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Abstract: Energy poverty, defined as difficulty meeting the minimum requirements for a thermal
environment, is becoming a significant social issue. To provide efficient welfare services, information
provision and monitoring are required. However, characteristics of energy poverty, such as inconsis-
tent residential patterns, small living spaces, and limited electricity and telecommunication resources,
lead to a lack of information. This research introduces the empirical results of the development of
the system. Based on the feedback from welfare workers and experts supporting energy poverty, a
monitoring system combining various sensors was prototyped. This system measures temperature,
humidity, illuminance, air velocity, CO2, black bulb temperature, occupancy, and noise and generates
indicators for occupancy and thermal environment monitoring. Applicability assessment was con-
ducted across 55 energy poverty households in Korea during the duration of cooling and heating.
Subjects were living in spaces averaging 6.3 sqm within buildings over 43 years old and renting on a
monthly or weekly basis. Electricity and communication are partially supplied. Based on the actual
measurement data and field surveys, the configuration of an energy poverty monitoring system
was proposed. In particular, the applicability of the simple methodology for the determination of
black bulb temperature, metabolic rate, and clothing insulation required for a thermal environment
evaluation was assessed. The proposed system can be efficiently used for taking care of energy
poverty where the installation of conventional monitoring systems is restricted.

Keywords: energy poverty; indoor thermal environment; IoT sensor network; welfare service

1. Introduction

Energy poverty refers to the stratum of society unable or struggling to consume the
energy required to meet minimum heating and cooling requirements [1,2]. The social
issue of energy poverty has become more prominent with the frequent occurrence of
abnormal weather due to global warming, such as heatwaves and cold snaps. This group
predominantly comprises those with lower incomes, older individuals, and those in poor
health [3]. Their residential buildings are often old and thermally inefficient, directly
affected by solar radiation [3]. Due to equipment or financial constraints, many lack
adequate heating and cooling appliances, exposing them to the risks associated with
extreme weather.

Various welfare activities are conducted to prevent heat-related illnesses in those with
energy poverty and provide economic support [4]. Welfare workers deliver goods and food
for heat illness prevention and conduct health management through visitation surveys
for energy poverty individuals. However, these caring services face challenges in efficient
delivery for various reasons. The employment of energy poverty individuals is primarily
casual with irregular working hours [5]. They often spend time in shelters during summer
and winter due to the absence of heating and cooling appliances. Furthermore, their
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limited access to mobile phones hinders visit scheduling for welfare goods distribution and
consultation. The lack of personnel to manage these individuals and the frequent absence
of targets during welfare worker visits complicate the efficient provision of services.

The rapid advancement of IoT and sensor technologies provides a foundation to
solve these problems. Research utilizing IoT-based sensor networks to monitor thermal
environments, power [6–11], and healthcare [12–15] is actively ongoing [16]. Cabra et al. [12]
developed a system utilizing an IoT-based wireless sensor network to monitor temperature
and humidity in medical environments. The system, designed for low cost and low power,
was integrated and operated with cloud services providing real-time monitoring, log
file management, report generation, and alarm functionalities. Through alpha and beta
testing, the system’s power consumption, reliability, and its positive impact on the daily
routines of medical professionals were evaluated, demonstrating the significant impact
of IoT monitoring systems on medical environments. Kim et al. [14] proposed an IoT-
based monitoring platform aimed at reducing health risks for workers operating at high
temperatures. The health risk levels of the workers were assessed based on data obtained
from wearable smart bands, which included skin temperature. The reliability of the system
in indoor and outdoor environments was verified, confirming its role as an effective tool in
preventing accidents that may occur at high temperatures.

The application of these technologies in various fields is increasing, particularly in ad-
dressing energy poverty. Pollard et al. [17] conducted thermal environment monitoring to
assess whether increasing awareness of indoor temperatures could improve the health and
welfare of those in energy poverty. They installed thermometers in 34 households from 2016
to 2017, measuring indoor temperatures every 30 min. The measured temperature data,
along with health-related survey results, were used in the study. The contribution of this
study is that it confirms that simple thermal environmental monitoring can play an impor-
tant role in managing chronic health conditions in winter and increasing the sustainability
of healthcare systems. Hurst et al. [18] proposed a method to detect energy poverty using
IoT sensor networks. Gas usage patterns collected from smart gas meters were analyzed
using decision trees to determine individual households’ energy poverty status. Fergus and
Chalmers [19] suggested monitoring the risk of energy poverty using smart meters, data
on consumer access to devices, and machine learning. This approach helped detect early
signs of financial difficulties in individual households, identifying when welfare services
were needed. Díaz et al. [20] proposed a method to detect energy poverty using IoT sensor
networks capable of humidity measurement and linguistic protoforms. The thermal envi-
ronments measured in individual households were automatically converted into linguistic
expressions and provided to experts, enabling them to more efficiently determine whether
a household was experiencing energy poverty. The contributions of [18–20], which propose
methods for identifying energy poverty households, are valuable in that they are needed to
ensure that energy poverty households are not marginalized and that they receive accurate
and early assistance. Other studies [21,22] have also attempted to address energy poverty
issues using power and thermal environment monitoring tools and power contract statuses.
Maturana [21] analyzed collected data to propose changes in power contracts for individual
households, potentially saving 10–40% in annual power bills. Ortiz et al. [22] compared
energy poverty and non-poverty households based on collected data, analyzing indoor
environment comfort and providing health management recommendations. Considering
the scarcity of cases characterizing energy poverty households from the perspectives of
thermal comfort and indoor air quality, this study contributes by offering relevant insights.
López-Vargas et al. [16] improved upon previous studies’ focus that was solely on energy
consumption for detecting energy poverty by utilizing thermal environment monitoring.
The developed IoT-based thermal environment monitoring system measured indoor tem-
perature, relative humidity, air quality, and lighting levels hourly, aiding in energy poverty
detection. While various studies applying IoT sensor networks have been conducted, they
primarily focus on identifying energy poverty. Cases utilizing IoT sensor networks to
provide better caring services from a welfare perspective for energy poverty are scarce.
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While numerous IoT-based monitoring studies and significant technological advance-
ments exist, monitoring systems designed to support energy poverty households need to
be specifically tailored to their harsh situations and the consequent limited measurement
conditions. However, there is a lack of research in this area, and challenges remain in
addressing energy poverty, such as installing and maintaining sensor systems that involve
issues like network communication, environmental conditions at sensor installation sites,
and power supply. Therefore, this study analyzes the results of implementing an IoT moni-
toring system in 55 actual energy poverty households and proposes a support system based
on the IoT sensor networks to enhance the efficiency of energy poverty caring services.
The proposed system can be implemented as a low-cost wireless sensor network in energy
poverty households, allowing efficient support (goods distribution, healthcare, etc.) based
on collected data (occupancy, thermal environment monitoring data, etc.).

2. Proposed System
2.1. System Requirements

Typical welfare activities for energy poverty include managing heat-related illnesses
and providing support materials for situations like heatwaves and cold snaps. To enhance
the efficiency of such welfare activities, the system proposed in this study must first
understand the characteristics of energy poverty and derive suitable system requirements.
Basic requirements were set based on the characteristics of monitored households identified
through field visits, interviews with residents, and discussions with welfare managers,
leading to system implementation. Subsequent pilot testing with five households helped
refine these requirements by addressing identified issues. The following are the derived
characteristics and required conditions for the system:

• Characteristics: Most energy poverty individuals work in casual jobs, leading to
irregular occupancy times. They also have low usability of and access to mobile
phones, complicating scheduling visits for welfare goods distribution and consultation.
Requirements: A display must be equipped on the sensor node to notify households
of the welfare worker’s planned visit and display announcements, helping users with
limited phone access to recognize this information easily. Additionally, the system
should be able to detect the occupancy status of the target households to schedule
visits efficiently.

• Characteristics: Target individuals live in densely built areas with unreliable net-
work access, such as Wi-Fi. Requirements: An independent network construction is
necessary for the system. The Long Range (LoRa) communication protocol, which
offers better penetration capabilities than Wi-Fi, BLE, and ZigBee, should be used
to minimize interference between buildings and provide a wide coverage. Such ad-
vantages effectively establish a sensing network even in environments with limited
network access.

• Characteristics: Possession of limited power plugs and a tendency to minimize power
usage due to the cost burden. Requirements: The power supply for sensor nodes
should be battery-operated, and the batteries must be replaceable.

• Characteristics: Most households cannot use heating and cooling appliances due to
energy costs or infrastructure limitations, often resorting to auxiliary devices such as
fans or electric mats. Additionally, buildings are often old, have poor insulation, and
are directly affected by solar radiation, leading to frequent occurrences of heat-related
illnesses. Requirements: There is an urgent need to provide appropriate countermea-
sures through thermal environment monitoring. Considering these characteristics,
judging occupants’ thermal comfort based solely on temperature and humidity is
insufficient. As indicated in a review paper [23], assessing thermal comfort requires a
comprehensive approach that includes various parameters, such as radiative heat and
airflow, beyond just temperature and humidity.

• Characteristics: Residents mostly live in confined spaces of about 6 sqm. Requirements:
The size of the sensor node should be minimized to occupy as little space as possible.
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A black bulb thermometer, for measuring indoor radiant heat, recommended by ISO
7726 [24] with a diameter of 150 mm is too bulky. So, a small black bulb thermometer
should be used to make the sensor node compact and easy to install.

• Characteristics: Residents spend most of their time sitting or lying down watching TV
with less movement than average households.

2.2. System Workflow

Based on the requirements identified in Section 2.1, an IoT-based system supporting
energy poverty caring services was developed. The overall workflow is shown in Figure 1.
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The proposed system operates as per the following two processes.
(1) Data Collection and Transmission
The proposed system collects real-time data from multiple sensor nodes installed in

households affected by energy poverty. These nodes measure thermal environment data,
such as dry-bulb temperature, relative humidity, air velocity, and black bulb temperature,
and also include sensors for detecting occupancy. Detailed descriptions of the types of
sensors used in the sensor nodes are provided in Section 2.3. Each node operates indepen-
dently using its battery, and the batteries are replaced by social workers or consultants who
visit periodically. The sensor nodes use the low-power LoRa communication protocol to
transmit the measured data to a gateway. The LoRa is effective for data transmission in
urban environments due to its low power consumption and excellent long-range communi-
cation capabilities. This communication method minimizes interference between buildings
in densely populated energy poverty areas and ensures stable data transmission. The
gateway transmits the collected data from multiple nodes to the cloud server via wide-area
network (WAN) or cellular networks.

(2) Data Processing and Utilization
The cloud server stores and processes the transmitted data. Data processing includes

calculating the thermal comfort index and determining occupancy status. The Predicted
Mean Vote (PMV) is used as the thermal comfort index. The PMV evaluates the thermal
sensation of occupants, quantifying how people feel in a given thermal environment [25].
The PMV index is calculated using data such as dry-bulb temperature, relative humidity,
air velocity, and black bulb temperature and is used to assess the thermal risk levels in
households affected by energy poverty. Additional inputs required for the PMV index
calculation, such as clo (clothing insulation) and met (metabolic rate), are set based on the
opinions of social workers with extensive experience visiting energy poverty households
and can reflect seasonal characteristics. The derived thermal comfort data can be used for
healthcare and counseling. Furthermore, if the thermal illness risk level exceeds a certain
threshold in a hazardous environment, the system automatically sends an alert to the social
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worker. Additionally, the measured thermal environment data can efficiently determine the
type and distribution timing of support items during summer and winter. Occupancy data
is used to efficiently coordinate social workers’ and consultants’ visit schedules and routes.
This data is sensitive personal information, so the system is configured to provide it only
upon request by a social worker. Through these processes, the proposed system maximizes
the efficiency of caring services for people affected by energy poverty and contributes to
improving their living environments.

2.3. Sensor Node

The sensor node, a core component of the proposed system, plays a vital role in moni-
toring and improving the living and health conditions of households affected by energy
poverty by providing real-time thermal environment and occupancy data. The sensor
node comprises a microcontroller unit (MCU), thermal environment sensors, occupancy
detection sensors, a LoRa wireless communication module, a display, and a battery.

Acting as the brain of the sensor node, the MCU controls various modules and handles
real-time data collection and processing. After initial processing, it commands all sensors
to measure, collects the sensing data, and transmits it to the gateway through the LoRa
wireless communication module. Various MCUs are available on the market, but the
proposed system requires one with a sufficient number of input/output pins for connecting
and operating various sensors and modules and adequate storage space for libraries and
algorithms for data operations.

The sensor node is equipped with humidity sensors, a black bulb thermometer, and air
velocity sensors to monitor the thermal environment in energy poverty households. These
sensors measure the thermal environment at 5 min intervals following MCU commands and
transmit the data to the MCU. The measured data is calculated into the PMV index, which
indicates the level of thermal risk in energy poverty households. The requirements for the
accuracy of the thermal environment monitoring sensors vary depending on their purpose.
Therefore, the accuracy requirements for each sensor can be set based on the ASHRAE
Standard 55 [25]. This standard requires a sensor accuracy of ±0.2 ◦C for temperature, ±5%
for relative humidity, ±1 ◦C for mean radiant temperature, and ±0.05 m/s for air velocity
when measuring thermal comfort in built environments. The mean radiant temperature
is a value calculated using temperature, air velocity, and black bulb temperature, and the
system uses the formula provided in ISO 7726 [24] for this calculation. Considering the
characteristics of energy poverty households, the black bulb thermometer, uses a 40 mm
diameter model proposed by Humphreys [26]. Temperature sensors, which can be affected
by heat from other sensors, should be placed at a certain height above the top of the case to
minimize this influence. The installation location of the sensor node is crucial for accurate
thermal environment monitoring. The ASHRAE Standard 55 [25] recommends measuring
at a height of 0.6 m from the floor in a seated environment. Additionally, to prevent errors
in the black bulb thermometer, which is greatly affected by radiant heat, the sensor node
should be placed away from heat-generating electronic devices such as TVs, refrigerators,
and electric mats.

Various sensors are mounted on the sensor node to detect the presence of occupants.
Occupancy detection sensors play an essential role in energy poverty caring services. Since
the working hours of the occupants are irregular, and they often spend some time in
external shelters, social workers and consultants need to confirm the actual presence of
occupants during visits. This confirmation helps increase the efficiency of visits and prevent
the unnecessary waste of human resources. PIR sensors detect human movement and are
commonly used for occupancy detection. However, there is a limitation in applying them
to energy poverty households as they cannot accurately detect occupancy when there is no
movement. Previous studies have researched methods to detect occupancy by combining
various sensors to overcome this limitation [27,28]. Additional sensors to detect light, noise,
CO2, etc., and their applicability will be discussed in Section 4 based on field surveys.
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The LoRa wireless communication module is used for data transmission and reception
between the sensor node and the cloud server. The MCU transmits the collected data to
the gateway through the LoRa module. The LoRa communication protocol’s excellent
penetration and wide coverage is suitable for the dense living environments of energy
poverty households. When visits are scheduled for social workers or consultants, or other
service-related notices, the corresponding data is transmitted from the cloud server and
sent to the LoRa module via the gateway.

Real-time measurement results from the sensors and notices, such as social worker visit
schedules, are displayed on a small display mounted on the node. This display allows users
to easily check the current thermal environment status, normal operation of the sensor node,
and necessary information related to service provision. The display should be mounted at a
suitable distance from the temperature sensors because of their heat emissions.

The sensor node operates on its battery, making service provision possible in energy
poverty households with limited access to power. The battery is designed to be easily
replaceable. Social workers and administrators who visit the households periodically can
easily replace the battery, facilitating system maintenance.

3. Methodology

This section describes the implementation and applicability test of the proposed
system. Figure 2 describes the methodology used for developing the proposed system.
To properly construct the entire system, it was essential to first deeply understand the
living environments of the energy poverty households. For this purpose, the characteristics
of energy poverty households were investigated by conducting interviews with welfare
workers and experts. Based on the initially derived system requirements, a pilot packaging
of an IoT-based measurement system was created, and pilot testing and field survey were
conducted. Based on the results of the first pilot test, discussions and feedback with experts
were conducted. Through this process, the system was redesigned and improved to better
suit the characteristics of energy poverty households. After that, 20 improvements of the
measurement system were made, and an applicability test was conducted in the winter and
summer for 55 energy poverty households. Based on the results of the applicability test,
the applicability of core technologies in the proposed system, such as thermal environment
monitoring and presence detection methods, was analyzed, and suggestions for an IoT-
based monitoring system for energy-poverty households were derived.

Energies 2024, 17, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 2. Flow chart showing the procedures used for developing IoT-based energy poverty care 
system. 

3.1. Implementation 
The sensor nodes were designed to be easily installed in the confined spaces of energy 

poverty households, measured 230 mm long × 210 mm high × 130 mm wide, and were 
packaged in a tissue box, as shown in Figure 3. The case contained various modules, in-
cluding an MCU, with thermal environment sensors located externally to minimize the 
impact of device-generated heat. The CO2 sensor was placed inside the case with an air 
vent to ensure air circulation. A total of 20 nodes were manufactured and used after cali-
bration in the field tests. 

 
Figure 3. Manufactured sensor node. 

The Arduino Mega 2560 was used in this study. The Arduino Mega offers 54 digital 
I/O pins and 16 analog input pins, which are suitable for connecting and operating the 
various sensors and additional modules needed for the system. Its 256 KB of flash memory 
is sufficient for utilizing libraries for sensor and module control and embedding algo-
rithms for data processing. The sensors used for thermal environment monitoring are 
listed in Table 1. 

Figure 2. Flow chart showing the procedures used for developing IoT-based energy poverty care system.

3.1. Implementation

The sensor nodes were designed to be easily installed in the confined spaces of energy
poverty households, measured 230 mm long × 210 mm high × 130 mm wide, and were
packaged in a tissue box, as shown in Figure 3. The case contained various modules,
including an MCU, with thermal environment sensors located externally to minimize the
impact of device-generated heat. The CO2 sensor was placed inside the case with an air vent
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to ensure air circulation. A total of 20 nodes were manufactured and used after calibration
in the field tests.
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The Arduino Mega 2560 was used in this study. The Arduino Mega offers 54 digital
I/O pins and 16 analog input pins, which are suitable for connecting and operating the
various sensors and additional modules needed for the system. Its 256 KB of flash memory
is sufficient for utilizing libraries for sensor and module control and embedding algorithms
for data processing. The sensors used for thermal environment monitoring are listed in
Table 1.

Table 1. Sensor specifications for thermal environment monitoring.

Product Measurement Item Accuracy

SHT31-D dry bulb temperature, relative
humidity ±2% RH, ±0.3 ◦C

Wind sensor rev.P air velocity -
SHT75 black bulb temperature ±0.3 ◦C

The SHT31-D sensor, measuring dry bulb temperature and relative humidity, is space-
efficient and demonstrates an accuracy of ±0.3 ◦C for temperature and ±2% RH for
humidity, meeting the accuracy requirements of ASHRAE Standard 55 [25]. An air flow
sensor that uses the hot-wire method was required to measure subtle indoor air flow. The
Wind Sensor Rev.P, previously used in preliminary studies [7,29], was selected, although
specific accuracy data is lacking. For the black bulb temperature, the SHT75 sensor was
used, offering a high accuracy of ±0.3 ◦C and meeting the requirements of ASHRAE
Standard 55 [25]. This sensor was fixed inside a matte black painted table tennis ball of
40 mm diameter and well-sealed to prevent air intrusion. The small, vertically elongated
form factor of the sensor was conducive to installation inside the 40 mm black bulb. This
design approach has been evaluated in previous studies [30,31] and deemed suitable for
use in sensor nodes.

Sensors for presence detection and their specifications are shown in Table 2. Presence
was primarily detected using a PIR sensor, specifically the SparkFun OpenPIR. However,
PIR sensors cannot detect movement outside their field of view. Therefore, the angles of the
PIR sensors were made adjustable in all directions for optimal installation. In addition, a
limitation of the PIR sensors in that they cannot detect stationary individuals was addressed
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by incorporating CO2, illuminance and noise sensors. The SH-300-NDC CO2 sensor, using
NDIR technology, measures CO2 concentration with an accuracy of ±3%. The BH1750
illuminance sensor, with a 16-bit resolution and a measurement range up to 65,535 lux, has
an accuracy of ±20%, which is sufficient for detecting presence through lighting on/off
status. The MAX9814 noise sensor amplifies incoming sound signals and sends them as
analog signals to the MCU.

Table 2. Sensor specifications for presence detection.

Product Measurement Item Accuracy

SparkFun OpenPIR movement of occupancy -
SH-300-NDC CO2 ±3%

BH1750 illuminance ±20%
MAX9814 noise -

For the secure storage of measured data, an SD card module was used in this study.
Data was recorded on the SD card as csv files by the MCU with timestamps included.
Accurate time information was obtained using a Real Time Clock (RTC) module. A
128 × 64 resolution OLED display, SSD1306, was used to show measurements and de-
vice status. Two 74 Wh batteries were used due to the diverse voltage requirements (5 V
and 9 V) of the modules operated by the sensor nodes.

Figure 4 shows the block diagram of the constructed sensor node. The MCU receives
5 V power from the battery, which it transforms to supply 3.3 V power to the humidity,
black bulb temperature, illuminance, noise, and PIR sensors. The CO2 and airflow sensors,
requiring 9 V, are powered by 5 V from a separate battery, which is stepped up to 9 V using
a step-up DC/DC converter. Due to the various modules in use, many data input/output
ports are needed. Utilizing I2C or SPI communication methods allows for transmitting
various sensor data through the same port, saving the number of required ports. In the
implemented sensor node, the humidity and illuminance sensors and the OLED display
module used I2C communication, while the black bulb thermometer and SD card module
utilized SPI communication. The airflow, PIR, and noise sensors used digital input pins,
and the CO2 sensor was configured to receive analog signals via analog pins.
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Calibration was conducted for sensors that required it after the sensor nodes were
constructed. The humidity, CO2, and PM2.5 sensors were excluded from calibration as
they were factory-calibrated. Precise measurement is required for thermal environment
monitoring sensors; thus, they required pre-use calibration. The airflow sensor was cali-
brated according to the manufacturer’s recommended method. First, it was fixed inside
a small plastic bottle, which was then sealed to maintain a stationary state. Theoretically,
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the measured airflow speed in this state should be 0 m/s, and any deviation was corrected
by adjusting the zero point. The black bulb thermometer, being handcrafted, required
more precise calibration and validation for its potential use. In this study, the sensor was
calibrated using a reference device, the Testo 480, a Class 1 type K thermocouple black bulb
thermometer with a diameter of 150 mm. For calibration, the 40 mm diameter black bulb
thermometer and the reference sensor were installed side-by-side at the same height in the
center of the room. The experiment was conducted over 24 h, with data acquired every
5 min. Outliers caused by direct solar exposure and other factors were removed, and a
linear regression analysis was applied to calibrate each black bulb thermometer.

Figure 5 is a box plot comparing the measurements of the 20 calibrated black bulb
thermometers with the reference sensor values. The x-axis represents the black bulb
temperature measured by the reference device, and the y-axis shows the distribution of
black bulb temperatures measured by the 20 sensor nodes. The red line indicates the
error range of the used sensors. The figure shows that the calibration was successful, with
measurement values falling within the sensor error range.
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3.2. Applicability Analysis

In this study, a pilot test involving 55 households was conducted using the imple-
mented data acquisition system, based on which the applicability analysis and system
improvements were carried out. The field test was conducted in Seo-gu of Daegu Metropoli-
tan City, an area densely populated with households experiencing energy poverty. Figure 6
shows the location of the field test. These households tend to cluster in collective buildings
where rent is affordable. The buildings in this area are mostly old, with living spaces
divided into small rooms sufficient for minimal living. As indicated in Table 3, the target
buildings have an average age of 43 years. Consequently, they had severely deteriorated in-
sulation and air permeability in the exterior walls and window systems. They were mainly
constructed with cement brick walls up to two stories high, making them vulnerable to
ground infiltration and radiant heat from sunlight.
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Table 3. Seasonal distribution of target locations.

Building
Code

Year
Built

No. of Target
Sites

(Summer)

No. of Target
Sites

(Winter)
Total

A 1978 2 6 8
B 1974 2 5 7
C 1977 1 3 4
D 1982 6 11 17
E 1976 1 3 4
F 1976 4 4 8
G 1976 4 3 7

Total 20 35 55

Table 3 shows the number of households participating in the experiment divided by
season. There were 20 households in the summer and 35 in the winter, totaling 55 house-
holds. The average age of the participants was 55.4 years, and all were single-person
households, except for one. Most occupants were male and worked in daily labor jobs,
with an average living area of 6.3 m2.

The acquired data was handled following privacy protection and ethical considera-
tions. To this end, cooperation was sought from the households after consulting with an
organization that has been conducting welfare activities in the area for many years. The
data was used exclusively for research purposes.

To minimize measurement errors, it is crucial to correctly set the installation location
and method of the sensor nodes. This study established the following conditions for sensor
node installation to minimize deviation: (1) distance should be maintained from electronic
devices such as TVs, refrigerators, and electric mats that generate heat, as they can affect
the measurement of radiant heat; (2) areas near entrances should be avoided due to the
rapid changes in airflow and humidity when entering or exiting; (3) sensor nodes should
be installed at approximately 0.6 m height as recommended by ASHRAE Standard 55 [25];
(4) PIR sensors should be positioned to face the areas where occupants are most active.

Field tests were conducted in July for the summer period and from January to February
for the winter period. Twenty sensor nodes, created as per Section 3.1, were sequentially
installed in various households. Measurements were taken every 5 min for approximately
five days. Out of 55 households, sensor or equipment issues led to complete data loss in
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three households during summer and seven during winter. Consequently, data acquired
from the remaining 45 households were utilized in this study.

Figure 7 shows the distribution of outdoor temperature and relative humidity during
the field test period. Climate data were obtained from the Automated Synoptic Observing
System (ASOS) observations provided by the Korea Meteorological Administration (KMA).
The summer period covered 8 days, from July 24 to July 31, and the winter period covered
22 days, from January 25 to February 6 and February 13 to February 21. The summer
temperatures ranged from 24.7 ◦C to 35.5 ◦C, with an average of 29.02 ◦C, and a standard
deviation of 2.53 ◦C. Winter temperatures ranged from −6.9 ◦C to 14 ◦C, with an average of
2.8 ◦C and a standard deviation of 3.76 ◦C. Humidity in summer ranged from a minimum
of 46% to a maximum of 98%, with an average of 74.68% and a standard deviation of 13.05%.
In winter, humidity ranged from a minimum of 12% to a maximum of 97%, with an average
of 45.49% and a standard deviation of 21.85%. High humidity was observed during winter
when it snowed or rained, typically following a prolonged dry period. Considering that
the proposed system in this study aims to support caring services for energy poverty, these
hot and humid summer conditions and dry, cold winter conditions were deemed suitable
for conducting field tests.
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4. Results and Discussion

In the vicinity of the sensor node installation and retrieval, outliers in measurements
may occur due to the movement of the sensor nodes. Therefore, in this study, data from
the day after the sensor nodes were installed were used, and measurements taken two
hours prior to retrieval were excluded from the analysis. The CO2 sensor, the only analog
sensor on the node, can record extremely low or high values in case of power supply issues.
Consequently, CO2 measurements below 50 ppm or above 4500 ppm, deemed outside the
typical measurement range, were adjusted as missing values.

As indicated in Table 4, some parameters collected by the sensor nodes showed a
high missing data rate. This is attributed to power supply issues and poor connection due
to complex wiring. The CO2 and air velocity sensors, which used a separate battery for
9 V power supply, showed rapid power consumption that led to earlier battery discharge,
causing more missing data compared to other sensors operating at 3.3 V.
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Table 4. Data missing rate by measurement parameter.

Measurement
Parameter Missing Values Valid Values Missing Rate (%) *

Ta 1 66,011 0.002
RH 1 66,011 0.002
Tg 1 66,011 0.002

Lux 1 66,011 0.002
PIR 1 66,011 0.002
Va 13,338 52,674 20.205

CO2 4936 61,076 7.477
Noise 1 66,011 0.002

* Total data samples: 66,012 (across 45 sites).

This study uses the PMV index to assess thermal vulnerability in energy poverty
households. However, obtaining consistent values for the six required parameters (temper-
ature, humidity, black bulb temperature, air velocity, clo, met) for the PMV calculation in
energy poverty monitoring is challenging. Therefore, the feasibility of alternative formulas
and various approximation models was examined.

The PMV calculations were based on the pythermalcomfort module [32], following
ASHRAE Standard 55 [25]. While the general range for PMV is −3 (cold) to +3 (hot), this
study expressed values beyond this range to identify extreme thermal vulnerability in
energy poverty households. To provide a basis for calculating clo, essential for PMV, the
primary clothing amount of household members was surveyed. Out of 55 households,
53 participated, excluding the 3 that refused. Based on the insulation table in ASHRAE
Standard 55 [25], the clothing insulation was converted to clo values. Table 5 shows these
results, with summer having an average of 0.2 clo (light clothing) and winter averaging
0.53 clo (more substantial clothing). Notably, winter clo values showed significant variance,
reflecting the characteristics of energy poverty households, which often use localized
heating methods due to insufficient heating funds or infrastructural limitations. It leads to
observations of both lower and higher clo values. So, it is challenging to accurately assess
the thermal environment using winter clo values alone.

Table 5. Survey results on clothing insulation.

Season Average Standard
Deviation Min Median Max

Summer (n = 18) 0.20 0.11 0.04 0.26 0.44
Winter (n = 34) 0.53 0.26 0.10 0.47 1.12

This study evaluated the use of a formula for representative clothing insulation based
on outdoor temperature, as suggested by Schiavon and Lee [33] and described in ASHRAE
Standard 55 [25]. Using outdoor temperature at 6 am, this formula was deemed suitable
for winter clo calculation. Figure 8 compares the PMV values calculated using this formula
(clo_tout) and the average clo from the survey. In summer, the difference between the two
groups’ average values was minimal (0.24), while in winter, the difference was significant
(1.21), which is consistent with the survey’s average clo of 0.53. However, the formula
assumes a clo of 1 at temperatures below −5 ◦C. So, the formula is appropriate for winter
clo estimation and is suitable for the system proposed in this study, offering versatility and
applicability beyond the surveyed sites.
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The average living space of the surveyed households was 6.3 m2 and predominantly
involving sedentary or lying-down activities. According to ASHRAE Standard 55 [25], a
resting seated position has a met of 1.0, which is considered representative of the metabolic
rates of energy poverty households and used for the PMV calculations in this study.

The distribution of PMV by location is shown in Figure 9. In summer, the PMV values
showed an average of 2.27, a standard deviation of 0.49, a minimum of 0.27, and a maximum
of 3.9. Approximately 6.4% of the total data samples exceeded a PMV of 3 (hot), raising
concerns about heat-related illnesses such as heatstroke and prickly heat due to thermal stress
in high-temperature environments. In winter, the PMV averaged −2.49, with a standard
deviation of 1.36, a minimum of −6.4, and a maximum of 0.59. About 36.9% of the results
were below −3 (cold), indicating greater thermal vulnerability in winter than in summer and
suggesting the need for more support services for energy welfare during winter.

Figure 10 presents the distribution of indoor-outdoor temperature differences in the
buildings where the experiments were conducted. During summer, a similar pattern was
observed across all five buildings, with indoor temperatures being, on average, about 3 ◦C
higher than outdoor temperatures. This was attributed to the characteristics of households
experiencing energy poverty. These households have limited access to cooling devices
such as air conditioners. The buildings they inhabit are typically low-rise and densely
packed. Consequently, a high cooling load is formed due to solar radiation, but there is a
lack of adequate cooling means, leading to high indoor temperatures. In winter, the indoor
temperature was about 13.3 ◦C higher than the outdoor temperature, showing a greater
difference than in summer. This result was due to minimal heating for survival in notably
colder winter temperatures in the surveyed area. However, as shown in Figure 9, the
thermal environment in winter was more vulnerable than in summer. As Figure 8 indicates,
there were buildings (B, C, E) with relatively small indoor-outdoor temperature differences
and vulnerable structures. This was attributed to differences in energy characteristics and
heating system operations among buildings, indicating the need for energy poverty care
that takes into account these building-specific characteristics.
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The usability of black bulb thermometers was evaluated by analyzing the difference
between the measured black bulb temperatures and indoor temperatures. In summer, an
average difference of 0.23 ◦C and a standard deviation of 0.24 ◦C were observed. In winter,
the average difference was 0.26 ◦C with a standard deviation of 0.26 ◦C. Excluding some
outlier values, the deviation between black bulb temperatures and indoor temperatures
fell within the error range of the temperature sensor. Therefore, the PMV was analyzed
assuming the black bulb temperature was identical to the indoor temperature without
using a separate black bulb thermometer, and the results are shown in Figure 11. Similar
patterns were observed in summer and winter with minor value differences of 0.079 in
summer and 0.053 in winter. Considering the complexity of manufacturing black bulb
thermometers, the need for self-calibration, and the increase in sensor node volume due to
the installation of black bulb thermometers, it was deemed rational and cost-effective for
the system proposed in this study to assume the black bulb temperature is identical to the
indoor temperature without a separate measurement.
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Next, the usefulness of air velocity sensors was evaluated by analyzing the measured
air velocity values. In summer, the average measured value of air velocity at the target
sites was 0.114 m/s with a standard deviation of 0.168 m/s. In winter, the average was
0.075 m/s with a standard deviation of 0.093 m/s, after mainly observing minor airflows.
It was judged that such minor variations in airflow do not significantly impact the thermal
environment assessment, and to verify that, the PMV was calculated using the average
measured values of 0.114 m/s in summer and 0.075 m/s in winter and compared to the
PMV calculated using the actual measurements. The results are shown in Figure 12, with
similar distributions observed in both summer and winter. In summer, the difference in
PMV values was an average of 0.079, while in winter, it was 0.055, thus only showing
minor differences. The precise measurement of airflow velocity requires hot-wire type
sensors. However, apart from specialized research equipment, the selection of sensors
available on the market is limited. Also, due to their measurement technique requiring heat
generation, they demand higher voltage than typical sensors, making them unsuitable for
power-optimized sensor nodes. Therefore, it was concluded that it is more appropriate to
use pre-measured air velocity as an average or representative value for commercial service
in the system proposed in this study.

Energies 2024, 17, x FOR PEER REVIEW 16 of 20 
 

 

Next, the usefulness of air velocity sensors was evaluated by analyzing the measured 
air velocity values. In summer, the average measured value of air velocity at the target 
sites was 0.114 m/s with a standard deviation of 0.168 m/s. In winter, the average was 0.075 
m/s with a standard deviation of 0.093 m/s, after mainly observing minor airflows. It was 
judged that such minor variations in airflow do not significantly impact the thermal envi-
ronment assessment, and to verify that, the PMV was calculated using the average meas-
ured values of 0.114 m/s in summer and 0.075 m/s in winter and compared to the PMV 
calculated using the actual measurements. The results are shown in Figure 12, with similar 
distributions observed in both summer and winter. In summer, the difference in PMV 
values was an average of 0.079, while in winter, it was 0.055, thus only showing minor 
differences. The precise measurement of airflow velocity requires hot-wire type sensors. 
However, apart from specialized research equipment, the selection of sensors available on 
the market is limited. Also, due to their measurement technique requiring heat generation, 
they demand higher voltage than typical sensors, making them unsuitable for power-op-
timized sensor nodes. Therefore, it was concluded that it is more appropriate to use pre-
measured air velocity as an average or representative value for commercial service in the 
system proposed in this study. 

 
Figure 12. Differences in PMV distribution according to air velocity. 

Lastly, the potential utility of each sensor installed on the sensor node was analyzed 
to determine occupancy. The observed values were movement (0: no movement; 1: move-
ment observed) measured by the PIR sensor, CO2 concentration measured by the CO2 sen-
sor, light level measured by the lux sensor, and noise level measured by the noise sensor. 
The actual occupancy was determined by combining these sensor measurements with the 
primary occupancy patterns obtained through surveys. The CO2 sensor is generally very 
sensitive to faults and calibration as it is used to maintain ventilation load management in 
buildings. However, in energy poverty monitoring, it could be used as an auxiliary indi-
cator for occupancy detection and for detecting smoking, even if the sensor’s sensitivity 
decreases due to malfunctions. 

Figure 13 shows the actual measurements from one of the target households. The PIR 
sensor could not provide valid values for checking individual occupancy using sensor 
nodes alone, but by using other sensors (CO2, lux, noise) in the IoT kit as auxiliary sensors, 
the effective determination of occupancy was possible. The colored box section indicates 
the actual occupied period, while the uncolored section indicates the unoccupied period. 
Even during actual occupancy periods without movement, especially during sleep, the 

Figure 12. Differences in PMV distribution according to air velocity.



Energies 2024, 17, 326 16 of 19

Lastly, the potential utility of each sensor installed on the sensor node was analyzed to
determine occupancy. The observed values were movement (0: no movement; 1: movement
observed) measured by the PIR sensor, CO2 concentration measured by the CO2 sensor,
light level measured by the lux sensor, and noise level measured by the noise sensor. The
actual occupancy was determined by combining these sensor measurements with the
primary occupancy patterns obtained through surveys. The CO2 sensor is generally very
sensitive to faults and calibration as it is used to maintain ventilation load management
in buildings. However, in energy poverty monitoring, it could be used as an auxiliary
indicator for occupancy detection and for detecting smoking, even if the sensor’s sensitivity
decreases due to malfunctions.

Figure 13 shows the actual measurements from one of the target households. The
PIR sensor could not provide valid values for checking individual occupancy using sensor
nodes alone, but by using other sensors (CO2, lux, noise) in the IoT kit as auxiliary sensors,
the effective determination of occupancy was possible. The colored box section indicates
the actual occupied period, while the uncolored section indicates the unoccupied period.
Even during actual occupancy periods without movement, especially during sleep, the
PIR sensor could not detect occupancy. The CO2 sensor obtained high readings during
occupancy due to the narrow living space, but rapid concentration drops occurred during
ventilation or entry/exit, posing a challenge for occupancy inference. The lux sensor
patterns varied depending on the installation location in the target area, but changes in
measurement values were more influenced by lighting use than by sunlight. In the target
household shown in Figure 13, the lux sensor showed high readings when the lights were
turned on, and values approached zero when the lights were off for sleeping or during
sufficient daylight. The noise sensor had high readings during TV viewing while the
household was occupied. For a one-person household, values approached zero when
the TV was turned off for sleeping or during unoccupied times. As analyzed, there were
disadvantages to using individual sensors to determine occupancy, so context-specific
compensations were necessary. For example, on the 19th at dawn, the PIR, lux, and noise
sensors all showed values close to zero due to sleep, but the CO2 sensor maintained high
values, which helped determine occupancy. Conversely, on the 19th at 15:00, there was a
decrease in CO2 concentration, suggesting that the occupant was not in, but high values
were still observed in the noise and lux sensors, and the PIR sensor detected intermittent
movement, so this period was judged to be occupied.
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5. Conclusions

This study proposes an IoT sensor network-based system designed to efficiently
provide welfare services for energy poverty households. The system uses a wireless sensor
network to monitor the presence of individuals and the thermal environment in real time
within households affected by energy poverty. The thermal environment monitoring data
is calculated using the PMV index, which is utilized to assess the thermal comfort of
individual households. An alert is sent to an administrator if a household is deemed to be
thermally hazardous. Additionally, the recorded data is used to offer customized welfare
services, such as providing items to prevent heat-related illnesses or health consultations.
Presence data also enhances the efficiency of welfare services by aiding scheduled visits by
counselors and welfare workers.

In this research, the performance criteria for the IoT kit necessary for effectively moni-
toring households with energy poverty were determined through interviews with welfare
officers, field surveys, and expert meetings. The system was developed and tested in two
phases, considering these criteria. Initially, a pilot packaging of the product was tested in
five households, leading to the development of an improved version of the system after
addressing the identified issues. Subsequently, the system was installed in 55 households
experiencing energy poverty, and field surveys were conducted over the summer and
winter. Based on the field data, these households’ thermal environments were analyzed,
confirming that the proposed system could provide more efficient welfare services. Fur-
thermore, recommendations for effective welfare service provision were derived. The
PMV analysis revealed that households with energy poverty are more thermally vulnera-
ble in winter than summer, indicating a need for additional support during winter. The
indoor-outdoor temperature difference varied among buildings, suggesting that welfare
services should be tailored to building characteristics where energy poverty households
with particularly vulnerable conditions reside.

For the efficient packaging of the system, various sensors were considered, and essen-
tial factors were identified for a sensor system to effectively determine the thermal risk level
in households with energy poverty. For the PMV index calculation, using representative
clothing insulation based on outdoor temperature for clo was deemed appropriate, and set-
ting met at 1.0 was considered suitable. Even if the black bulb temperature measurements
were replaced with indoor temperature readings, there was no significant deviation in
assessing the thermal environments. Considering the reduced utility of the black bulb ther-
mometer, it is recommended to use indoor temperatures in future service implementations.
The analysis of airflow measurement values showed that the range of measured airflow
speeds did not significantly affect PMV calculation; hence, using the average seasonal
airflow measurement values obtained from the field surveys is recommended. Sensors
for determining presence (PIR, CO2, illumination, and noise sensors) had limitations for
determining occupancy when used individually; they needed to be used complementarily
for accurate inference. Based on these field survey analysis results, the proposed system
is expected to be effectively implemented and operated, enhancing the quality of welfare
services for energy poverty households.

Many studies have been conducted to develop IoT-based monitoring systems for
various purposes, and significant technological advancements exist. However, even for the
same building, it needs to be designed to accommodate the occupants’ characteristics. This
study specifically targets a unique group known as energy poverty households, proposing
a monitoring system optimized for their living environments and lifestyles. This distinction
is significant as issues related to energy poverty can arise in any country, and resources to
address them are limited. Therefore, the proposed IoT-based monitoring system can assist
in mitigating these issues. In the future, it will be necessary to consider various methods
for improving the thermal environment of energy poverty households using the proposed
system and to apply it to actual welfare services to verify its effectiveness.
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