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Abstract: The performance of lithium-ion batteries is greatly influenced by various factors within
their operating environment, which can significantly impact their overall efficiency and effectiveness.
In this paper, a multi-physics field electrochemical thermal model is established to measure the
physical parameters of a battery module during the charge/discharge process. The effects of working
temperature, current rate, and convective heat transfer coefficient are investigated by establishing an
electrochemical and thermal model. The results are obtained by conducting numerous parameterized
scans to analyze the system’s state across various operating conditions, enabling the determination
of its temperature and the selection of appropriate cooling measures accordingly. Based on the
internal and external conditions of battery operation, parameter selection corresponding to the
operating range is divided into several stages, with thermal management strategies provided for
each stage. The existing framework facilitates the design of battery packs equipped with efficient
thermal management strategies, thereby enhancing the battery systems’ reliability and performance.
Furthermore, it aids in establishing optimal operational and safety boundaries for batteries.

Keywords: lithium-ion battery; thermal management; electrochemical-thermal coupled model;
heat transfer

1. Introduction

With continuous improvements in energy density in lithium-ion battery systems and
the evolution of high-power operating conditions, their applications have vast potential
across various fields, including renewable energy utilization, transportation, aviation, deep-
sea exploration, smart devices, and beyond [1]. Their use largely addresses the issues of
environmental pollution, the depletion of fossil fuels, and the geographical limitations of
energy resources [2]. However, the frequent occurrence of lithium-ion battery combustion
incidents has led to restrictions on the use of lithium-ion batteries in certain applications [3].
Research results forecast a possible total of around 900 EV fires between 2023 and 2050 [4].
Meanwhile, an increasing number of studies are focusing on the safety issues of high-energy
batteries. Among these, temperature control stands out as one of the most crucial factors
in ensuring the safe operation of batteries [5]. The amounts of accessible capacity, power
output, and service life significantly decrease beyond an optimal temperature window
(from 20 to 40 ◦C) [6]. Exceeding the safe temperature window (from 0 to 60 ◦C) poses
particular risks for using and storing these batteries. Therefore, it is crucial to emphasize
the necessity of a professionally designed battery thermal management system (BTMS) in
order to maintain the safety of the battery system.

As a crucial area of research and development, lithium-ion battery-related thermal
safety issues continue to present serious difficulties. The effects of high temperatures and
temperature changes on lithium-ion battery performance have been widely researched.
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The temperature behavior of lithium-ion batteries can be affected by a variety of factors.
Ambient temperature (Tamb) is one of the most direct external parameters affecting lithium-
ion batteries [7]. High temperatures accelerate the aging process of lithium-ion batteries,
leading to electrolyte decomposition and structural damage to positive or negative electrode
materials [8]. When operating in high-temperature environments, batteries are subject to a
more significant crisis of thermal runaway due to self-heating issues. They are also prone to
spontaneous combustion and explosions when stored in high-temperature environments.
Remarkably, the battery’s thermal management system’s temperature and the Tamb have
a tight correlation [9]. Slow kinetics and sluggish transport severely impede the charge
and discharge reactions at extremely low temperatures [10]. Lithium-ion insertion and
de-insertion rates on the positive and negative electrodes slow down [11]. In some cases,
the electrolyte may even freeze, leading to electrical behavior failure [12]. Another factor
affecting heat produced in the lithium-ion battery cell is the current that is used during the
charge/discharge protocol [13]. Different charging and discharging currents will affect the
battery’s open-circuit voltage, capacity, charging or discharging time, and heat generation
rate [14]. Changes in current also affect the rate of internal chemical reactions in the battery,
thereby influencing its performance. Higher currents can accelerate ion migration in the
electrolyte and charge transfer in electrode materials, thus altering the battery’s kinetic
behavior. The input and output methods of charging and discharging currents include
constant, voltage, power, pulse, dynamic, and other currents. The current ratio (measured
in amperes) to the battery’s nominal capacity (in ampere-hours) is expressed as the C rate, to
define the charging and discharging speed conveniently. According to Ohm’s law, different
C rates will result in different heat generation performance levels as the current passes
through the tabs and internal materials of the battery. The heat generated will exponentially
grow with an increase in the C rate. Because current is typically the active demand of a
battery, in research contexts, the C rate is commonly used as an input parameter to study its
effect on battery heating. The heat transfer coefficient is also an essential factor influencing
battery temperature [15]. A higher heat transfer coefficient implies more effective heat
dissipation, enabling the faster transfer of the heat generated inside the battery to the
surrounding environment. This helps to maintain the battery temperature within a safe
range and prevent overheating. Enhancing the heat transfer coefficient can improve the
uniformity of temperature distribution within the battery, thereby reducing hot spots and
enhancing the battery’s thermal equilibrium performance. Environmental conditions such
as temperature, humidity, airflow velocity, and other factors influence the heat transfer
coefficient. Under different environmental conditions, the heat transfer coefficient may
vary, affecting the battery’s heat dissipation effectiveness [16].

Different types of BTMS were studied to achieve varying heat transfer coefficients.
When the heat transfer coefficient is below 5 W m−2 K−1, adiabatic conditions are typi-
cally employed to simulate the occurrence of thermal runaway in batteries [17]. Natural
convection with heat transfer coefficients of less than 10 W m−2 K−1 often makes it chal-
lenging to meet the cooling requirements of batteries in practical applications. Different
cooling methods provide batteries with varying levels of heat transfer coefficients. BTMS
researchers have developed various cooling strategies, such as air, indirect liquid [18], heat
pipes [19], phase change materials (PCMs) [20], and immersion cooling with refrigerant
circulation [21]. However, different BTMS methods have different adaptation scenarios and
limitations. Air cooling systems have a lower heat dissipation efficiency, and it is difficult
to achieve precise temperature control in hot weather conditions due to their low cooling
capacity. Liquid cooling systems typically require more complex design and installation
processes, including components such as coolant circulation systems, heat exchangers,
and piping. The heat transfer efficiency of heat pipe cooling systems depends on the
size and structural design of the whole BTMS. PCMs have high enthalpy, which provides
passive cooling effects. However, due to their relatively low heat absorption or release rate,
there may be limitations when dealing with high power densities or in scenarios needing
rapid heat dissipation. It may be necessary to combine them with other cooling methods.
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Immersion cooling is gradually becoming mainstream due to its high heat flux and uniform
temperature characteristics. During immersion cooling, the liquid coolant comes into direct
contact with the battery or equipment, which may lead to corrosion, electrolyte leakage, or
other damage. Therefore, selecting an efficient and cost-effective BTMS method tailored to
different environmental and operating conditions and battery heat generation is significant.

Three methods can be used to describe a battery cell’s thermal behavior: electrochemical–
thermal principles, equivalent circuit components, or empirical equations [22]. The initial
two methods neglect complex physical phenomena, such as the spatial distribution of
charge/discharge electronic and ionic currents, along with temperature fluctuations at
various states of charge (SOC) [23]. In contrast, models based on electrochemical–thermal
principles capture these critical effects more accurately [24]. M. Guo et al. [25] used a
thermal single-particle model with fundamental circuit restrictions. According to the simu-
lation findings for circuit interruption, a single cell breaking might result in a considerable
loss of battery energy. There is a certain deviation evident in the low-rate tests since the
model ignores Li+ transport in the electrolyte. A. Celik [26] investigated the impact of
ambient temperature (0 and 25 ◦C), the convective heat transfer coefficient (from 5 to
25 W m−2 K−1), and C rate (from 0.5C to 1.5C) on the electrothermal characteristics of
an NCR cylindrical lithium-ion battery. In order to investigate the electrochemical and
thermal properties of a 14 Ah pouch battery, He et al. [27] created a three-dimensional
electrochemical thermal coupled model under natural convection settings. They discovered
that the non-uniform heat distribution production rate and, consequently, the non-uniform
temperature distribution are caused by the uneven distribution of local current density. Lyu
et al. [28] examined the thermal properties of a high-NMC lithium-ion battery based on the
pseudo-two-dimensions (P2D) model. They found that ohmic heat generation increased
with decreasing temperature. Most of the heat was attributed to the heat of polarization
around Tamb = 25 ◦C. Liang et al. [29] investigated temperature imbalances in a battery
module using a multilayered electrochemical model and a BTMS thermal model. The
results indicated that the change in C-rate results in an abrupt shift in the magnitude and
spatial distribution of local current density, as well as in the gradient of Li+ concentration
in both solid and liquid phases.

Although a significant amount of research focuses on BTMS with various cooling or
heating strategies, there still needs to be a comprehensive understanding of the crucial
parameters influencing the thermal behavior of lithium-ion batteries [30]. The convective
heat transfer coefficient required for lithium-ion batteries to operate within an appropriate
temperature range varies across a wide range of current input and output conditions, as
well as environmental temperatures. Therefore, a model was developed to assess the impact
of three key external factors, namely, environmental temperature, the charge/discharge C
rate, and the heat transfer coefficient, on the electrochemical reaction and heat generation
processes. Then, suitable operating conditions were investigated considering the operation
temperature. For this study, we developed a three-dimensional 26 Ah pouch lithium-ion
battery model. This research quantitatively demonstrated the impact of various parameters
on battery temperature and validated the model’s accuracy through fundamental exper-
iments. The results were clear and intuitive, enabling the precise calculation of physical
changes during battery heat generation processes. This contributes to understanding the
complex thermal response of batteries under different operating conditions, providing
valuable insights for designing an efficient BTMS.

2. Methods and Validation
2.1. Model Description

A 26 Ah lithium-ion battery is tested in this study. The parameters are listed in
Table 1 [31,32]. The multi-layer structure of a pouch cell includes an Al foil current collector
(Al CC), a positive electrode plate layered with NCM (PE), a separator (SEP), a negative
electrode plate layered with MCMB, and a Cu foil current collector (Cu CC). As seen in
Figure 1, the entire structure is submerged in the electrolyte. The one-dimensional (1D) elec-



Energies 2024, 17, 2319 4 of 23

trochemical model is coupled with a three-dimensional (3D) thermal model to compute the
heat generation mechanism, discharge limit, and temperature variation when the battery
operates under various conditions. The explanation for developing the model encompasses
the formulation of the governing equations that describe the system’s behavior, the speci-
fication of boundary conditions that define the system’s boundaries and its interactions
with its surroundings, and the identification of those input parameters that influence the
model’s outcomes. The simulation employs TimeDependent with Initialization Study,
which involves setting the initial conditions and iteratively solving the system over time to
capture dynamic changes and transient behavior.

Table 1. Basic specifications of the battery [31,32].

Property Specification

Nominal voltage 3.6 V
Maximum charge voltage 4.2 V
Maximum discharge rate 5C
Charge cut-off current 500 mA
Discharge cut-off voltage 2.7 V
Electrode chemistry NMC/graphite
Electrolyte chemistry LiPF6 and 3:7 EC:EMC
Size 342 × 118 × 8 mm3
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2.1.1. Electrochemical Model

The electrochemical model presented by Thielemann and Newman [33] was employed
to establish a battery model, which includes the concepts of electrochemical kinetics and
charge (ion) and mass (electron) conservation. Its foundations are the hypotheses regard-
ing homogeneous porous electrodes [34]. The following assumptions form the basis of
the combined electrochemical thermal model, considering computation efficiency and
model correctness: (1) uniform spherical particles are used to mimic the active particles
in electrodes. (2) Electrochemical reactions occur exclusively on these active particles’
surfaces. (3) No gas generation occurs during the charge/discharge processes, and the
total volume stays unchanged. (4) Solid and liquid phases are the only states present
during operation. (5) All local current density is determined using the Butler–Volmer
equation. (6) The battery’s thermal conductivity varies both axially and radially, displaying
anisotropic properties. (7) The average values for the battery materials are represented by
density and specific heat capacity.
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Table 2 summarizes the electrochemical model’s governing equations and its boundary
condition and continuity condition settings [35,36]. Further details can be found in various
literature sources and are not reiterated here [37,38].

Table 2. Governing equations and boundary conditions [35–38].

Electrochemical Model Governing Equation Boundary and Continuity Conditions

Mass conservation in solid phase ∂cs,i
∂t =

Ds,i
r2

∂
∂r

(
r2 ∂2cs,i

∂r

)
∂cs,i
∂r

∣∣∣
r=0

= 0

−Ds,i
∂2cs,i

∂r

∣∣∣
r=Rs,i

=
jLi

As,i F

Mass conservation in liquid phase εe,i
∂ce
∂t +∇ ·

(
−De f f

e,i ∇ce

)
− As,i jloc,i

F (1 − t+) = 0

∂ce
∂x

∣∣∣
x=0

= ∂ce
∂x

∣∣∣
x=Lp+Lse+Ln

= 0

∂ce
∂x

∣∣∣
x=Lp−

= ∂ce
∂x

∣∣∣
x=Lp+

∂ce
∂x

∣∣∣
x=(Lp+Lse)−

= ∂ce
∂x

∣∣∣
x=(Lp+Lse)+

Charge conservation in solid phase ∇ ·
(

σ
e f f
s,i ∇φs,i

)
= As,i jloc,i

−σ
e f f
s,i

∂φs,i
∂x

∣∣∣
x=0

= iapp

−σ
e f f
s,i

∂φs,i
∂x

∣∣∣
x=L

= iapp

φs,i
∣∣
x=L = 0

Charge conservation in liquid phase ∇ ·
(

σ
e f f
s,i ∇φe +

2RgTbat σ
e f f
e,i

F (t+ − 1)

·
(

1 + ∂ ln f
∂ ln ce

)
∇ ln ce

)
+ As,i jloc,i = 0

∂φe
∂x

∣∣∣
x=0

=
∂φe
∂x

∣∣∣
x=L

= 0

Electrochemical dynamics jloc,i = j0,i

{
exp

[
aaηi F
RgTbat

]
− exp

[
− aaηi F

RgTbat

]}
ηi = φs,i − φe,i − Ueq,i

j0,i = Fks,ic
aa
e

(
cs,max,i − cs,sur f ,i

)aa
caa

s,sur f ,i

2.1.2. Thermal Model

The battery thermal model is established in 3D by utilizing a heat transfer module
consisting of the multilayer body and positive and negative tabs, all enclosed within a
metal shell. Mesh generation is performed using the free tetrahedral method, as depicted in
Figure 2. The thermal model simplifies the battery body’s laminated structure, treating it as
a unified, anisotropic material with thermal conductivity. Additionally, the model incorpo-
rates the battery’s hard case, which facilitates heat transfer to the surrounding environment.
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In this model, the governing equation is the energy conservation equation, as shown
in Equation (1):

∂
(

ρbatCp,batTbat

)
∂t

=
1
x

∂

∂x

(
λxx

∂Tbat
∂x

)
+

1
y

∂

∂y

(
λyy

∂Tbat
∂y

)
+

1
z

∂

∂z

(
λzz

∂Tbat
∂z

)
+ Qgen (1)

where Qgen represents the electrochemical enthalpy of the battery. Previous studies have
suggested that Qgen includes both reversible heat Qrev and irreversible heat Qirrev. The variable
Qirrev is further divided into ohmic heat Qohm and polarization heat Qpol. Equations (2)–(5) can
be used to determine Qrev, Qohm, and Qpol, accordingly.

Qgen = Qrv + Qirrv = Qrev + Qohm + Qpol (2)

Qrev = Ajloc,iTbat
∂Ure f ,i

∂Tbat
(3)

Qohm = σ
e f f
e,i

2RgTbat

F
(t+ − 1)

(
d ln f
d ln ce

+ 1
)
∇(ln ce) · ∇φe,i + σ

e f f
e,i (∇φe,i)

2 + σ
e f f
s,i (∇φs,i)

2 (4)

Qpol = As,j jloc,iηi (5)

Qrev arises from the entropy change occurring in the electrode’s active materials
during the Li+ intercalation and deintercalation process. It is absorbed during the charging
process when lithium ions are intercalated into the electrode material, which requires
energy input and is an endothermic process. When Li+ deintercalates from the electrode
material and releases energy, Qrev is released as heat, making the battery warm up during
discharge. Consequently, Qirrev is exothermic during charge/discharge, given the same
SOC, and varies depending on the active materials utilized. Ions and electrons traverse the
electrolyte during the charge/discharge process, causing Qohm. Qohm is generated across
all of the battery multilayers, including the electrolyte, positive/negative electrode, and
separator. Meanwhile, Qpol is generated due to the resistive losses and inefficiencies in the
electrochemical reactions occurring at the electrodes during the charge and discharge cycles.
It significantly influences the Li+ intercalation mechanism. Qpol and Qrev are exclusively
produced in the electrode region.

Considering the minimal temperature difference between the battery and the environ-
ment, we opted to disregard heat radiation and focus solely on heat convection. At the
thermal boundary condition, Qconv is derived as follows:

Qconv =
2h
d

(
Tsu f − Tamb

)
(6)

where d is the battery thickness in the direction perpendicular to the parallel electrodes,
and the h value can be input by parameter scanning. It primarily encompasses the range
from natural convection to forced convection.

2.2. Model Parameters

Table 3 shows the constant multilayer electrode specifications and electrochemical
parameters, obtained either directly from the battery manufacturer or from the literature
with necessary adjustments. Table 4 presents the temperature- and reaction kinetics-
dependent parameters, including the electrode’s thermodynamic properties, the entropy
thermal coefficient, dynamic variables in the electrolyte, and others [39,40].
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Table 3. Parameters for the coupled model.

Parameters Values Ref.

Length, Li (µm) 55/10/65 for PE/SEP/NE [41]
Liquid phase volume fraction, εe,i 0.30/0.37/0.30 for PE/SEP/NE [36]
Solid phase volume fraction, εs,i 0.48/0.6/0.528 for PE/SEP/NE [36]

Additive volume fraction, εelse,i (µm) 0.19/0.068 for PE/NE [36]
Solid active particles radius, Rs,I (µm) 2.7/1.5 for PE/NE [34]

Maximum concentration of Li+ in active material, Cs,max.i (mol m−3) 31,507/38,021 for PE/NE [34]
Reaction rate coefficient, ks,0 7 × 10−12 [41]

Initial electrolyte concentration, ce,0 (mol m−3) 1200 [34]
Specific surface area, As,I. (m−1) 3εs,i/Rs,i
Transference number of Li+, t+ 0.363 [41]

Transfer coefficient, ai 0.5 [42]
Ideal gas constant, Rg (J mol−1 K−1) 8.314 [42]

Reference temperature, Tref (K) 293.15
Volumetric heat capacity, Cpbat (J m−3 K−1) 960.65 [43]

Faraday constant, F (C mol−1) 96,487
Battery density, rbat (kg m−3) 2571.6 [43]

Thermal conductivity, λx,y,z (W m−2 K−1) 36.2/36.2/1.204 for x/y/z direction [43]

Table 4. The thermodynamic and kinetic dynamic parameters utilized in this model [39,40].

Parameters Equations

Solid diffusion coefficient of electrode kinetics D1,ca = 5 × 10−14 exp
(

25000
Rg

(
1

Tre f
− 1

Tbat

))
D1,a = 3.9 × 10−14 exp

(
42000

Rg

(
1

Tre f
− 1

Tbat

))
Reaction rate ks,p = ks,0 exp

(
40000

Rg

(
1

Tre f
− 1

Tbat

))
ks,n = ks,0 exp

(
20000

Rg

(
1

Tr f f
− 1

Tbat

))
Electrode thermodynamic properties of

equilibrium potential Ueq,i = Ure f ,i +
(

Tbat − Tre f

)
dUre f ,i

dT

Entropy changes of electrodes dUre f ,p
dT =

 −21.624SOC8
p + 81.462SOC7

p − 127.9796SOC6
p

+111.39549SOC5
p − 59.77425SOC4

p + 19.7009SOC3
p

−3.4301SOC2
p + 0.2762SOCp − 0.1008

× 10−3

Electrolyte diffusion coefficients De,i = 1 × 10−4 × 10−4.43− 54.0
Tbat−229.0−0.05c −2.2×10−4c

Dynamic variables in electrolyte related to the
Li+ transport v = 0.601 − 0.24

√
10−3C + 0.982

(
1 − 0.0052(T − 294.0)

√
10−9C3

)
Thermodynamic factor

k2 = 1.12 × 10−4

 −8.2488 + 0.053248T − 2.9871 × 10−5T2

+0.26235C − 9.3063 × 10−3CT + 8.069
×10−6CT2 + 0.22002C2 − 1.765 × 10−4C2T


Electrolyte conductivity f = (

−0.2141 + 0.001159ce − 7.292 × 10−7c2
e

+1.136 × 10−7c3
e − 3.61 × 10−13c3

e
) exp

(
− 1000

Rg

(
1

Tre f
− 1

Tbat

))

2.3. Model Validation

The mesh independence study showed that a mesh number of 81,520 has an acceptable
level of accuracy for numerical simulation. Increasing the mesh number by 100% results in
nearly identical current, voltage, and temperature values, with errors of less than 0.5%.

The battery’s discharge performance and temperature dynamics serve as validation
criteria for the proposed model. A battery management system (BTS-5V60A, Neware
Electronics Co., Ltd., Shenzhen, China) and a constant environmental chamber (GTHJ-
B4170, Guangjun Technologies Inc., Suzhou, China) were employed to assess the charge-
discharge behavior. Five thermo-sensors were strategically positioned at the geometric
center and the four corners of the battery to monitor its temperature during discharge. The
placement of these thermo-sensors is illustrated in Figure 3. Similarly, five temperature
probes were situated at these exact locations in the thermal model. Experiments were
conducted using three environmental chamber temperatures (273.15 K, 293.15 K, and
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313.15 K). The batteries underwent charging via a constant current and voltage (CCCV) at
1C and subsequent discharge at varied constant current (CC) rates (0.5C, 1C, and 2C) for
each test. Following each charge or discharge cycle, a rest period was necessary to achieve
ion equilibrium in the electrolyte and allow the battery’s temperature to recover.
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Figure 3. Schematic diagram of the experimental setup and the thermos-sensors on the sample battery.

Figure 4 shows the temperature distribution at the end of the 0.5C, 1C, and 2C dis-
charge on the battery at Tamb = 20 ◦C. The different colors of the battery surface indicated the
temperature distribution, as shown in Figure 4a,c,e. There are contact thermal resistances
between the positive/negative tabs and the conductors. Therefore, the heat generation
rate of each tab is set to a constant value, respectively. The minimum temperature of the
battery is on the seam since the seam does not generate heat. In order to highlight the
temperature differences seen on the main body of the battery, the temperature of the seam
is hidden, as shown in Figure 4b,d,e. In Figure 4b, the battery temperature has a maximum
value of 296.65 K at the top of the battery, while the minimum value is 296.39 K at the
bottom of the pouch battery. The temperature difference between the four corners and
the center of the battery body is less than 0.26 K. In Figure 4d, the maximum temperature
is transferred to the center of the battery. The maximum temperature difference on the
surface of the battery is lower than 0.42 K. At 2C discharge, the temperature on the battery
body exceeds that on the tabs, with the lower-middle part of the battery body having the
maximum temperature. The maximum temperature difference is 1.27 K, seen in Figure 4e.
The temperature difference on the battery surface steadily rises with increasing discharge
rate and the highest temperature shifts from the area near the tabs to the lower-middle
part of the battery. Hence, the average temperatures (Tave) of the simulation results were
compared with those of the experimental results to validate the model. The results are
shown in Figure 5.

When Tamb is 0 ◦C, after a 0.5C discharge, the simulation results in a maximum
temperature rise of 6.77 K, compared to an experimental maximum temperature rise
of 6.73 K. For a 1C discharge, the simulation shows a maximum temperature rise of
10.56 K, while the experimental maximum temperature rise is 11.8 K. After a 2C discharge,
the simulation indicates a maximum temperature rise of 26.05 K, and the experimental
maximum temperature rise is 27.75 K. The simulation’s initial voltage for a 0.5C discharge
is 4.1209 V, compared to an experimental initial voltage of 4.1524 V. For a 1C discharge, the
simulation’s initial voltage is 4.0664 V, and the experimental initial voltage is 4.1353 V. For a
2C discharge, the simulation’s initial voltage is 3.9937 V, and the experimental initial voltage
is 4.0736 V. Similarly, at both 20 ◦C and 40 ◦C, as the ambient temperature increases, the
rate of temperature rise decreases gradually, while the discharge starting voltage gradually
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increases. Under the same ambient temperature, as the discharge rate increases, the
temperature rise gradually increases and the discharge starting voltage gradually decreases.
At high discharge rates and low temperatures, there may be large differences between the
simulation and experimental results, which is consistent with the findings of Li et al. [24].
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3. Results and Discussion

The governing equations, boundary conditions, and mesh establishment were set
using COMSOL Multiphysics® 6.1. The ambient temperatures, discharge rate, and heat
transfer coefficient (h) were identified as significant factors affecting battery performance.
In subsequent sections, their impact on various electrochemical characteristics is simulated
and analyzed across both 1D and 3D scales.
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3.1. The Impact of the Tamb on Battery Discharge Rate

The ambient temperature plays a crucial role in determining the overall performance
of the battery. Several electrochemical parameters are temperature-dependent, such as
the diffusion coefficient of Li+ in both the solid and liquid phases of the positive and
negative electrodes. As the ambient temperature decreases, this coefficient also decreases,
resulting in the reduced mobility of lithium ions and accelerated polarization and transport
resistance. These changes significantly affect the electrochemical characteristics of the
battery. Therefore, simulations were conducted using an adiabatic model to study the
impact of ambient temperature on the electrochemical and thermal behavior of the battery.
The model inputs were parameterized using a scanning approach with different ambient
temperatures (from −40 ◦C to 45 ◦C, with intervals set every 5 ◦C) at different discharge
rates (0.1C to 5C, with intervals set every 0.1C). The results yielded the maximum discharge
rate (Cmax), discharge capacity, initial voltage, and maximum temperature (Tmax) of the
battery under different ambient temperatures, as shown in Table 5. Based on the discharge
rates of Cmax when Tamb < 15 ◦C and 1C when Tamb ≥ 15 ◦C, the discharge capacity, initial
voltage, and Tmax plots are shown in Figure 6.
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Figure 6. Effect of different Tamb values on battery parameters. (a) Discharge capacity; (b) initial
voltage; (c) Tmax.

At low temperatures, the electrochemical reaction rate of the power battery decreases,
and the charge transfer resistance significantly increases. Compared to electrochemical
ohmic resistance and SEI film impedance, the effect of temperature on the electrochemical
reaction process is more pronounced. The charge transfer resistance increases exponentially
as the temperature decreases [44]. Therefore, the dramatic increase in charge transfer
resistance at low temperatures is the main reason for the deterioration of power battery
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performance. The decrease in the solid-phase diffusion coefficient of lithium ions in
graphite at the negative electrode is also one of the main factors leading to the deterioration
of power battery performance at low temperatures. Thus, at the same discharge rate, the
battery’s discharge capacity and initial voltage both decrease significantly with decreasing
ambient temperature. Simultaneously, high currents accelerate the process of lithium metal
formation on the surface of the negative electrode. Additionally, temperature reduction
accelerates the narrowing of the lithium plating window, restricting the energy density
and charge-discharge capability, leading to a decrease in the maximum discharge rate of
the battery. The above information provides the discharge rate boundaries for subsequent
simulations of the overall thermal conductance across the entire temperature range.

Table 5. The discharge capacity, initial voltage, and Cmax of the battery with the adiabatic model.

Tamb (◦C) Cmax Discharge Capacity (Ah) Initial Voltage (V) Tmax (K)

−40 0.3 2.24 (0.3C) 3.19 (0.3C) 236.82 (0.3C)
−35 0.4 3.18 (0.4C) 3.51 (0.4C) 243.68 (0.4C)
−30 0.5 5.24 (0.5C) 3.70 (0.5C) 250.77 (0.5C)
−25 0.7 6.93 (0.7C) 3.82 (0.7C) 261.85 (0.7C)
−20 0.9 9.12 (0.9C) 3.95 (0.9C) 277.07 (0.9C)
−15 1.2 11.56 (1C) 3.99 (1C) 289.58 (1C)
−10 1.4 15.83 (1C) 4.02 (1C) 302.27 (1C)
−5 1.9 18.24 (1C) 4.05 (1C) 320.39 (1C)
0 2.2 20.82 (1C) 4.07 (1C) 334.8 (1C)
5 2.7 21.55 (1C) 4.09 (1C) 349.51 (1C)
10 3.5 22.81 (1C) 4.10 (1C) 374.7 (1C)
15 4.1 23.25 (1C) 4.11 (1C) 394.54 (1C)
20 4.8 24.93 (1C) 4.12 (1C) 416.38 (1C)
25 5 (rated) 26.12 (1C) 4.13 (1C) 424.08 (1C)

3.2. The impact of the Heat Transfer Coefficient on Battery Temperature

In this part of the analysis, the heat transfer coefficients underwent a parametric scan
under adiabatic conditions (0.01, 0.05, 0.1, and 0.5 W m−2 K−1), natural convection (1, 2, 3,
4, 5, and 10 W m−2 K−1), and forced convection (20 to 100 W m−2 K−1), as well as strong
forced convection (110 to 400 W m−2 K−1). When the ambient temperature was below
25 ◦C, the C rate scan referred to the low-temperature discharge boundaries outlined in
Section 3.1. When the Tamb was above 25 ◦C, the Cmax was set to 5C, based on the battery’s
rated maximum input current. For ease of presentation, the relationship between Tmax and
discharge rate, the heat transfer coefficient, will be illustrated in cloud plots categorized by
ambient temperature. These will be depicted in Figures 7–10.

Figure 7a–d shows the Tmax of the battery at Tamb = −40, −35, −30, and −25 ◦C, with
a heat transfer coefficient from 0.01 to 100 W m−2 K−1. To facilitate the presentation of
data with low h values, the horizontal axis is logarithmically scaled. The blank areas
in the figures represent invalid discharge rates. The appearance of step-like patterns is
due to limited scanning precision where a decrease in the heat transfer coefficient alters
the effective maximum discharge rate of the battery. Clearly, in ultra-low temperature
environments, it is hard for the battery to achieve satisfactory discharge performance, even
under adiabatic conditions with extremely low heat transfer coefficients. Not only does the
maximum discharge rate significantly decrease, but the temperature rise during discharge
is also limited, making it challenging to rely on self-heating for subsequent discharge
operations. When Tamb is −40 ◦C, the battery temperature only increases by 3.07 K at
h = 0.01 W m−2 K−1 and a C rate = 0.3. The maximum temperature occurs at Tamb = −25 ◦C,
reaching 261.71 K. Therefore, it is nearly impossible for the battery temperature to reach
above 273.15 K when the ambient temperature falls below −25 ◦C without an external
heat source.

Figure 8a–d shows the Tmax of the battery at Tamb = −20, −15, −10, and −5 ◦C, with
a heat transfer coefficient from 0.01 to 100 W m−2 K−1. The figure depicts isotherms at
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273.15 K (black line), 293.15 K (red line), and 313.15 K (yellow line). It can be observed
that when starting from Tamb = −20 ◦C, the battery temperature exceeds 273.15 K under
specific heat transfer coefficients. At Tamb = −15 ◦C, the maximum discharge rate and
the battery temperature range grow. The battery temperature can reach above 293.15 K
at Tamb = −10 ◦C when h < 1 W m−2 K−1. Even at Tamb = −5 ◦C, the battery can reach
temperatures above 313.15 K when h < 0.5 W m−2 K−1. Adiabatic or insulation conditions
can help the battery operate within the optimal temperature window in these ambient
temperature ranges. Although the battery temperature can rise above 313 K, the ambient
temperature limits the initial discharge rate of the battery. Heating measures are still
required to enhance the electrochemical performance of the battery.
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Figure 7. The Tmax of the battery with a heat transfer coefficient from 0.01 to 100 W m−2 K−1 at Tamb

of (a) −40 ◦C, (b) −35 ◦C, (c) −30 ◦C, and (d) −25 ◦C.

Figure 9a–e shows the Tmax of the battery at Tamb = 0, 5, 10, 15, and 20 ◦C with a
heat transfer coefficient from 0.01 to 100 W m−2 K−1. A blue isotherm line represents
the safety temperature limit of 333.15 K. In this scenario, it is necessary to increase the
heat transfer coefficient to prevent the battery from overheating under high discharge
rates. Natural convection and conventional forced convection (h < 50 W m−2 K−1) are
sufficient to maintain the battery operating around 2C in the optimal temperature window.
At Tamb = 15, 20 ◦C, the battery temperature will reach the runaway temperature under
adiabatic conditions. This poses a danger to the battery’s operation, and strict attention
should be paid to balancing the power demand with the external heat transfer coefficient.

Figure 10a–e shows the Tmax of the battery at Tamb = 25, 30, 35, 40, and 45 ◦C with
a heat transfer coefficient from 0.01 to 400 W m−2 K−1. Above 25 ◦C, heat dissipation
becomes the main issue. The horizontal axis of Figure 10 is linear. In this temperature
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range, the maximum discharge rate of the battery reaches 5C. As the temperature increases,
the reaction rate of the active material in the battery core increases, and the reaction of the
electrolyte becomes more intense. Without a low-temperature cooling source, the battery
temperature can easily exceed the optimal and limit windows, even if the heat transfer
coefficient increases to 400 W m−2 K−1 or above. The convective heat transfer coefficient
can only bring the battery temperature close to the ambient temperature. Especially at
temperatures exceeding 40 ◦C, the battery can only operate within a high temperature
range. At this point, the limitation imposed on the maximum discharge rate of the battery
is no longer the low temperature but rather the heat dissipation method.
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Figure 8. The Tmax of the battery with a heat transfer coefficient from 0.01 to 100 W m−2 K−1 at Tamb

of (a) −20 ◦C, (b) −15 ◦C, (c) −10 ◦C, and (d) −5 ◦C.

Overall, the optimal temperature range for battery operation is from −10 to 35 ◦C
in this study. Figure 11 illustrates all operating conditions within the temperature range.
The different color blocks represent different environmental temperatures, while the range
of the color blocks represents the discharge rates and heat transfer coefficients that allow
the battery to reach between 20 and 40 ◦C at the end of discharge. Because the diurnal
temperature variation in most cities generally does not exceed 15 ◦C, the temperature
range from 10 to 35 ◦C is divided into three segments, each spanning 15 ◦C, for separate
analysis. The overlapping sections of the color blocks are labeled in Figure 11a–c. Within
the environmental variation range of 15 ◦C, the battery needs to operate within the shaded
area to ensure an optimal operating temperature. From −10 ◦C to 5 ◦C, the battery can
operate between 1.1C and 1.4C under h < 1 W m−2 K−1. From 5 to 20 ◦C, the discharge rate
can expand to 2.7C. The demand for h also increases to 40 W m−2 K−1. From 20 to 35 ◦C,
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the C rate depends on how significant the heat transfer coefficient is. As the Tamb increases,
the shaded area gradually expands. This allows for more operating conditions where the
battery can operate within the optimal temperature window.
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Figure 9. The Tmax of the battery with a heat transfer coefficient from 0.01 to 100 W m−2 K−1 at Tamb

of (a) 0 ◦C, (b) 5 ◦C, (c) 10 ◦C, (d) 15 ◦C, and (e) 20 ◦C.
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Figure 10. The Tmax of the battery with a heat transfer coefficient from 0.01 to 400 W m−2 K−1 at Tamb

of (a) 25 ◦C, (b) 30 ◦C, (c) 35 ◦C, (d) 40 ◦C, and (e) 45 ◦C.
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to 20 ◦C, (c) Tamb = 20 to 35 ◦C.

3.3. Analysis

Based on the results from Sections 3.1 and 3.2, we have categorized the ambient
temperature and provided heat transfer recommendations to optimize the battery’s thermal
performance at each temperature. The diagram is illustrated in Figure 12. Tamb values
from −40 to −25 ◦C represent extremely cold environments, where effective discharge
is nearly impossible when relying on the battery itself. This implies that specific self-
heating methods based on electrochemical kinetics may fail due to insufficient battery
capacity and low current. Additional heat sources are required to provide the battery with
an appropriate temperature environment. Current battery heating technology includes
interior heating and exterior heating. However, the activation energy of the reaction at
extremely low temperatures may not meet the high current demand for internal short-
circuit heating. Reliable external heating, such as liquid/phase change material heating
and electric heating elements, can better adapt to extreme climates [45]. With Tamb values
from −20 to −5 ◦C, thermal insulation can enable the battery to achieve discharge at lower
rates. Applying internal heating methods can achieve a high heating rate along with low
energy consumption.
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Figure 12. The diagram shows the relationship between ambient temperature, maximum C rate, and
the heat transfer coefficient where Tamb = −40 to 45 ◦C.

When Tamb > 0 ◦C, the battery’s discharge capacity is restored to over 80% of its rated
capacity, and its discharge capability gradually improves. At this point, natural convection
can adequately meet the battery’s basic cooling needs, with h from 0.05 to 400 W m−2

K−1. A BTMS can be designed for heating integrated with cooling [46]. The switching
between heating and cooling requirements can meet the heat dissipation requirements
of the battery’s starting temperature and discharge limit. As the Tamb rises to 20 ◦C,
the battery’s maximum discharge rate also increases to above 4C. Forced convection is
necessary to satisfy the demand for maximum power discharge. From passive air cooling
to indirect liquid-based methods, the cost and complexity of the BTMS system also need to
be considered in order to meet the temperature control requirements [43].

When the Tamb exceeds 40 ◦C, convective cooling without a cooling source becomes
less efficient. Forced cooling methods are required to decrease the battery temperature to
the optimal range. Immersion cooling, where the battery is submerged in an insulating
fluid, has the potential to increase heat transfer rates by up to 10,000 times compared to
passive air cooling [21].

Due to the sensitivity of the battery’s internal resistance to temperature changes,
especially in large pouch batteries composed of multiple layers, temperature gradients
occur between layers and at different levels. This temperature gradient can lead to uneven
current distribution and local heterogeneous degradation and can reduce battery life [47].
According to the battery temperature distribution under various discharge rates with
different ambient temperatures, shown in Figure 4, BTMS should consider not only the
working environment of the battery but also its structure. Considering the characteristics
of the high-temperature area shifting from the electrodes to the battery central part as the
power level increases, heat dissipation can be achieved through two-phase immersion or via
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composite materials for zoning management. The enhanced electrochemical performance of
tab cooling can create a more uniform temperature distribution, resulting in more uniform
current distributions between the battery layers.

Above all, in this article, we provide strategies for battery thermal management suit-
able for different temperatures, as shown in Figure 13. For environments with excessively
high temperatures, designing a BTMS involves increasing the heat transfer coefficient and
providing additional cooling sources. Even during storage, batteries should be monitored
to prevent issues such as self-discharge and electrolyte decomposition caused by high
temperatures, which can limit battery lifespan and safety. Especially in the case of battery
modules located in the middle of clusters or at the end of liquid cooling systems, designing
additional temperature equalization measures is essential to enhance module lifespan and
electrical-thermal performance consistency. Batteries operating within their optimal tem-
perature range can utilize BTMS with lower heat transfer coefficients to save operating costs.
However, it is essential to have emergency cooling methods in place to prevent sudden
thermal runaway disasters. Batteries operating in cold environments require insulation or
heating to help them reach their optimal operating range. Nonetheless, attention should
also be paid to thermal management during high-power conditions. In extremely low-
temperature environments, lithium-ion batteries require additional active heating devices
to facilitate cold starting. Considering temperature variations due to seasonal changes or
power transitions, future BTMS designs need to be increasingly flexible. From heating to
insulation to cooling, smart combinations of active and passive methods are necessary to
ensure the widespread and safe application of lithium-ion batteries.
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4. Conclusions

For this study, we developed a coupled 1D electrochemical 3D thermal model of a
26 Ah lithium-ion pouch cell. We investigated the electrical and thermal behavior of the
battery under different C rates, ambient temperatures, and heat transfer coefficients. The
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simulation results were validated against the experimental data. Some key conclusions are
as follows:

(1) Ambient temperature significantly impacts the electrochemical and thermal perfor-
mance of lithium-ion batteries. Higher discharge rates lead to increased polarization
and ion transport resistance, demanding higher reaction temperatures. Consequently,
the maximum discharge rate of the cell decreases at low temperatures.

(2) The maximum temperature of the battery is correlated with the heat transfer coefficient.
The required magnitude of the heat transfer coefficient varies with different ambient
temperatures. At low temperatures, adiabatic conditions are required to provide
thermal insulation for the battery, while at high temperatures, increasing the heat
transfer coefficient is necessary for effective heat dissipation from the battery.

(3) Different heat transfer coefficients correspond to various thermal management strate-
gies. Designing a BTMS with tailored heat transfer coefficients for typical environ-
mental conditions and discharge rates can enhance battery performance accurately
and efficiently. Additionally, taking into account the time or power dependence of
heat generation based on battery geometry is crucial. These research findings offer a
reference for designing future lithium-ion BTMS.

Author Contributions: Conceptualization, X.J.; Methodology, K.L.; Software, K.L. and C.S.; Valida-
tion, K.L.; Formal analysis, C.S.; Investigation, K.L.; Resources, B.W.; Data curation, K.L. and Y.C.;
Writing—original draft, K.L.; Writing—review & editing, X.J. and C.X.; Supervision, C.X.; Project
administration, S.W.; Funding acquisition, M.Z. and X.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Science and Technology Project of the State Grid Corpora-
tion of China (Development and Application of Immersion Liquid Cooling Technology for Battery
Energy Storage System, 4000-202420082A-1-1-ZN).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to privacy.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

Nomenclature

A specific surface area (m−1)
c Li+ concentration (mol m−3)
Cp,bat volumetric heat capacity (J m−3 K−1)
CCCV constant current constant voltage
Cmax maximum discharge rate
d battery thickness (m)
D diffusion coefficient (m2 s−1)
f thermodynamic factor
F faraday constant (C mol−1)
G relevant parameters of porous properties
h heat convection coefficient (W m−2 K−1)
iapp external current (A)
j0 exchange current density (A m−2)
jloc local current density (A m−2)
jLi transfer current density (A m−3)
k reaction rate coefficient (m−1 s−1)
L length of each layer (µm)
q heat generation of each part (W m−3)
Qgen rate of total heat generation (W m−3)
r distance to the center of the particle (µm)
R active particle radius (µm)
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Rg ideal gas constant (J mol−1 K−1)
SOC state of charge
t+ transference number of lithium ion
T temperature (K)
U electrode potential (V)
V terminal voltage (V)
α transfer coefficient
γ correction coefficient
ε volume fraction
η overpotential (V)
λ thermal conductivity (W m−1 K−1)
ρ density (kg m−3)
σ conductivity (S m−1)
φ electric potential (V)
a anode
ave average
pol polarized
amb ambient
bat battery
ca cathode
conv convective heat
e electrolyte phase
eff effective parameter
eq equilibrium
irrev irreversible
max maximum
n negative electrode
ohm ohmic
p positive electrode
ref reference value
rev reversible
s solid phase
se separator
surf surface
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