employing a flexible curtailment strategy that diminishes their present values by 5%.

Figure 11 illustrates the annual voltage levels across all nodes within the campus in
2019, contingent upon the quantity of EVs present. Without voltage regulation (conve-
nience charging), the microgrid experiences voltage irregularities beyond the threshold of
700 EVs. Conversely, the proposed algorithm demonstrates the capacity to uphold node
voltages within the designated standard range. Notably, the fluctuations in node voltages
exhibit greater stability, thereby demonstrating the efficacy of the proposed voltage control
methodology. Consequently, the microgrid can adeptly accommodate over 1000 EVs with-
out encountering issues about voltage magnitude while ensuring that all nodes remain
within the predetermined range.
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Figure 11. The yearly trend of node voltage at Monash campus for convenient charging (top) and
G2V charging (bottom).

6.3. Comparison Scenarios

Figure 12 illustrates the NPV trend based on the total number of EV users in an L2-
dominant system. The figure encompasses convenience charging (on the left) and G2V
charging (on the right) under three distinct scenarios, namely S1, S2, and S3. In all instances,
NPV exhibits an upward trajectory with the increasing number of EV users attributed to
enhanced power trading. The simulation of NPV was conducted with up to 500 EVs in
convenience charging, driven by constraints outlined in Section 6.2. The flat-rate contract
(S3) demonstrates a higher NPV of $0.87 million with 500 EVs than the RRP contract (S1).
This discrepancy arises from the parking arrival profile, leading to concentrated charging
demand around 10 a.m., the morning peak. Consequently, the Monash microgrid must
meet high charging demand during the high RRP period, resulting in lower energy trading
profits for S1 than S3. However, when simulating NPV up to 1500 EVs in G2V charging,
scenario 1 with the RRP contract yields the highest NPV of $2.12 million. G2V charging
efficiently schedules charging demand during lower RRP periods (less than flat rate),
maximizing trading profits in scenario 1. Due to its tariff structure, the ToU tariff exhibits
the least NPV. Scenario 2 can generate better profits only when optimization allocates
charging demand before or after 9 a.m. However, the parking arrival profile (focused on
between 9 a.m. and 9 p.m.) results in most charging occurring during the peak period,
priced at $0.16/kWh, leading to the worst NPV result. In summary, the flat-rate contract
emerges as the optimal choice without charging schedule optimization. Conversely, G2V
charging effectively maximizes trading profits under the RRP contract.

Figure 13 presents a comparative analysis between convenience and G2V charging
in both L1 and L2-dominant systems. G2V charging significantly increases NPV by 46%
in L1 and 96% in L2-dominant systems when considering 500 EVs under scenario 1. This
suggests that incorporating more 7 kW chargers results in two key advantages: (1) a boost
in the overall energy trading volume, and (2) the optimization efficiency is maximized
due to heightened scheduling flexibility. Consequently, the profitability of G2V charging
demonstrates a tendency to be maximized in L2-dominant systems.
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Figure 12. Number of EVs and NPV.

Figure 13. Number of EVs and NPV.

On the contrary, the ToU tariff (S2) exhibits a modest 11.8% increase in NPV within the
L2-dominant system. As previously elucidated, the G2V algorithm necessitates arranging
charging schedules before 9 a.m. and after 9 p.m. to optimize profitability in S2. How-
ever, due to the parking profile, most charging activities are concentrated during midday,
resulting in negligible NPV differences compared to convenience charging.

Under the framework of a flat-rate contract (S3), the aggregator purchases electricity
from the main grid at a predetermined unit price (Costtari f f

ch (t), $10/kWh) for all t. Conse-

quently, the unit trading profits (Pricepower
ch,i (t)− Cost f ixed,S3

ch (t)) also remain constant across
all time slots t for both G2V and convenience charging. Therefore, in terms of trading prof-
its, provided EVi maintains a consistent charging power (Pch,i(t), 2 or 7 kW), G2V charging
yields identical daily profits (expressed in Equation (7)) compared to convenience charging
within the flat-rate contract framework. Within this context, as long as the aggregator
maintains a consistent number and EV charger configurations (power ratio, L1-dominant
or L2-dominant system), the proposed G2V system generates equivalent daily profits and
NPV alongside convenience charging under the flat-rate contract (S3). Table 10 provides a
comprehensive overview of the NPV increases in G2V charging compared to convenience
charging across various scenarios.

Table 10. Summary: G2V performance by scenarios.

G2V(S1) G2V(S2) G2V(S3)

L1 Dominant 46% ($0.13 M) 0% 0%

L2 Dominant 96% ($0.36 M) 11.8% ($0.04 M) 0%
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6.4. Optimal Range of L2 Ratio

As we discussed in Section 6.3, G2V shows the trend of better performance in the high
charging power system. In this section, we explore the optimal configuration of power
ratio of the charging system.

The left graph of Figure 14 delineates the NPV based on the L2 charger ratio among
the total EV chargers with varying numbers of EV users in scenario 1. To facilitate a clear
comparison, the total number of EV chargers across all data points was fixed at 50% of the
total EV users.

Figure 14. L2 ratio and NPV.

The NPV demonstrates an increasing trend with the rise in EVs, attributable to height-
ened energy trading. However, the NPV reaches its peak when the L2 ratio is fixed at 70%,
depicted in the left graph (the vertical red dot line) of Figure 14, indicating an optimal
configuration (the maximum NPV). This optimal point is attributed to the fact that, at a
70% L2 ratio, the average charging achievement reaches a plateau of approximately 90%,
as depicted in the right graph (the horizon red dot line) of Figure 14. This implies that
surpassing a 70% L2 ratio does not significantly augment energy trading volume. However,
the capital cost increases sharply in proportion to the number of L2 chargers. Consequently,
NPV experiences a decline beyond the 70% L2 ratio from the total EV chargers.

The 70% L2 ratio is optimal when coupled with a 50% EV charger ratio from the total
EV numbers. However, it is essential to note that the optimal L2 point varies depending on
the EV charger ratio relative to the total EV users.

6.5. Optimal Range of EVSE Ratio

As elucidated in Section 6.4, an excessively high L2 ratio can lead to a reduction in
NPV. The optimal L2 ratio also varies depending on the EV charger ratio relative to the
total EV users. This section examines the interaction between the EV charger ratio and its
optimal L2 configuration.

The left graph of Figure 15 illustrates the NPV based on the EV charger ratio among
the total EV users within scenario 1. Each data point in this figure represents the highest
NPV identified through the simulations. Essentially, each data point represents the optimal
condition uncovered in this research, where these points align with varying L2 ratios, as
illustrated in the right panel. The NPV exhibits a positive trend with increasing EVs driven
by heightened energy trading. Nevertheless, the NPV attains its maximum when the EV
charger ratio is 50% depicted in the left graph (the red dot line) of Figure 15, regardless of
the L2 charger ratio, signifying an optimal configuration.

This phenomenon arises from the average daily parking occupancy of approximately
40% (1171 vehicles) relative to the maximum capacity observed on 1 June 2019, which
recorded 2884 vehicles. Consequently, on average, only 40% of EV users utilize the charging
facility in the simulation. Therefore, exceeding a 50% EV charger ratio does not notably
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increase energy trading volume while concurrently escalating capital costs in direct pro-
portion to the number of EV chargers. Furthermore, as depicted in the right panel, the
optimal L2 ratio varies depending on the EV charger ratio. The graph illustrates an inverse
relationship between these two parameters. For instance, at a 50% EV charger ratio (the red
dot line), a 70% L2 ratio yields the highest NPV irrespective of the number of EVs. This
implies that if the aggregator invests in more than 50% of EV chargers, maintaining less
than 70% of the L2 ratio ensures superior financial benefits. This is because, despite possess-
ing a substantial number of EV chargers, only a fraction is utilized daily (averaging 50%).
As discussed in Section 6.4, excessive L2 chargers can decrease NPV within the charging
system. Conversely, if the aggregator invests less than 50% of EV chargers, maintaining
a higher L2 ratio implies better financial benefits. This is because an insufficient number
of L2 chargers fails to meet the overall charging needs of EV users (resulting in lower
charging achievement), adversely affecting financial benefits through a reduced volume of
energy trading.

Figure 15. The optimal EVSE and L2 ratio

7. Conclusions

This paper delves into the optimal investment strategy for G2V systems within the
Monash microgrid. The Monash campus is an ideal environment for implementing smart
charging systems due to drivers’ longer parking duration (exceeding five hours per day).
In conjunction with algorithm design, infrastructure design plays a pivotal role in shap-
ing the performance and economic aspects of smart charging systems. Therefore, careful
coordination is paramount. This study meticulously analyzed the optimal infrastructure
configuration of EVSE and tariff structure in response to fluctuations in the number of
EV users on campus, considering perspectives from project finance. Our results indicate
that violation control stands out as a significant advantage of the G2V system. Without
a charging control system, the Monash microgrid can sustain a maximum of 500 EVs.
However, the proposed G2V scheme adeptly manages a substantial EV fleet, exceeding
1000 EVs, without encountering power trading or node voltage violation concerns. The
optimal ratio of EVSEs (from the total EV users) is closely correlated with the parking
profile of EV users. A low EVSE number can reduce operating costs, while an excessively
high number within the system can result in unnecessary investment costs, leading to
unfavorable financial outcomes. The optimal power ratio necessitates a more intricate opti-
mization approach. Employing a low-power system (L1-dominant) allows the aggregator
to minimize investment costs. However, this diminishes the algorithm’s flexibility (sharp
increase in Mode 3), resulting in decreased satisfaction among EV users and operating
profits. Conversely, a high-power system (L2-dominant) can positively impact project
finance metrics (e.g., NPV) by maximizing the optimization performance of the algorithm.
Nevertheless, excessive L2 chargers within the system can lead to unnecessary capital
expenditures, as energy trading amounts saturate at specific thresholds. Hence, achieving
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an appropriate balance between L1 and L2 chargers ratios is crucial. In the context of the
Monash microgrid, maintaining a 50% EVSE ratio and a 70% L2 charger ratio ensures the
highest NPV. The optimal tariff structure depends on the control scheme. The flat-rate tariff
ensures the highest NPV without a control system due to the inherent parking patterns at
the Monash campus. However, the G2V scheme exhibits maximal algorithm performance
within a dynamic rate (spot price) tariff.

In conclusion, devising an investment strategy for the smart charging system presents a
highly complex optimization problem, necessitating simultaneous consideration of various
internal/external factors such as EV users’ uncertainty and grid conditions. The EVSE ratio,
derived from the total number of EV users, emerges as a crucial parameter determining
the optimal charging power ratio. Moreover, when considering the usage rate of charging
facilities, increasing EVSE numbers within the system lead the aggregator to prioritize
possessing a relatively higher number of low-charging power units, thereby maximizing
financial advantages.

In this study, we have discussed the potential utilization of smart charging systems
at the microgrid level and optimal strategies for implementing such systems. However, it
is essential to note that the concept of smart charging can be expanded and applied on a
much broader scale. With the increasing adoption of renewable energy in grid systems,
the aggregated battery capacity resulting from smart charging could serve as an energy
buffer to mitigate the intermittency of DERs, thus significantly enhancing the quality of the
power grid. Furthermore, at the whole grid level, battery storage systems possess inherent
characteristics, such as rapid response times, which enable them to address stability and
reliability issues within the power network, including frequency control ancillary services
(FCASs). This aspect necessitates additional, comprehensive investigation in subsequent
research, and the following limitations require further exploration in future studies.

1. Firstly, this study did not consider the annual increasing trend of EV users on campus.
While the simulation increased the total number of EV users to analyze various opera-
tional issues within the Monash microgrid, for the convenience of NPV calculation in
financial analysis, the total number of EV users on campus was assumed to remain
constant throughout the total project duration. However, a more realistic consideration
is required for this aspect, and future research should integrate yearly variability in
the increasing number of EV users to mitigate this limitation.

2. Secondly, the simulation only considers a single EV model (battery size), overlooking
the anticipated increase in battery size in the future. Incorporating realistic trends in
battery size growth for project finance calculations is essential.

3. Lastly, the study relies on simplistic estimations of EV users’ behavior. While campus
drivers’ charging and parking patterns exhibit yearly stability, addressing EV user
uncertainty issues requires more nuanced approaches, such as employing prediction
models. These limitations highlight areas for further investigation to enhance the
comprehensiveness and accuracy of future studies.
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Abbreviations
The following abbreviations are used in this manuscript:

AEMO Australian Energy Market Operator
ARENA Australian Renewable Energy Agency
BITRE Bureau of Infrastructure and Transport Research Economics
DERs Distributed Energy Resources
DNSP Distributed Network Service Provider
DR Demand Response
EV Electric Vehicle
EVSE Electric Vehicle Supply Equipment
FCAS Frequency Control Ancillary Services
G2V Grid-to-Vehicle
ICE Internal Combustion Engine
ICT Information and Communication Technology
NEM National Electricity Market
NPV Net Present Value
MPC Model Predictive Control
PV Photovoltaic
SoC State of Charging
TNSP Transmission Network Service Provider
ToU Time of Use
V2G Vehicle-to-Grid
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