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Abstract: Internal combustion engines (ICEs) currently account for approximately 25% of global
power generation. Notably, this technology still plays a crucial role in a large segment of the
transportation sector. In this editorial, a short overview of the latest developments and current
research trends related to internal combustion engines is presented. Furthermore, the 11 contributions
of this Special Issue are introduced. They cover three main topics: the use of new fuels for internal
combustion engines for both automotive and railway applications; testing of additives for ICEs fed
with conventional fuels; and CFD simulation applied to the analysis and design of ICE components.
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1. Introduction

Today, the energy sector faces the pressing challenge of mitigating greenhouse gas
and pollutant emissions. This situation necessitates the adoption of innovative technolo-
gies alongside enhancements to conventional ones, such as internal combustion engines.
Transitioning from ICEs to technologies that do not rely on combustion presents significant
technical and economic hurdles. Achieving this transition on a global scale within a short
timeframe appears to be a tough challenge. Additionally, it is essential to conduct a thor-
ough evaluation of the impact of all technologies, taking into account their complete life
and usage cycles.

The pollutant emissions from ICEs that comply with current regulations have shown
a notable decrease in recent years [1]. However, the greenhouse gas emissions produced
by burning traditional fossil fuels still require substantial examination. Thus, in order to
reduce the environmental impact of ICEs, several solutions are currently under study.

The use of carbon-free fuels (hydrogen and ammonia [2]), low-carbon fuels (methane,
methanol, etc.) [3], e-fuels [4], and biofuels [5] can strongly contribute to reducing both the
greenhouse gas and pollutant emissions of ICEs.

In particular, in recent years, both hydrogen and ammonia have been receiving partic-
ular attention from researchers, since, if produced starting from renewable energy sources,
they drastically reduce the environmental impact of engines if compared to traditional fuels.
Hydrogen is suitable for both spark-ignition [6–9] and compression-ignition engines [10].
The expected improvements in the next generation of hydrogen internal combustion en-
gines suggest that their thermodynamic efficiency will be similar to that of current fuel cell
powertrains [11]. Ammonia, which is also a hydrogen carrier [12], presents advantages
in terms of storage over hydrogen but also issues when burned in internal combustion
engines. Several studies assessed both its combustion characteristics and emissions in
spark-ignition engines, highlighting the critical issues of using neat ammonia as a sin-
gle fuel [13–15]. Different techniques to improve ammonia combustion in spark-ignition
engines have been proposed, such as hydrogen enrichment [16–18], multiple spark strate-
gies [19,20] and plasma ignition [21]. Ammonia can also be used in compression ignition
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engines in dual-fuel mode, even if advanced injection strategies and aftertreatment systems
are needed to improve both engine performance and emissions [22].

The use of fuel additives is a way to improve performance and reduce the emissions
of ICEs fed with conventional fuels, particularly in regard to existing vehicle fleets. If
coupled with alternative fuels, fuel additives can play a significant role in promoting the
shift toward cleaner and more sustainable energy sources in the transportation sector [23].
However, achieving a balance between cost and performance is essential to ensure their
widespread adoption [23].

Considering both conventional and non-conventional fuels, advanced combustion
strategies can improve the energy conversion efficiency in internal combustion engines.

Homogeneous charge compression ignition (HCCI) has gained recognition and under-
gone extensive testing, research, and analysis as a promising “green” engine technology
in contemporary times [24]. Nevertheless, challenges such as ignition control, difficulties
with cold starts, and the need for consistent fuel/air mixture preparation, among other
limitations, continue to pose significant obstacles [24].

Reactivity-controlled compression ignition (RCCI) demonstrated significant commer-
cial potential for automotive applications in the short to medium term [25]. Nevertheless,
the implementation of accurate feedback control systems is essential to regulate engine
parameters, thereby reducing cycle-to-cycle variability and ensuring reliable and safe
operation [25].

Pre-chamber ignition, also known as turbulent jet ignition (TJI), allows the use of both
stoichiometric and lean air-fuel mixtures in ICEs. The passive TJI system provides low-cost
technology and stoichiometric operation, enhancing combustion and potentially improving
fuel consumption by 2–3% [26]. In contrast, the active TJI system operates under lean-burn
conditions with an air-excess value up to 2, offering greater efficiency and lower NOx
emissions, but at higher costs and complexity [26]. Several significant challenges remain
to be thoroughly resolved, including the design and integration of hardware in current
cylinder heads, ensuring satisfactory combustion stability at low loads such as idle and
catalyst light-off, and implementing lean aftertreatment for the active configuration [26].

Water injection (WI) has garnered significant interest in recent years across various
engine types as a promising method to lower in-cylinder and exhaust temperatures, reduce
knock events, enhance combustion timing, and reduce NOx emissions [27]. In particular,
WI has significant potential to enhance the thermal efficiency of spark-ignition engines,
mainly because of its ability to effectively suppress knock and provide cooling benefits [28].
Water can be injected into the intake ports (port water injection, PWI) [29,30] or directly into
the combustion chamber (direct water injection, DWI) [31,32]. DWI is capable of removing a
larger quantity of heat in comparison to PWI; however, the latter facilitates a more uniform
distribution of water near the cylinder walls [33]. The fundamental thermophysical and
chemical kinetic effects of adding water on combustion processes and emissions require
further exploration, particularly concerning various methods of WI and different engine
configurations. Moreover, there is a scarcity of research focused on the long-term effects of
water injection in ICEs [27].

The presented short overview shows that ICEs are still widely studied and developed.
They may still play an important role in the near future in order to increase the transport
sector’s sustainability.

In this scenario, this Special Issue presents seven research articles assessing the use of
new fuels for internal combustion engines (Section 2), two studies related to experimental
investigations on additives for ICEs fed with conventional fuels (Section 3), and two
contributions (a research article and a review) focused on the CFD simulation applied to
the analysis and design of ICE components (Section 4).

2. New Fuels for ICEs

Lanni et al. [34] employed a one-dimensional (1D) numerical method to assess the
performance and operational limits of a downsized port fuel injection spark ignition
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(PFI SI) engine running on pure ammonia. The investigation covered both throttled and
unthrottled operation and also evaluated the impact of different geometrical compression
ratios. The findings revealed that ammonia’s low laminar flame speed leads to longer
combustion durations and optimal spark timing that is more advanced than in conventional
SI engines, with knock consistently mitigated. Long combustion durations and high
exhaust gas temperatures limited both the maximum allowed engine speed and the lowest
achievable load. However, higher compression ratios allowed for an increase in the engine’s
maximum speed.

The work of Tutak et al. [35] examined the co-combustion of hydrogen with diesel and
biodiesel (RME) in a compression-ignition engine under maximum load, with hydrogen
content up to 34%. Hydrogen minimally affected ignition delay but reduced combustion
duration, especially with biodiesel. A hydrogen content of 12% provided optimal energy
efficiency, with better results when using RME. However, the hydrogen–RME engine
showed slightly less stability. Emissions analysis revealed reductions in CO, CO2, and soot,
but increases in NO and HC emissions.

Tutak et al. [36] also evaluated the operation of a cooperative fuel research spark-
ignition engine using ammonia and dimethyl ether (DME) as fuels. DME facilitated
ignition and improved combustion, with just a 10% energy share of DME contributing to
proper combustion. The addition of DME reduced both ignition delay and combustion
duration. Even minimal DME inclusion ensured high repeatability of IMEP (indicated
mean effective pressure), staying below 5%. With an 18% energy share of ammonia, the
engine achieved the maximum efficiency.

Arsie et al. [37] presented preliminary findings from the H2-ICE project, focusing on
hydrogen fuel utilization and hybrid powertrain integration for urban buses. A robust
methodology has been developed, including validated high-fidelity CFD models to assess
various injection methods (port fuel injection and direct injection) and optimize combustion
efficiency. Two Waste Heat Recovery (WHR) systems were tested. The development of
catalytic systems for the Selective Catalytic Reduction (SCR) of nitrogen oxides (NOx) using
hydrogen has been completed, along with a control strategy utilizing an Artificial Neural
Network (ANN) model. Two Energy Management System (EMS) methodologies were
evaluated to meet a target fuel consumption of 0.1 kg/km.

Kolahchian et al. [38] employed a 1D engine modeling approach to evaluate hydrogen
as a fuel for railways, using a turbocharged diesel engine as a reference. Modifications to
the turbocharger and injection systems allow the engine to run on hydrogen while retaining
original performance. Results show a reduction in traction power from 600 kW to 400 kW
and nearly double the energy consumption during typical missions compared to diesel.
However, a Life Cycle Assessment indicates a 56% reduction in equivalent CO2 emissions
when using photovoltaic-based green hydrogen, lowering emissions from 4.27 to below
2 kg CO2 equivalent per kilometer. This suggests that engines with moderate modifications
can effectively reduce carbon emissions in non-electrified railway segments.

The research of Capatano et al. [39] experimentally assessed the potential of low- and
zero-carbon fuels, such as methanol, methane, and hydrogen, in a spark-ignition engine.
Results showed that alternative fuels reduced CO and CO2 emissions, with the reduction
varying by fuel type. Methanol had higher total hydrocarbon (THC) emissions but lower
nitrogen oxides (NOx) emissions compared to gasoline. Methane and hydrogen further
lowered THC emissions, while NOx emissions were influenced by operational conditions.
Particle emissions were affected by fuel properties, engine conditions, and lubricating oil
type, particularly with hydrogen, which produced significant particle emissions despite
lacking carbon atoms.

The safety aspects related to the use of hydrogen in an engine-based combustion
system were evaluated by Gill et al. [40]. Their methodology utilizes the FMESA (Failure
Mode and Effects Severity Analysis) framework with specialized tabular scales to evaluate
failure severity, aiming to reduce epistemic uncertainty in hazard severity and risk models.
This approach modifies traditional methods like FMEA/FMECA (Failure Mode and Effect
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Analysis/Failure Mode, Effects and Criticality Analysis) and includes the development
of new failure severity scales specific to hydrogen systems. The article reviews relevant
literature, discusses the FMESA method and its mathematical framework, presents failure
severity scales, shares experimental findings, and quantitatively analyzes the severity of
different failure modes in the hydrogen combustion system.

3. Additives for ICEs Fed with Conventional Fuels

Chivu et al. [41] investigated the performance, emissions, and fuel consumption of a
1.6 L four-cylinder direct-injection diesel engine using blends of commercial diesel and pine
tree turpentine (up to 30% of turpentine). Key findings indicate that the biofuel had minimal
overall performance impact, but a blend with 15% turpentine increased torque by up to 7.9%
at low load and 6.8% at high load, with power output rising by 9% at low speeds and 5% at
high speeds compared to baseline diesel. While efficiency and greenhouse gas emissions
improved, pollutant emissions varied; hydrocarbons and particulate matter responses
differed, but NOx emissions increased by 30% at high loads and 20% at low loads, mainly
due to enhanced engine performance rather than turpentine’s higher oxygen content.

The study of Marchitto et al. [42] assessed the effects of two performance packages on
exhaust emissions and fuel efficiency in five vehicles from the current Italian fleet, including
three Euro 4 vehicles (two passenger cars and one light commercial vehicle) and two Euro
6 diesel vehicles. Considering the worldwide harmonized light vehicles test cycle (WLTC),
the results indicated a 1.2% reduction in fuel consumption for the Euro 6 diesel passenger
car and 8.1% for the Euro 4 diesel passenger car, along with similar trends in CO2 emissions
and significant reductions in total hydrocarbons, carbon monoxide, and particulate matter
across all vehicles.

4. CFD Simulation for the Analysis and Design of ICE Components

Martos et al. [43] developed a CFD model to simulate throttle valve operation and
identify optimal exhaust backpressure for effective low-pressure exhaust gas recirculation
in Euro 6 compliant engines. The model examines flow control dynamics for integrating
these valves with thermoelectric generators that convert residual thermal energy into
electricity. The results indicate consistent pressure drop values across different scenarios,
with over 90% agreement between model and experimental results, leading to a correlation
for estimating exhaust gas mass flow rates based on easily measurable parameters.

The perspective review of Jeong et al. [44] highlighted that CFD technology is widely
used in industry and academia to improve pre-chamber designs, but it faces challenges in
predictive accuracy, particularly in turbulence modeling, which impacts mixing, combus-
tion, and wall heat transfer. They concluded that, to unlock the full potential of CFD as a
sophisticated design tool rather than merely a predictive one, it is crucial to enhance CFD
methodologies with specifically tailored, physics-based numerical models. Furthermore, to
acheive high-fidelity CFD modeling of pre-chamber engines, it is imperative to identify
and rectify the primary sources of uncertainty prior to implementing refinements and
enhancements related to both turbulence and combustion models.

Conflicts of Interest: The authors declare no conflicts of interest.
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