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Abstract: Despite the tightening of energy performance standards for buildings in various countries
and the increased use of efficient and renewable energy technologies, it is clear that the sector needs
to change more rapidly to meet the Net Zero Emissions (NZE) scenario by 2050. One of the problems
that have been analyzed intensively in recent years is that buildings in operation use much more
energy than they were designed to. This problem, known as the energy performance gap, is found in
many countries and buildings and is often attributed to the poor management of building energy
systems. The application of Artificial Intelligence (AI) to Building Energy Management Systems
(BEMS) has untapped potential to address this problem and lead to more sustainable buildings. This
paper reviews different AI-based models that have been proposed for different applications and
different buildings with the intention to reduce energy consumption. It compares the performance of
the different AI-based models evaluated in the reviewed papers by presenting the accuracy and error
rates of model performance and identifies where the greatest potential for energy savings could be
achieved, and to what extent. The review showed that offices have the greatest potential for energy
savings (up to 37%) when they employ AI models for HVAC control and optimization. In residential
and educational buildings, the lower intelligence of the existing BEMS results in smaller energy
savings (up to 23% and 21%, respectively).

Keywords: artificial intelligence; buildings; energy efficiency; saving potential; HVAC; BEMS

1. Introduction

The operation of buildings accounts for 30% of global final energy consumption and
26% of global energy-related emissions [1], and this sector has remained a priority for
sustainable development for decades. Although minimum performance standards and
building energy codes are becoming more comprehensive and stringent across countries,
and the use of efficient and renewable building technologies is increasing, the IEA reports
that energy consumption in the buildings sector is still an issue, as global growth in floor
space is more than offsetting the increased efficiency and decarbonization efforts [1]. In
addition, there is plenty of evidence that even new buildings do not perform as well as they
were designed to (a problem called the Energy Performance Gap), which is presented in
detail in the recent review of Bai et al. [2]. It is obvious that the sector needs faster change
to get on track towards the Net Zero Emissions (NZE) scenario by 2050.

The European Union’s (EU) increased climate and energy ambition requires all new
buildings to be zero-emission by 2030 and existing buildings to be zero-emission by 2050.
The recent recast of the EPBD [3] pays more attention to the energy efficiency of existing
buildings, as 75% of EU buildings are still energy-inefficient. New policy measures empha-
size the importance of digitalization, monitoring, building automation and smartness (IoT),
data collection, and sharing, which can be listed as follows:
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• Deployment of High-Capacity Communication Networks: to facilitate smart homes
and well-connected communities.

• Targeted Incentives: to promote smart-ready systems and digital solutions in the
built environment.

• Use of Digital Technologies: for the analysis, simulation, and management of buildings.
• Smart-Readiness Indicator: to measure the capacity of buildings, to use information

and communication technologies and electronic systems, and to adapt their operation
to the needs of occupants and the grid.

• Building Automation and Electronic Monitoring: to improve the energy efficiency
and overall performance of buildings and to provide confidence to occupants about
actual savings.

• National Databases for Energy Performance: to collect data on the energy performance
of buildings and transfer this information to the EU Building Stock Observatory.

All these tools and technologies are familiar to scientists and pioneers in the building
sector. However, regulating them will significantly speed up their practical application.
This includes artificial intelligence, which, while not explicitly mentioned, is inherently
connected to the aforementioned areas.

The practical use of IoT and AI in building systems management is still in its early
stages, but the future is exceedingly promising. Some believe that facilities management
could be the industry to gain the most from AI in the coming years, particularly due to the
high volume of repetitive and time-consuming tasks. With the AI-powered management
of buildings, better energy efficiency is expected first and foremost, accompanied by
additional benefits, such as lower overall maintenance costs, better contractor relationships,
and enhanced asset reliability.

The IEA estimates that digitalization could cut total energy use in residential and
commercial buildings by around 10% by 2040 [4]. But what contribution and potential
does the application of AI offer, bearing in mind that not all buildings can benefit from
sophisticated control due to the low level of intelligence of their systems? Which buildings
have the highest energy-saving potential, and what AI models demonstrate the highest
performance? The answers to these questions will be further provided in this review.

1.1. AI Applications

AI has rapidly permeated many aspects of our lives and has revolutionized industries
and enhanced efficiency in various domains, such as healthcare, education, manufacturing,
finance, and transportation. Additionally, AI has emerged as a powerful tool for achieving
sustainability in the building sector. Its technologies and methodologies have demonstrated
great potential in increasing energy efficiency and reducing costs [5]. In the context of BEMS
(Building Energy Management Systems), AI has been applied in predicting and forecasting
a building’s energy consumption, providing occupant behavior insights, achieving thermal
comfort, improving indoor air quality, as well as enhancing maintenance and operational
efficiency [6]; on top of that, other applications can be found, as presented in several
review papers [7–9]. The difference is not just in the application but also in the models that
are employed.

AI is a broad field that aims to create systems capable of performing tasks that require
human intelligence. The field of AI encompasses a wide range of domains and includes
learning as well as non-learning methods, such as robotics, natural language processing,
autonomous systems, and expert systems. Different AI models are designed to perceive,
analyze, learn, reason, find patterns, and make decisions and predictions based on the
information and data provided [5]. They could be generally categorized into different
types, each serving different uses and objectives and employing various techniques. One
such technique is Machine Learning (ML). ML is a field of study within AI that focuses
on developing algorithms that enable computers to learn from data and improve their
performance over time. While all ML is part of AI, not all AI equals ML. AI is the broader
concept of intelligent machines, whereas ML is a specific approach within AI that focuses
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on learning from data [10]. ML has been recently gaining popularity due to its ease of use,
wide applicability, continuous learning, abundant and cheap computation, and the fact that
ML-based models do not require human intervention [11]. The most popular ML algorithms
are broadly divided into three categories: supervised, unsupervised, and reinforcement
learning. Supervised learning is further categorized into classification and regression.
Classification techniques include Naive Bayes classifiers, decision trees, support vector
machines, random forests, and K-nearest neighbors, whereas regression methods include
linear regression, neural network regression, decision tree regression, lasso regression, and
ridge regression. Unsupervised learning focuses on clustering techniques like K-means
clustering, mean shift clustering, and Gaussian mixtures. On the other hand, reinforcement
learning involves models such as Q-learning, R-learning, and temporal difference learning.
Each of these approaches has specific applications and strengths, contributing to the diverse
capabilities of machine learning in solving real-world problems [12,13]. ML is prominent
and extensively applied in BEMS. A wide range of studies applying ML models have
been discussed in this paper. Therefore, in addition to “Artificial Intelligence”, “Machine
Learning” has been included in the list of keywords to capture as many relevant studies
as possible.

Different review papers were analyzed and compared in this paper to find what is still
not identified regarding the application of AI for the improvement of buildings’ energy
efficiency. They are presented below.

1.2. Related Reviews

Using the keyword string mentioned in the “Methodology” section in the search
engine “SCOPUS”, as of 30 April 2022, with only review papers included, the number of
review papers after the title and abstract screening was 54. The number of review papers in
the field has been growing, reflecting a growing interest among researchers in this study
area (Figure 1).
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Figure 1. Number of Review Papers relevant in recent years [SCOPUS].

The following paragraphs discuss just the review papers selected. The papers were
selected based on their topics being relatively similar to this review paper and having
conclusions that are relevant to the scope covered.

Reviews on energy consumption behavior and prediction. Wu et al.’s [14] review aimed
to analyze energy consumption behavior and assess the prediction performance and in-
terpretability of ML-based baseline modeling techniques across various major building
types. The authors identified the key factors influencing the performance of energy baseline
modeling for different buildings and investigated and compared building profiles to further
explain the differences in baseline modeling results [14]. Moghimi et al. [15] reviewed
ML methods applied to improve building energy consumption in modern building data
processing, focusing on their accuracy and efficiency, and found that hybrid ML models
predict energy consumption with an accuracy up to 15% higher compared to that of single
ML models. Farzaneh et al. [9] provided an in-depth review of recent studies on the applica-
tion of AI technologies in smart buildings through the concept of the building management
system and demand response programs. In their research paper, they mentioned some
future directions and recommendations, like the need to improve prediction methods that
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consider building characteristics and environmental conditions, develop standardized
protocols and policies as guidance for AI technology implementation, and address the
security and privacy concerns associated with the data collected [9].

Thermal comfort and energy efficiency. Merabet et al. [16] discussed the application of AI
and focused mainly on improving thermal comfort and energy efficiency in building control
systems. They concluded that AI technology’s application in building control shows great
promise but remains an ongoing challenge, as the performance of AI-based control systems
is not yet entirely satisfactory, mainly because these algorithms require substantial amounts
of high-quality real-world data, which are often lacking in the building energy sector. From
1993 to 2020, AI techniques and personalized comfort models have demonstrated average
energy savings between 21.81% and 44.36%, with comfort improvements ranging from
21.67% to 85.77% [16]. A review by Ghahramani et al. [8] emphasizes the necessity of a
cohesive system comprising sensors, infrastructure, learning algorithms, and actuators
governed by a central intelligent system to improve comfort and energy efficiency. The
paper concludes that improvements in all aspects of a smart system are needed to achieve a
better determination of the correct combination of systems to increase the system’s overall
efficiency and improve comfort [8].

The IoT and AI for building energy control. A review paper by Broday et al. [7] examines
how the IoT is being used in building control to save energy and monitor indoor environ-
mental quality. Their findings show that the main application of the IoT in buildings is to
reduce energy consumption and that ML methods are mainly used to save energy and un-
derstand occupant behaviour to achieve thermal comfort [7]. A review by Sayed et al. [17]
explores various DL models like CNNs, RNNs, LSTMs, GANs, and autoencoders and
their advantages and limitations in occupancy detection, where the authors concluded that
several directions are provided to reduce privacy problems by employing forthcoming
technologies such as edge devices, Federated Learning, and blockchain-based IoT [17].

Reviews on models and their reliability. Bashir et al. [18] discuss the various models used
for predicting the cooling and heating loads in smart buildings and the role of accurate
load prediction in enhancing energy efficiency by including a detailed analysis of AI
algorithms, such as ANN, SVM, and DL, presenting their advantages and limitations in
load forecasting. The review shows that AI-based models achieve higher accuracy but often
require extensive data and computational resources [18]. A review by Rodrigues et al. [19]
systematically analyzes various modeling techniques for STLF in the residential sector
over the past decade, identifying various modeling techniques and associated algorithms.
Additionally, the paper discusses AI models’ advantages in handling nonlinear problems
and the necessity of adequate historical data for optimal performance [19]. Runge et al. [20]
discuss the application of DL models in predicting energy consumption in buildings,
where their key findings reveal that DL models, such as RNNs, CNNs, and DBNs, offer
better performance in handling large datasets and extracting features compared to the
traditional methods.

Model performance, challenges, and future directions. According to a review by Mo-
hgimi et al. [15], DL models such as DNN and LSTM have shown high accuracy in predict-
ing energy consumption and managing building systems. However, despite their accuracy,
these models demand significant computational resources and extended training times.
These models are evaluated based on their effectiveness in reducing energy consump-
tion and operational costs, particularly in smart building applications [15]. A review by
Runge et al. [20] discussed that white-box models use detailed physical equations to repre-
sent energy systems, offering deep insights into system dynamics but requiring extensive
parameter measurements. Data-driven models, including black-box and grey-box types,
rely on data to establish mathematical relationships without detailed system knowledge,
making them easier to implement but often less interpretable. Performance-wise, deep
learning models like RNNs and DNNs excel in accuracy with large datasets but demand
significant computational resources [20].
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A review by Mousavi et al. [21] identified some challenges, such as the difficulty
in understanding the reasoning behind the model’s decisions because most AI-based
predictive models are black-box by nature. The review also pointed out the limitations
of supervised learning, stating that the building industry relies heavily on supervised
learning methods, which require labeled data, and that alternative learning methods, such
as semi-supervised learning or reinforcement learning, could eliminate this issue [21].
In the context of short-term household forecasting, Ma et al. [22] stated the importance
of enhancing the generalization ability of DL models, as they are prone to overfitting.
Household forecasting involves many uncertain factors, and integrating these uncertainties
into DL models is a challenging problem [22]. Shaqour et al. [23] provided a review of
the recent advancements in DRL-based BEMS for different building types. The authors
observed that residential and office buildings were the most explored types of buildings.
There is still a clear gap in real implementations and system validations, where only 11%
of the recent works have been reported so far. The authors suggested that future research
should focus on the data efficiency of DRL models due to the lack of real-world validations.
This could be accomplished by using virtual building systems for offline pretraining and
exploring methods for reducing the requirement for large amounts of data [23].

Based on other reviews, it can be concluded that when AI models are used in predic-
tions, the building type matters. Also, in their reviews, different authors demonstrated that
models used in predictions provide different reliabilities in different situations, and many
authors discuss issues related to the quality, reliability, and amount of data. Also, different
authors agree that in real-life applications, the ability to integrate AI-based models into
controllers is still in its infancy and is limited.

This review paper aims to present AI’s contributions to BEMS, identify which types
of buildings, varying in their level of intelligence, have the highest energy-saving po-
tential, and determine which AI models perform the best in this area by estimating the
overall efficiency.

To identify the added value of the paper, it was compared to the outcomes of the
three most similar review papers: Ardabili et al. [24], Yan et al. [25], and Tien et al. [26].
The reviews by Ardabili et al. [24] and Yan et al. [25] both share a similar scope with
our work. They explore various AI models applied to building applications such as
energy consumption prediction, load forecasting, occupant detection, and optimization.
Ardabili et al.’s paper also discussed the evaluation criteria [24,25]. Meanwhile, the review
by Tien et al. [26] also closely aligns with our work. However, compared to these reviews,
the added value of our paper is (1) our review stands out by providing detailed numerical
values and discussing the different building types where these AI models have been
applied, which were not covered in either Ardabili et al. [24] or Yan et al.’s [25] reviews;
(2) our review stands out in its distinct structure of application areas, its inclusion of study
locations, and its more in-depth discussion of evaluation metrics compared to Tien et al.’s
review paper [26].

2. Methodology

The methodology implemented in this review paper is the Systematic Literature Re-
view (SLR). This methodology comprises the following steps: formation of the research
question(s), validation of keywords, setting eligibility and inclusion criteria, systematic
search, screening and exclusion criteria, and analysis and synthesis [27]. To ensure trans-
parency, the review follows the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analysis) guidelines and checklists.

The search process aims to find relevant studies based on the research question, defined
based on the article’s objective. The research question was formulated following the widely
known PICO method, which covers four elements of a search question: Population (Who?),
Intervention (What?), Comparison (Compared to what?), and Outcome (What are you
trying to accomplish/improve?) [27]. The questions for outlining PICO components are
presented in Table 1.
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Table 1. Questions for outlining PICO components.

P I C O

Population Intervention/
factors

Comparison/
Circumstances Outcome

Buildings Various AI models
and their reliability

Compare the
reliability/accuracy and
error rate of AI models
used to achieve energy
efficiency in buildings

Efficiency and potential
savings achieved by

AI-based models and their
contribution to enhancing
BEMS for energy efficiency

The research question of this review is formulated as follows: What AI models are
employed in BEMS, and how do they contribute to energy savings?

Search Strategy

The initial keywords have been defined as follows: Artificial Intelligence, Buildings,
Energy, HVAC, Control, Optimization, Forecasting, and Occupancy Detection. The key-
word string used in the search engines is shown in Figure 2.
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Figure 2. Keywords string.

The search engines “SCOPUS” and “Web of Science” were explored on 30 April 2024.
The inclusion criteria for the selected publications and the keyword search string are

as follows:

• Recent publication: publications not older than five years (2019–2024).
• Language: any.
• Publication type: journal articles, conference papers, and books.
• Geographic coverage: worldwide.

The selection criteria have been implemented in the selection process to determine
which papers to include in the analysis, as presented in Figure 3. It illustrates the exclusion
criteria for studies in the research selection process. The initial step checks if the study
includes all the necessary information (title, author, abstract). If it does, the next criterion
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ensures the study is recent (published within the last 5 years). The third step verifies that
the study is not a review paper, as review papers are discussed separately in the Introduction.
Following this, the study must not cover renewable energy systems, as including them
would broaden the scope and slightly divest from the core subject of this paper, which
is AI for energy management and optimization in buildings, without necessarily altering
the primary energy sources of these buildings. Additionally, both areas present distinct
challenges. Energy management for energy efficiency mainly deals with challenges related
to occupant behavior, load control, and reducing consumption using intelligent systems.
By contrast, renewables involve storage and grid compatibility challenges, which are out
of this review’s scope. Therefore, limiting this review to non-renewables ensures a more
explicit comparative analysis of the AI models specifically designed for energy management
systems and a clearer comparison of error metrics and performance measures. Then, the
study should include a developed AI model. Finally, the study must provide performance
reliability, savings, error metrics, or similar measures for the AI model. If all these criteria
are met, the study is included; otherwise, it is excluded at the corresponding step.
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A PRISMA chart is a flow diagram used to present the different stages of the selection
process in systematic reviews. It helps visualize the number of studies identified, screened,
and included in the review [28]. The PRISMA chart ensures transparency in reporting and
explains how the final set of studies was determined [28]. As can be seen from the PRISMA
chart (Figure 4), 1396 records were initially identified through a SCOPUS database search,
and 414 were identified through Web of Science. After eliminating duplicates, 1615 records
remained. A total of 419 records were screened based on their title and abstract, resulting
in the exclusion of 1196 records. Finally, 148 full-text articles were assessed for eligibility,
and 271 were excluded for not meeting the selection criteria.

The papers selected are systemized and analyzed from different perspectives in a bid
to find the answers to the raised research question.
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3. Results

The following subchapters compare a wide range of AI models used for various
applications, such as energy consumption forecasting, load forecasting, HVAC control and
optimization, and occupant detection, in different types of residential and non-residential
buildings. Key performance metrics like RMSE, MSE, MAE, MAPE, and R2 (coefficient
of determination) are provided. These metrics are crucial for evaluating the accuracy and
effectiveness of these AI models, as well as potential energy and cost savings, demonstrating
their practical benefits in real-world applications.

• RMSE is a widely used metric for measuring the differences between values predicted
by a model and values that are observed. It is sensitive to large errors, providing a
clear picture of the model’s performance [29]. RMSE is expressed in the same units
as the dependent variable (e.g., kWh or kWh/m2 for energy consumption). It can
also be expressed in many other units across different fields, including temperature
in ◦C (Celsius), ◦F (Fahrenheit), or K (Kelvin), pressure in Pa (Pascals) or bars, and
concentration in ppm (parts per million) or µg/m3 (micrograms per cubic meter) [29].

• MSE is similar to RMSE but does not involve taking square roots. It averages the
squares of the errors, emphasizing larger errors more than smaller ones. MSE measures
the average magnitude of errors in a set of predictions without considering their
direction. It provides a straightforward interpretation of error magnitude [29]. It is
expressed in squared units of the dependent variable (e.g., (kWh)2 or (kWh/m2) as
well as many other units in different fields [29].

• MAPE expresses accuracy as a percentage, making it unit-free [30]. It is useful for com-
paring model performance across different buildings or energy systems with varying
energy consumption scales and communicating results to non-technical stakeholders,
as percentages are easily understood [30].

• R2 indicates how well the model’s predictions match the actual data, with values
closer to 1.0 indicating a better pair [31]. R2 allows for an easy comparison between



Energies 2024, 17, 4277 9 of 35

different AI models. By comparing R2 values of models with different input features,
researchers can assess which building characteristics or environmental factors have
the most significant impact on energy consumption predictions [31].

When choosing error metrics, it is crucial to consider the designed model’s specific
objectives, the data’s characteristics, and the target audience for the results. RMSE and MSE
metrics are scale-dependent, where their values are influenced by the scale of the target
variable. This can make comparing models across different buildings or energy systems
with varying energy consumption scales challenging. In practice, RMSE and MSE are often
used with metrics like MAPE and R2 to evaluate AI model performance in building energy
efficiency applications better [32]. Employing multiple metrics offers a more thorough
evaluation of model performance and aids in identifying potential limitations or areas for
improvement in AI-based building energy efficiency models [32].

3.1. Energy Consumption Forecasting

AI is widely applied to forecast energy consumption, and different methods are used in
the literature for that purpose. Table A1 in Appendix A presents a variety of AI models that
can be applied and assigned to different categories based on their underlying algorithms
and techniques. These models fall broadly into traditional machine learning, deep learning,
and hybrid models.

ML models and reliability. Traditional ML models include algorithms like SVR, Decision
Trees, and ensemble methods like Random Forests and Gradient Boosting. For example,
in reference [33], linear regression, ANN, and regression trees are used in commercial
buildings. Reference [34] also includes models like ANN, SVM, and DNN applied in
a residential building. These models are often more straightforward and require less
computational power than other DL models, making them suitable for smaller datasets
and less complex prediction tasks [35].

Deep learning models, a subset of ML, involve neural networks with multiple layers
that can capture complex patterns in data [11]. Notable examples in the table include CNN
and LSTM. Reference [36] mentions an LSTM neural network used in an educational facility,
while reference [37] applies asymmetric encoder–decoder DL algorithms. DL models, such
as those listed in references [38,39], are effective for handling large datasets, making them
ideal for accurate energy consumption predictions, with the RMSE ranging between 0.07
and 0.09 and the R2 amounting to 0.90, respectively.

Hybrid models combine traditional ML and DL elements to exploit both approaches’
strengths. These models often integrate various techniques to improve prediction accuracy
and robustness. The model in reference [40] combines ANFIS and GDFA applied to an
educational facility. Similarly, the study in reference [41] implemented a hybrid CNN with
LSTM AE used in a commercial building. By combining different methods, these models
can capture both linear and non-linear relationships in the data, providing a comprehen-
sive solution for energy prediction tasks and better accuracy, where nMAE = 0.168 and
R = 95.09% in reference [40], and MSE = 0.19, MAE = 0.31, and RMSE = 0.47 in reference [41].

Building types. Table A1 in Appendix A shows a variety of buildings. However,
residential buildings are the most common building type studied, with numerous studies
applying AI models like LSTM, DRNN, and various ensemble models, where some studies
achieve RMSE values as low as 0.1183 [42] and MAPE improvements of up to 0.54% [43].
Educational facilities are also prominently featured, employing models like LSTM, DNN,
and hybrid methods [36,44,45]. Office buildings are popular as well, with models showing
notable accuracy improvements, with MAPE values as low as 4.97% [46]. Although less
common than residential and educational types, commercial buildings receive attention
with models like DNN and DF [39,47]. Manufacturing facilities are studied less frequently.
Lastly, mosques represent a unique category with fewer studies. To summarize, residential
buildings dominate the research landscape, followed by educational and office buildings,
while manufacturing facilities and mosques are studied less frequently.
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3.2. Load Forecasting

Energy load forecasting plays a pivotal role in efficient energy management. It con-
tributes to the optimization of energy production, distribution, and consumption. Accurate
energy load forecasts help in the reduction in operational costs and the improvement of
reliability [48].

AI models. AI is also used to forecast energy loads across different building types.
Table A2 in Appendix A showcases an overview of various AI models used in studies,
such as ensemble models combining ML algorithms, ANN, and DT in reference [48], as
well as LSTM, GRUs, and Bi-directional LSTM applied in references [49,50]. Additionally,
hybrid models, such as the ones presented in references [51–53], which combine XGBoost
with LSTM or CEEMDAN with Bi-LSTM, are also applied to enhance the performance of
the models in forecasting energy loads. Bio-inspired algorithms, used in references [54,55],
have also been applied in the research area. Traditional ML algorithms like RF and Gaus-
sian Radial Basis Function Kernel Support Vector Regression, used in references [32,56],
demonstrate their relevance in energy load forecasting.

Reliability and performance. The performance metrics across the studies vary, reflecting
the diverse approaches to evaluating model efficacy. MAPE has been frequently applied,
with values ranging from 0.07% in reference [57] to around 35.9% in reference [58]. This
indicates a significant variation in model performance. RMSE is another common metric
reported in several studies ranging from 0.01 [59] to over 100 kW [60].

R2 was used in references [32,52,61] with values above 0.9, suggesting high model reli-
ability. As presented in reference [62], some studies also employ specialized metrics, such
as accuracy improvement percentages, to highlight specific advantages of their approaches.

Building types. The types of buildings examined in these studies are diverse. Many
references, including [48,50,51,54], focus on residential buildings, highlighting the high
demand for efficient energy management in this sector. Educational facilities are also
examined often, as shown in references [49,62–64], exploring models applied in schools
and universities. Studies in references [32,58] address commercial and office buildings.
Hotels, public buildings, and hospitals are also included, as seen in references [52,65–67],
demonstrating the adaptability of AI models to diverse building types.

3.3. HVAC Control and Optimization

The control of HVAC systems is critical for maintaining indoor comfort and regulating
temperature, humidity, and air quality in buildings while minimizing energy consump-
tion [68]. Optimizing these systems can significantly reduce energy usage and operational
costs, contributing to environmental sustainability [69]. Integrating AI models in HVAC
control presents a promising advancement, allowing for more precise and adaptive energy
management [68].

AI models. Table A3 in Appendix A presents various studies that have utilized different
AI models for HVAC and their reliability across different building types.

The studies feature many AI models in references [68,70–75], such as LSTM, DRL,
FIS, AMADRL, YOLOv5, SVM, RF, and DNN Bilinear Koopman Predictor. This variety
illustrates the potential of AI in enhancing HVAC system efficiency, with each model
bringing distinct advantages.

Reliability and performance. The performance of these models is evaluated using mul-
tiple metrics, including RMSE, MSE, and energy savings percentages. In reference [70],
LSTM and DRL achieved an MSE of 0.0015 and energy savings from 27% to 30%. Shallow
ANN models in reference [76] demonstrated improvements in energy consumption and
thermal comfort, with heating energy consumption reductions ranging from 0.6% to 29%
and thermal comfort improvements of up to 58.8%. YOLOv5 in reference [73] achieved an
accuracy of 88.1%, while the ensemble approach in reference [74] demonstrated reductions
in natural gas consumption (22.2%) and building heating demand (4.3%), with an RMSE
value of 32.1 kW.
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Building types. The studies cover a range of building types. Educational facilities are
prominently featured, with models like Shallow ANN [76], ANN [77], YOLOv5 [73], and
the ensemble approach [74] showing energy and thermal comfort improvements. Models
like DRL [78] and DQN [79] have been applied to residential buildings, enhancing PM2.5
levels and overall energy consumption.

AI models applied in offices also showed promising results, as presented in refer-
ences [80,81]. Additionally, specialized buildings such as sports halls [82] and churches [71]
were considered, demonstrating the versatility of AI applications in different building
environments.

3.4. Occupant Detection

Occupant detection contributes to reducing energy consumption in buildings. Various
technologies are used to identify and detect people’s presence, number, and activities in
a building. This information is important in optimizing building energy management
systems by ensuring that resources are used efficiently [83].

AI models. Table A4 in Appendix A presents various AI models applied for occupant
detection across different types of buildings, such as CNNs, DMFF, YOLO, LTSM net-
works [83–86], and other advanced machine learning techniques like 1D CNN and RL [87],
as well as traditional methods like MLR [88]. Each model demonstrates certain strengths in
terms of accuracy and performance.

Reliability and performance. The performance of these models is evaluated using differ-
ent metrics, such as accuracy, RMSE, MAE, MAPE, NRMSE, and correlation coefficients.
Metrics specific to occupant detection have also been used, like thermal comfort improve-
ment and CO2 levels. Accuracy is the most common across the studies, where the DMFF
model [84] achieves a high accuracy of 97%, while Faster R-CNN variants achieve ac-
curacies between 78.39% and 98.9% [89,90]. Energy savings is also an important metric
highlighting AI models’ potential benefits. YOLOv5, for example, shows annual HVAC and
lighting energy savings of 10.2% [85], while DMFF reports up to 30% energy savings [84].
RMSE, MAE, and MAPE are used to measure prediction errors. The YOLOv4 model in
office settings has an RMSE of 0.883 and an NRMSE of 0.141, indicating high precision in
maintaining indoor CO2 levels [91]. The GA-LSTM and PSO-LSTM models exhibit high
correlation coefficients (99.16–99.97%), indicating strong predictive capabilities [86].

Building types. The models presented in the studies have been applied across dif-
ferent building types, including residential, office, and educational facilities. A range of
models, including CNN, YOLOv5, Faster R-CNN, and LM-BP, have been employed in
offices [83,90,92,93]. In educational buildings, Faster R-CNN demonstrates high people-
counting accuracy of 98.9% and activity detection of 88.5% [94].

3.5. Other Areas of Application

Table A5 in Appendix A presents various studies implementing AI models in different
applications in buildings, such as thermal comfort prediction, air quality prediction, and
indoor temperature prediction. The discussion below addresses the AI models utilized, the
performance metrics reported, and the types of buildings considered in these studies.

AI models. The studies employ a wide array of AI models, such as ANN and SVM,
which are used for their robustness in handling non-linear relationships in the study [95]
for thermal comfort prediction. LTSM and RNN, suitable for time-series predictions, are
applied in the study [96]. Hybrid models combining multiple techniques are also utilized,
such as CNN-GRU-MLP [97] and FL-BM-ANFIS-BM [98]. Models such as Radial Basis
Function Networks [99] and GNN [100] were applied for different prediction tasks.

Reliability and performance. The studies in Table A5 in Appendix A report a variety of
metrics that are crucial for evaluating AI models. High R2 values, such as 0.976 and 0.981 in
reference [97], demonstrate excellent model performance. Reference [101] reports an MSE
of 0.04, indicating high precision in temperature prediction. RMSE measures prediction
error magnitude, with values like 0.705 in reference [97] indicating reliable performance.
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PPD reflects the practical impact of the model, such as a 43.7% cooling load reduction in
reference [98].

Building types. AI models’ effectiveness varies across building types due to varying
environmental conditions and usage patterns. According to Table A5 in Appendix A,
residential buildings focus on thermal comfort and air quality. Reference [95] employs ANN
and SVM for thermal comfort prediction, achieving an MSE of 0.8179, and reference [96]
uses 1D-CNN, RNN, and LSTM for air quality prediction, reporting an RMSE of 10 ppm.
Indoor temperature and air quality are important for occupant productivity in offices;
reference [102] uses CNN-LSTM, achieving an R2 of 0.936 and 50% energy savings, and
GNN models, used in reference [100], improve thermal comfort by up to 81.3%. Models
like FL-BM and ANFIS-BM [98] in educational facilities report significant improvements in
thermal comfort and cooling load reduction. The MLP model [103] also achieves errors as
low as 0.069 for temperature predictions.

4. Discussion

The main aim of this study was to determine what AI models are used in BEMS and
how they contribute to energy savings. Tables A1–A5 show a wide range of different AI
models and combinations of multiple AI models applied to enhance and optimize building
energy efficiency. The reliability metrics of the AI models prove that AI-driven tools play a
significant role in improving building energy management.

Reliability is the model’s ability to predict parameters that control the system. In
Tables A1–A5, different indicators are used to measure the reliability, such as the Root Mean
Square Error (RMSE), R2, and Mean Square Error (MSE), the performance of the AI models,
and their impact on energy savings, cost reductions, and thermal comfort improvements.

An analysis of papers on AI models used in BEMS shows that the most commonly
applied topics include the following focus areas: error rate, energy savings, accuracy,
performance, and cost reduction. Figure 5 shows the different criteria papers used to
evaluate the reliability of AI models. The predominant metric is the error rate, accounting
for 63.3% of the evaluations. This indicates a strong emphasis on minimizing errors to
enhance the reliability of AI models. Although, at 16.5%, energy savings is the next most
significant factor, it is still relatively low, especially when the study’s main purpose is
to reflect how the model applied contributes to energy savings. Accuracy, at 7.6%, and
performance, at 6.3%, show that different papers use different metrics to evaluate the AI
models, making it slightly difficult to compare the models in the studies. This indicates the
need for a unified dataset for comparison.
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Figure 6 shows the number of studies conducted in different countries, emphasizing
the top countries contributing to the field. China leads significantly with nearly 35 studies.
South Korea and the USA follow, with about 15 studies each. The UK comes next with
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around 10 studies, and France has approximately 8. These data highlight China’s dominant
role in this research area and the other countries mentioned as key players in advancing this
field of study. This also indicated that the amount of research in Europe needs to increase
to achieve the Paris Agreement goals.

Energies 2024, 17, x FOR PEER REVIEW 13 of 35 
 

 

 
Figure 5. Presentation of the focus areas of the study results. 

Figure 6 shows the number of studies conducted in different countries, emphasizing 
the top countries contributing to the field. China leads significantly with nearly 35 studies. 
South Korea and the USA follow, with about 15 studies each. The UK comes next with 
around 10 studies, and France has approximately 8. These data highlight China’s domi-
nant role in this research area and the other countries mentioned as key players in advanc-
ing this field of study. This also indicated that the amount of research in Europe needs to 
increase to achieve the Paris Agreement goals. 

 
Figure 6. The number of studies conducted per country. 

Figure 7 shows the distribution of different building types for various application 
areas. Educational facilities and residential buildings are the most common, especially for 
forecasting energy consumption and HVAC control/optimization. Offices and commercial 
buildings are also popular in several application areas. Public buildings, hospitals, and 
sports halls mainly focus on energy consumption forecasting and air quality. Churches 
and mosques are less frequently studied. 

63%
17%

8%

6%
6% Error Rate

Energy Savings

Accuracy

Performance

Cost Reduction

Figure 6. The number of studies conducted per country.

Figure 7 shows the distribution of different building types for various application
areas. Educational facilities and residential buildings are the most common, especially for
forecasting energy consumption and HVAC control/optimization. Offices and commercial
buildings are also popular in several application areas. Public buildings, hospitals, and
sports halls mainly focus on energy consumption forecasting and air quality. Churches and
mosques are less frequently studied.

Figure 8 shows the number of papers dedicated to each application area. Energy
consumption forecasting is the area researched the most, with 57 papers covering it. HVAC
control/optimization follows with 37 papers, highlighting a significant focus on improving
building efficiency. At 30 papers, load forecasting is also relatively high, followed by
occupancy detection, with 25 papers. Indoor temperature prediction, air quality, and
thermal comfort are less frequently studied. Therefore, these papers were systematically
analyzed to determine how AI models used in BEMS contribute to energy savings, cost
reductions, and thermal improvements. The results of this analysis are presented in Table 2.

As shown in Table 2, the highest energy-savings potential (of up to 37%) can be found
in offices when AI models are used for HVAC control and optimization, as demonstrated
by Wang et al. [104] in their study. The authors developed a DRL-based HVAC control
algorithm that optimized the thermal comfort and energy efficiency of an open-plan office
with a multi-VAV HVAC system. Using AI models for HVAC control in offices can also
reduce costs by up to 14.5%.

Compared to offices, residential buildings can achieve higher cost reductions of up
to 24.29%. However, the energy savings are smaller (up to 23% in residential and 21% in
educational buildings), likely due to the lower level of intelligence of existing building
management systems or installed baseline controllers of the HVAC equipment, as indicated
by An and Chen [79] and Chemingui et al. [68].
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Table 2. The benefits of using AI models to save energy, reduce costs, and improve thermal comfort.

AI Models
Applications

Building
Type Energy Savings, %

Cost
Reductions,

%

Thermal
Comfort

Increase, %

Energy
consumption
forecasting

Office 17.4 - 16.9

Commercial median of 57.38% in air
conditioning system - -

HVAC control
and

optimization

Residential 5–23 6.1–24.29 16

Office 5–37 14.5 -

Educational 21
0.6–29 in heating energy - -

Commercial 10 - -

Occupancy
detection

Residential 30 - -

Office 2.3–8.1
10.2 in HVAC and lighting energy - 43–73

An and Chen [79] used a DRL algorithm to develop a deep-Q network controller that
controls windows, air cleaners, and air conditioners to reduce indoor air pollution and
maintain thermal comfort with relatively low energy consumption in residential buildings.
Similarly, Chemingui et al. [68] applied a DRL framework to control a school building’s
indoor environmental conditions and optimize energy consumption. Their technique,
enhanced with behavioral cloning, was designed to find optimal HVAC control decisions
for different weather conditions throughout the year, minimizing energy consumption,
maintaining thermal comfort, and reducing indoor contaminant levels in a multi-zone
environment.

Each of these studies demonstrated significant improvements in energy efficiency and
environmental conditions by using DRL to control and optimize different HVAC systems
across various building types—offices, residential buildings, and schools. Therefore, DRL-
based methods are well suited for achieving optimal HVAC control strategies and balancing
the trade-offs between building indoor comfort and energy consumption.

The use of AI models to predict energy consumption also shows potential energy
savings of up to 17.4% and improved thermal comfort of up to 16.9% in offices. However,
the results of the papers analyzed show that the integration of AI models for HVAC control
and optimization is more efficient and gives better energy savings potential.

Another promising and efficient application of AI models is occupancy detection,
which can deliver relatively high energy savings of up to 8.1% in offices and improve
thermal comfort by 43% to 73%.

In conclusion, the integration of AI models into BEMS is an effective solution for
ensuring higher energy efficiency in buildings while maintaining a high level of comfort, if
the existing BEMS is open-source and the existing controllers are programmable.

4.1. Estimation of AI Model Reliability

In this review, we aimed to compare the various AI models employed to enhance
energy efficiency in buildings, focusing on their accuracy. To achieve this, we classified the
error metrics as low, medium, and high. However, the comparison posed a challenge due
to the nature of different error metrics. Unlike R2, which ranges from 0 to 1 and provides
a standardized measure of model accuracy, other metrics like RMSE, MAPE, MAE, and
MSE depend on the data’s scale and distribution, making direct comparison difficult. These
metrics can vary significantly in magnitude and units, thus complicating the process of
establishing a uniform classification.

For instance, RMSE is sensitive to large errors, while MAE provides a linear per-
spective on errors. This makes RMSE and MAE values difficult to interpret uniformly
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across different datasets and models. In building energy management, the variability
in building types, sizes, and energy usage patterns intensifies these issues, as noted by
Ahmad et al. [105]. Moreover, these error metrics do not consider factors unique to building
energy efficiency implementation, such as retrofit schedules, occupancy patterns, and
renewable energy integration. As a result, the effectiveness of one model in one building or
scenario may not be directly comparable to another, even when using the same error metric,
which Zhao et al. [106] further elaborate on. Therefore, because of its straightforward
and standardized scale, we used R2 as the primary metric for comparing the AI model’s
accuracy in the diverse and complex field of building energy management. In this review
paper, R2 values were classified as follows: high accuracy (1.00–0.66), medium accuracy
(0.65–0.36), and low accuracy (0.00–0.35).

The highest reported accuracy was selected for papers that presented a range of
accuracies. From the studies reporting R2 in Table A6 in Appendix B, the R2 values range
from 0.99911, the highest achieved by a GA model for energy consumption forecasting
in residential buildings, to the lowest value with medium accuracy, according to our
assessment criteria, of 0.4872, achieved by an ANN model for thermal comfort prediction
in residential buildings. The most common area of application reported in Table A6 in
Appendix B is the energy consumption forecast, with various AI models being applied
across different building types. Other high R2 values in this application area include RNN
with R2 values of up to 0.999 and the hybrid DNN-LSTM model with an R2 of 0.9991.
Residential buildings are predominant; several AI models were applied to residential
buildings for energy consumption forecasting and load forecasting, indicating a significant
focus on this building type in these application areas. Followed by offices and educational
buildings, Table A6 in Appendix B highlights that DL, like DNNs, CNNs, and hybrid
models, is highly effective in predicting energy consumption, with R2 values frequently
exceeding 0.9, indicating high accuracy.

4.2. Limitations

Despite the comprehensive approach in conducting this systematic literature review,
it is important to acknowledge certain limitations. The methodology employed may not
have captured all relevant papers in the field of AI models for building energy efficiency.
Though we aimed to be thorough, the effectiveness of our search depended heavily on
the chosen keywords and search strings, meaning some relevant studies may have been
omitted. Differences in terminology and indexing across various databases also added to
this challenge. As a result, our review provides valuable insights but represents only a
portion of the available research in this domain. Future studies should consider expanding
the search criteria and incorporating additional sources to build on this review.

5. Conclusions

This study is designed to contribute and complement existing research in the area of
AI models used in BEMS and their impact on energy savings. The review highlights several
aspects regarding the evaluation and application of AI models in various areas of buildings.
First, the lack of standardized metrics for assessing AI model reliability complicates the
comparison of different studies. This highlights the need for a unified dataset for more
meaningful comparisons. Additionally, many studies do not report savings as error metrics,
which is crucial for understanding the practical impact of these models. While other error
metrics are used, translating these into actual savings is essential for evaluating the models’
effectiveness. Furthermore, the extent of research in Europe is relatively limited compared
to that in the USA and China. To meet the Paris Agreement sustainability goals, Europe
must increase its research efforts in this field. Integrating different AI algorithms in model
design is a popular way to go, which indicates that a combination approach performs
better. Moreover, the review shows that energy consumption and load forecasting are
the most common application areas, whereas air quality receives the least attention. This
distribution highlights the need for a broader focus on diverse application areas to achieve
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comprehensive advancements in AI-driven sustainability. The main findings of this study
in relation to the research questions are as follows:

1. The use of AI models in BEMS for energy consumption forecasting, HVAC control and
optimization, occupancy detection, and the prediction of indoor climate parameters is
a valuable contribution to building energy efficiency, additional energy savings, cost
reductions, and thermal improvements.

2. The highest energy savings potential of up to 37% can be found in offices, smaller
savings of up to 23% can be found in residential buildings, and savings of 21% can be
found in educational buildings when DRL-based models are used to optimize HVAC
control strategies and balance the trade-offs between indoor comfort and energy
consumption, compared to baseline rule-based methods.

3. AI models, particularly deep learning architectures like DNNs, CNNs, and hybrid
models, are highly effective in predicting energy consumption, with R2 values fre-
quently exceeding 0.9, indicating high accuracy. The most common application area is
energy consumption forecasting, with residential buildings being a predominant focus.

Author Contributions: Conceptualization, D.M.T.E.A. and V.M.; methodology, D.M.T.E.A.; formal
analysis, D.M.T.E.A. and R.D.-T.; resources, D.M.T.E.A. and V.M.; writing—original draft prepara-
tion, D.M.T.E.A., V.M. and R.D.-T.; writing—review and editing, V.M. and R.D.-T.; visualization,
D.M.T.E.A., V.M. and R.D.-T.; supervision, V.M. All authors have read and agreed to the published
version of the manuscript.

Funding: The research was co-funded by the European Union under Horizon Europe program grant
agreement No. 101059903, by the European Union funds for the period 2021–2027, and by the state
budget of the Republic of Lithuania financial agreement Nr. 10-042-P-0001.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of the data; in the writing of the manuscript; or in the decision to publish the results.

Abbreviations

AE Autoencoder
AI Artificial Intelligence
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HyFIS Hybrid Fuzzy Inference System
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KNN K-Nearest Neighbors
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LSTM Long Short-Term Memory
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MAQMC Multi-Agent Quantum Monte Carlo
Metaheuristic-based LSTM Metaheuristic-based Long Short-Term Memory
ML Machine Learning
MLR Multiple Linear Regression
MSE Mean Square Error
MR Multiple Regression

NARX-MLP
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Inputs-Multilayer Perceptron
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R Correlation Coefficient
R2 Coefficient of Determination
RBFNN Radial Basis Function Neural Network
RF Random Forest
RL Reinforcement Learning
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SADLA Self-Attentive Deep Learning Algorithm
Seq2Seq Sequence to Sequence
SNNs Spiking Neural Networks
SOS Symbiotic Organisms Search
SPSA Simultaneous Perturbation Stochastic Approximation
ST-GCN Spatio-Temporal Graph Convolutional Network
STLF Short-Term Load Forecasting
SVR Support Vector Regression
SVM Support Vector Machine
TST Temporal Self-Tracking
VSCA Very Short-term Climate Anomaly
WM Wavelet Model
YOLO You Only Look Once

Appendix A. AI Models Used for Different Applications

Table A1. Comparison of AI models used for energy consumption forecasting.

Reference AI/ML Model Building Type Reliability (Accuracy/Savings)
Error (RMSE, MSE, MAPE), Savings (%)

[33] Linear regression, ANN,
Regression trees Commercial - Best results with MAPE = 1%

[34] ANN, GB, DNN, RF, Stacking,
KNN, SVM, DT, LR Residential

- DNN: R2 = 0.95, RMSE = 1.16
- ANN: R2 = 0.94, RMSE = 1.20

- GB: R2 = 0.92, RMSE = 1.40

[36] LSTM neural network Educational Facility

- Daily energy consumption forecast MAPE reduction
compared to ARIMA = 11.2%, Hourly = 16.31%.

- Daily energy consumption prediction MAPE reduction
compared to BP = 49%, Hourly = 36.6%

[37] Asymmetric encoder-decoder
DL algorithm Educational Facility

- Single-step forecasting average R2 = 0.964
- Three-step ahead multi-step forecasting average

R2 = 0.915

[38]
LSTM, Bidirectional LSTM,

CNN, Attention Mechanism,
Soft Actor-Critic, RL

Office
Energy savings = 17.4%

Thermal comfort improvement = 16.9%
- RMSE = 0.07–0.09

[39] DF Commercial R2 = 0.90

[40] ANFIS, GDFA Educational Facility

- ANFIS-SC: nMSE = 49.16, nMAE = 0.452, R = 58.71%.
- ANFIS-FCM: nMSE = 53.48, nMAE = 0.517,R = 56.44%

- AR-ANFIS-GDFA-SC+: nMSE = 7.25,
nMAE = 0.168, R = 95.09%

[41] Hybrid CNN with LSTM-AE Commercial
- MSE = 0.19
- MAE = 0.31
- RMSE = 0.47

[42]
VSCA, ConvLSTM2D model

with Conv2D attention
mechanism and roll padding

Residential
- MSE = 0.0140

- RMSE = 0.1183
- MAE = 0.0875
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Table A1. Cont.

Reference AI/ML Model Building Type Reliability (Accuracy/Savings)
Error (RMSE, MSE, MAPE), Savings (%)

[43] LSTM Office - MAPE improvement = 0.54%

[44] Deep learning autoencoder
coupled with LSTM Educational Facility CV(RMSE) < 9%

[45] MR, RF, ANN-FF, SVR, GB,
DNN Educational Facility

- DNN R2 = 0.87
- DNN CV-RMSE = 24.4%

- GB CV-RMSE = 26.5%
- SVR CV-RMSE = 26.5%

- ANN-FF CV-RMSE = 27.9%
- RF CV-RMSE = 35.3%
- MR CV-RMSE = 39.4%

[46] Adaptive decomposition,
multi-feature fusion RNNs Residential

- MAE = 4.4–21.4 W,
- MAPE = 4.97–21.97%
- RMSE = 8.8–37.8 W

- R2 = 0.974–0.999

[47] 21-layer Fully Connected
DNN Commercial

- Energy savings:
Median = 57.38%, Maximum = 90%

- Energy consumption prediction(test): RMSE = 213 W,
R2 = 0.72, MAPE = 15.1%

[107] SOM, CNN, GA Public building

-Training dataset accuracy = 89.03%, Standard
error = 0.3

- Validation dataset accuracy = 88.91%, Standard
error = 0.33

[108] A3C, DDPG, RDPG Office

- Compared to traditional models, DDPG and RDPG
performed better in

Single-step prediction = 16–14%,
Multi-step prediction = 19–32%.

[109] DFNN, DRNN Manufacturing Facility

- Energy consumption prediction accuracy:
DFNN = 92.4%, DRNN = 96.8%

- Air temperature accuracy:
DFNN = 99.5%, DRNN = 99.4%

- Humidity accuracy:
DFNN = 64.8%, DRNN = 57.6%

[110] CNN Mosque - MAPE = 4.5%
- R2 = 0.98

[111] PSO, Particle Swarm, Stacking
ensemble model. PFS Educational Facility RMSE = 1.71 lower than that of common ML algorithms.

[112] SVR Educational Facility -R2 = 0.92

[113] Metaheuristic-based LSTM
network Residential

- MAPE = 0.05–0.09
- MAE = 0.04–0.07
- RMSE = 0.13–0.16
- MSE = 0.04–0.05

[114] LSTM Residential

- Daily model:
RMSE = 0.362, MAE = 19.7%

- Monthly model:
RMSE = 0.376, MAE = 17.8%

[115] ANN, SVM. HyFIS, WM,
GFS.FR.MOGUL Office

-SVM MAPE = 7.19%
- WM MAPE = 8.58%

- HyFIS MAPE = 8.71%
- ANN MAPE = 10.23%

- GFS.FR.MOGUL MAPE = 9.87%
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Table A1. Cont.

Reference AI/ML Model Building Type Reliability (Accuracy/Savings)
Error (RMSE, MSE, MAPE), Savings (%)

[116] HHT, RegPSO, ANFIS Educational Facility - MAPE = 1.91%

[117]

Bidirectional LSTM, stacked
unidirectional LSTM, and

fully connected layers
optimized DTO

Residential - RMSE = 0.0047
- R2 = 0.998

[118] LSTM, NARX-MLP, GRU, DT,
XGBoost Educational Facility - Best model RMSE = 0.23

[119] Adaboost-BP Residential - Average prediction accuracy = 86%

[120] MgHa-LSTM Not Specified - MSE = 0.2821

[121] RNN, LSTM, GRU, TST,
Ensemble Residential

- RNN MSE = 0.00279
- LSTM MSE = 0.00571
- GRU MSE = 0.00483
- TST MSE = 0.00771

- Ensemble MSE = 0.00289

[122] DRNN Residential - RMSE = 0.44 kWh
- MAE = 0.23 kWh

[123] LSTM, GRU, EMD Hospital - Best MAPE = 3.51%
- Best RMSE = 55.06kWh

[124] GPR Public Building - R2 = 0.9917
- CV-RMSE = 0.1035

[125] LSTM Office
- Air conditioning prediction:

MSE = 519.77, CV-RMSE = 0.1349,
MAE = 14.52

[126] LSTM, CNN Residential - LSTM RMSE = 0.0693
- CNN RMSE = 0.0836

[127] SADLA Office SADLA highest R2 = 0.976

[128] LR, SVM, RF, MLP, DNN,
RNN, LSTM, GRU Educational Facility - One month ahead prediction: R2 = 88%

- Three months ahead prediction: R2 = 81%

[129] Proposed eight-layer deep
neural network Residential - R2 = 97.5%

- RMSE = 111 W

[130] DUMSL-DNN Residential - Lowest RMSE = 0.5207
- Lowest MAE = 0.3325

[131] DRL, DDPG, DF Office

- Compared to DDPG, the proposed DF-DDPG
method decreased

MAE by 7.15%
MAPE by 12.71%
RMSE by 18.33%

Increased R2 by 1.3%

[132] DNN with Stacked Boosters Office NRMSE = 2.35%

[133] A-LSTM, LSTM, RNN, DNN,
SVR Educational Facility

- RMSE decreased by 3.06%
- MAE decreased by 6.54%

- R2 increased by 0.43%

[134] IILSTM Public Building - MAE = 0.015
- RMSE = 0.109

[135] Vanilla LSTM Residential Best RMSE = 4.4776
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Table A1. Cont.

Reference AI/ML Model Building Type Reliability (Accuracy/Savings)
Error (RMSE, MSE, MAPE), Savings (%)

[136] LSSVR, RBFNN, SOS Residential

- RMSE = 36.31 kWh
- MAE = 29.45 kWh

- MAPE = 8.90%
- R2 = 0.93

[137] EDA-LSTM Office
- R2 = 98.45%

- RMSE = 4.02
- MAE = 2.87

[138] CNN, GRU Residential

- IHEPC Dataset:
RMSE = 0.42, MSE = 0.18, MAE = 0.29

- AEP Dataset:
RMSE = 0.31, MSE = 0.10, MAE = 0.33

[139] BiGTA Educational Facility - MAPE = 5.37%
- RMSE 171.3 kWh

[140] kCNN-LSTM Educational Facility

- MSE = 0.0095
- RMSE = 0.0974
- MAE = 0.0711

- MAPE = 0.2697

[141] DNN, GA Office
MAPE: Training = 1.43%, Testing = 4.83%

R2: Training = 0.993, Testing = 0.960
RMSE: Training = 4.33 kW, Testing = 10.29 kW

[142] CNN Residential
-RMSE = 0.6170
- MSE = 0.3807
- MAE = 0.4490

[143] DBN, ELM Not Specified Improved accuracy by ~20%

[144] EWKM, RF, SSA, BiLSTM Public Building
- MAE = 1.30

- RMSE = 1.63
- MAPE = 0.02

[145] SVR, LSTM, GRU,
CNN-LSTM, CNN-GRU Residential

- CNN-GRU daily MAE = 0.151
- CNN-GRU hourly MAE = 0.229

- LSTM daily MAE = 0.183
- LSTM hourly MAE = 0.228

[146] VMD, LSTM Office
- Improved R2 by 10%

- Decreased MAE by 48.9%
- Decreased RMSE by 54.7%

[147] Hybrid DNN-LSTM Residential

- R2 = 0.99911
- RMSE = 0.02410
- MAE = 0.01565

- MAPE = 0.01826

Table A2. Comparison of AI models used for load forecasting.

Reference AI/ML Model Building Type Reliability (Accuracy/Savings)
Error (RMSE, MSE, MAPE), Savings (%)

[32] RF, ELM, IPWOA Commercial - RMSE = 2.8735 and 4.7721.
- MAPE = 0.2% and 0.45%.

[48] Ensemble, ML, ANN, DT Residential - MAPE = 5.39%
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Table A2. Cont.

Reference AI/ML Model Building Type Reliability (Accuracy/Savings)
Error (RMSE, MSE, MAPE), Savings (%)

[49] LSTM, Bi-LSTM, GRU Educational Facility

- LSTM RMSE = 0.0600–0.7527 kW
- Bi-LSTM RMSE = 0.0430–0.3960 kW

- GRU RMSE = 0.0413–1.3805 kW
- LSTM MAE = 0.0003–0.0078 kW

- Bi-LSTM MAE = 0.0005–0.0041 kW
- GRU MAE = 0.0005–0.0144 kW

[50] DRNN-GRU Residential
-RMSE = 0.510
- MAE: 0.345

- MAPE: 3.504%

[51] BP, XGBoost, LSTM Residential
- Minimum MAAPE = 18.70%
- Maximum MAAPE = 45.95%
- Average MAAPE = 31.20%

[52] GMTCN, Bidirectional LSTM.
SPSA Hotel

- MAPE reduced by 27.48%, 14.05%, and 13.38% for
1-step, 6-step, and 12-step predictions, respectively.
- R2 = 0.971, 0.923, and 0.885 for 1-step, 6-step, and

12-step predictions, respectively.

[53] CNN, LSTM, Bi-LSTM, GRU,
CEEMDAN, ARIMA Educational Facility

Best model (CEEMDAN-Bi-LSTM-ARIMA):
- R2 = 0.983

- RMSE = 70.25 kWh
- CV-RMSE = 1.47%

[54] BBO Residential - Heating load training, MAE = 2.15.
- Cooling load training, MAE = 2.97

[55] BBO Residential
- Heating load R2 = 0.94
- Cooling load R2 = 0.99

- Heating and cooling RMSE = 0.148–0.149

[56]
Gaussian radial basis function

kernel support vector
regression

Residential - Heating and cooling load prediction MAE = 4% less.

[57] LSTM Residential - MAPE = 0.07

[58] CNN Office
Average MAPE reduction of 29.7%, 32.8%, 35.9%, and
25.3% compared to that of GRU, ResNet, LSTM, and

GCNN, respectively.

[59] TRN Office
- RMSE = 0.01
- MAE = 0.03

- R2 = 0.98

[60] CNN-BiGRU and PSO
optimization Residential

- RMSE = 44.28 MW
- MAPE = 3.11%

- MAE = 29.32 MW
- R2 = 0.9229

[61] HHO-ANFIS Residential - R2 = 98%
- RMSE =0.08281

[62] BiLSTM, LSTM, CNN Educational Facility - Accuracy improvement = 20–45%
- RMSLE = 0.03 to 0.3

[63] iCEEMDAN-BI-LSTM hybrid
model Educational Facility

-MAE = 40.8411
- RMSE = 59.6807
- MAPE = 2.56%

- R2 = 0.9869

[64] XGBoost, LSTM Educational Facility - XGBoost CVRMSE = 21.1% on test set,
- LSTM CVRMSE = 20.2%

[65] LSTM, CIFG, GRU, ANN Public Building - Most accurate RMSE = 0.770
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Table A2. Cont.

Reference AI/ML Model Building Type Reliability (Accuracy/Savings)
Error (RMSE, MSE, MAPE), Savings (%)

[66] FFNN Hospital - MAPE = 6.6–7.0%

[67] 1D-CNN, Seq2Seq Hotel - MAPE = 10% less

[148] ANFIS, BGA-PCA Residential - MAPE = 1.70%, 1.77%, 1.80%, and 1.67% for the
summer, fall, winter, and spring seasons, respectively.

[149] 3RF Not Specified - Heating load, R2 = 0.999
- Cooling load, R2 = 0.997

[150] CNN, LSTM Residential

- Error rate reduction over the IHEPC dataset:
MAE = 15.6

MSE = 8.77%
RMSE = 4.85%

- Error rate reduction over the PJM dataset:
RMSE = 3.4%

[151] DRL, DDPG. TD3 Not Specified - Error = 4.56%

[152] LSTM, Bi-LSTM, GRU,
Bi-GRU Railway Station - Best MAPE = 0.2%

[153] CNN-LSTM, EMD, Bayesian Residential RMSE = 98.82 for six timestep

[154] Seq2Seq LSTM Residential

- MAE = 35.1 (60 timesteps), 46.5 (120 timesteps), 38.5
(180 timesteps)

- MAPE = 10.93% (60 timesteps), 12.22% (120 timesteps),
13.32% (180 timesteps)

- RMSE: 82.75 (60 timesteps), 86.50 (120 timesteps), 88.65
(180 timesteps)

[155] ANFIS Educational Facility
- Training R = 0.98017
- Testing R = 0.9778

- Validation R = 0.97593

[156] Bayesian RNN, Bayesian
LSTM, Bayesian GRU Not Specified - MAPE reduction = 15.4%

Table A3. Comparison of AI models used for HVAC control and optimization.

Reference AI/ML Model Building Type Reliability (Accuracy/Savings)
Error (RMSE, MSE, MAPE), Savings (%)

[68] DRL Educational Facility - Energy consumption reduction = 21%

[69] ANN Office - Thermal energy consumption reduction 58.5%

[70] LSTM, DRL Not Specified - MSE = 0.0015
- Energy savings = 27–30%

[71] FIS Church - Operation time reduction = 5.7%

[72] AMADRL Office - Energy consumption reduction = 0.7–4.18%,
- Thermal comfort deviation = 64.13–72.08%

[73] YOLOv5 Educational Facility - YOLOv5 model accuracy = 88.1%

[74] GPR, ANN, SVM, DT, RF Educational Facility
- Reduction in natural gas consumption = 22.2%
- Reduction in building heating demand = 4.3%

- GPR for heating demand RMSE = 32.1 kW

[75] DNN Bilinear Koopman
Predictor Office - CVRMSE: 9.62–19.15%

- Energy Savings Ratio = 33.71%

[76] Shallow ANN Educational Facility
- Heating energy consumption reduced by 0.6% to 29.0%

- Thermal comfort improved by 0% to 58.8%
- Maintained indoor CO2 below 1000 ppm for 89.2%
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Table A3. Cont.

Reference AI/ML Model Building Type Reliability (Accuracy/Savings)
Error (RMSE, MSE, MAPE), Savings (%)

[77] ANN Educational Facility

- PMV RMSE = 0.2243
- CO2 RMSE = 0.8816

- PM10 RMSE = 0.4645
- PM2.5 RMSE = 0.6646

[78] DRL Residential - Energy consumption reduction = 5–14%

[79] DRL, DQN Residential
- PM2.5 healthy period increased by 21%

- Thermal comfort period increased by 16%
- Energy consumption reduced by 23%

[80] BDQ Office - Cooling energy reduction = 11%

[81] GRU-RL Office - Cost reduction = 14.5%

[82] ANN Sports Hall
- Energy reduction = 46%
- Average RMSE = 0.06

- Average R = 0.99

[157] RL Hotel - Estimated energy savings = 21%

[158] DRL Residential - Cost reduction up to 21%

[159] DRL Office - Energy savings compared to baseline
controller = 5–12%

[160] Double DQN Residential - Energy cost reduction 7.88–8.56%

[161] DRL, PPG Not Specified - Energy consumption reduction 2–14%

[104] DRL Office - HVAC energy consumption reduction = 37%

[162] MLP, DL Residential - Energy savings = 12.24%
- Cost savings = 12.91%

[163] ANN Commercial - Energy savings = 10%

[164] DDPG Residential - Energy consumption reduction = 65%

[165] AFUCB-DQN Not Specified - Energy savings = 21.4–22.3%

[166] MAQMC Residential - Energy consumption reduction = 6.27%

[167] DDPG Office - Energy savings = 13.71%

[168] RNN, NARX Office - Energy savings = 26%

[169] DDPG Residential - Cost savings compared to DQN = 15%

[170] SNNs Office - Heating energy savings = 36.8%
- Cooling energy savings = 3.5% to 33.9%

[171] DDPG Residential - Cost savings = 12.79%

[172] OBC, DRLC Office - OBC energy savings = 7%
- DRLC energy savings = 2.4%

[173] DRL, PPO, DDPG Office - Energy savings = 13.1–14.3%

[174] MARL, DQ Residential - Cost savings = 19%

[175] DDPG Residential - Cost savings = 6.1–10.3%

[176] PPO, LSTM Residential - Cost savings = 23.63–24.29%
- PMV = 83.3–87.5%
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Table A4. Comparison of AI models used for occupant detection.

Reference AI/ML Model Building Type Reliability (Accuracy/Savings)
Error (RMSE, MSE, MAPE), Savings (%)

[83] CNN Office - Accuracy = 80.62%

[84] DMFF Residential - Accuracy = 97%
- Energy Savings: Up to 30%

[85] YOLOv5 Office - NRMSE = 0.0435
- Annual HVAC and lighting energy savings = 10.2%

[86] GA-LSTM, PSO-LSTM, LSTM Residential Correlation coefficients for all
predictions = 99.16–99.97%

[87] 1D CNN, RL Not Specified - Reduction in thermal discomfort = 10.9%

[88] MLR Educational Facility - RMSD = 4.8
- MAE = 2.5

[89] Faster R-CNN with
InceptionV2 Office - Equipment detection accuracy = 78.39%

- Occupancy activity detection accuracy = 93.60%

[90] Faster R-CNN Office - Average detection accuracy for all activities = 92.2%

[91] YOLO v4 Office

- RMSE = 0.883
- NRMSE = 0.141

- Maintained indoor CO2 < 1000 ppm
- Heating energy savings = 27%

[92] LM-BP Office
- RMSE = 15.59
- MAE = 10.16
- MAPE = 6.35

[93] YOLOv5 Office
Thermal comfort improved by 43–73%

- Energy savings = 2.3–8.1%
- Occupant detection accuracy = 80–97%

[94] Faster R-CNN Educational Facility - People counting accuracy = 98.9%
- Activity detection accuracy: 88.5%

[177] ST-GCN Educational Facility - Action recognition accuracy = 87.66%
- Average thermal comfort prediction accuracy = 82.5%

Table A5. Comparison of AI models used for other areas of application.

Reference AI/ML Model Building Type Reliability (Accuracy/Savings)
Error (RMSE, MSE, MAPE), Savings (%)

[95] ANN, SVM Thermal Comfort Prediction Residential

[96] 1D-CNN, RNN, LSTM Air Quality Prediction Residential

[97] CNN-GRU, MLP Indoor Temperature Prediction Not Specified

[98] FL-BM, ANFIS-BM Thermal Comfort Prediction Educational Facility

[99] Radial basis function NN Air Quality Prediction Office

[100] GNN Indoor Temperature Prediction Office

[101] ANN Indoor Temperature Prediction Educational Facility

[102] CNN-LSTM Indoor Temperature Prediction Office

[103] MLP Indoor Temperature Prediction Educational Facility

[178] SVR-DNN Thermal Comfort Prediction Residential

[179] MLPNN, GA Thermal Comfort Prediction Public Building



Energies 2024, 17, 4277 27 of 35

Appendix B. Accuracy of AI Models Used for Different Applications

Table A6. Comparison of AI models according to R2 values.

Reference Application Area AI Model Building Type R2 Assessment

[34] Energy Consumption
Forecast ANN, DNN, GB Residential

DNN: R2 = 0.95
ANN: R2 = 0.94

GB: R2 = 0.92
RF: R2 = 0.88

High

[37] Energy Consumption
Forecast

Asymmetric encoder–decoder
deep learning algorithm

Educational
Facility R2 = 0.964 High

[39] Energy Consumption
Forecast DF Commercial R2 = 0.90 High

[45] Energy Consumption
Forecast DNN Educational

Facility R2 = 0.87 High

[46] Energy Consumption
Forecast RNNs Residential R2 = 0.999 High

[47] Energy Consumption
Forecast 21-layer Fully Connected DNN Commercial R2 = 0.72 High

[108] Energy Consumption
Forecast

A3C, DDPG,
RDPG Office

A3C: R2 = 0.925
DDPG, RDPG:

R2 = 0.993
High

[110] Energy Consumption
Forecast CNN Mosque R2 = 0.98 High

[112] Energy Consumption
Forecast SVR Educational

Facility R2 = 0.92 High

[117] Energy Consumption
Forecast

Optimized deep network model
with bidirectional LSTM,

stacked unidirectional LSTM,
and fully connected layers

optimized using DTO

Residential R2 = 0.998 High

[121] Energy Consumption
Forecast Ensemble Residential R2 = 0.92601 High

[124] Energy Consumption
Forecast GPR Public Building R2 = 0.9917 High

[127] Energy Consumption
Forecast SADLA Office R2 = 0.967 High

[128] Energy Consumption
Forecast

LR, SVM, RF, MLP, DNN, RNN,
LSTM, GRU

Educational
Facility R2 = 88% High

[129] Energy Consumption
Forecast

Proposed eight-layer deep
neural network Residential R2 = 97.5% High

[136] Energy Consumption
Forecast

Ensemble model combining
LSSVR and RBFNN, optimized

by SOS
Residential R2 = 0.93 High

[137] Energy Consumption
Forecast EDA-LSTM Office R2 = 98.45% High

[141] Energy Consumption
Forecast GA Office R2 = 0.993 High

[147] Energy Consumption
Forecast Hybrid DNN-LSTM Residential R2 = 0.99911 High

[97] Indoor Temperature
Prediction Multitask learning Not Specified R2 = 0.981 High
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Table A6. Cont.

Reference Application Area AI Model Building Type R2 Assessment

[102] Indoor Temperature
Prediction Transformer NN Office R2 = 0.936 High

[52] Load Forecast GMTCN combined with
Bidirectional LSTM with SPSA Hotel R2 = 0.971 High

[53] Load Forecast CEEMDAN and ARIMA Educational
Facility R2 = 0.983 High

[54] Load Forecast Multi-layer Perceptron NN
optimized with BBO Residential R2 = 0.920 High

[55] Load Forecast BBO-MLP Residential

R2 = 0.94 for
heating load,
R2 = 0.997 for
cooling load

High

[59] Load Forecast TRN Office R2 = 0.98 High

[60] Load Forecast DL with CNN-BiGRU and PSO
optimization Residential R2 = 0.9229 High

[61] Load Forecast HHO-ANFIS Residential R2 = 98% High

[63] Load Forecast iCEEMDAN-BO-LSTM Educational
Facility R2 = 0.9869 High

[65] Load Forecast LSTM, CIFG, GRU Public Building

Respectively,
LSTM: R2 = 0.920,
CIFG: R2 = 0.914,
GRU: R2 = 0.925

High

[149] Load Forecast 3RF Not Specified

R2 = 0.999 for
heating load,
R2 = 0.997 for
cooling load

High

[95] Thermal Comfort
Prediction ANN Residential R2 = 0.4872 Medium
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