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Abstract: This paper introduces an innovative approach to Wind Turbine Blade (WTB) inspection
through the synergistic use of thermal and RGB imaging, coupled with advanced deep learning
techniques. We curated a unique dataset of 1000 thermal images of healthy and faulty blades using
a FLIR C5 Compact Thermal Camera, which is equipped with Multi-Spectral Dynamic Imaging
technology for enhanced imaging. This paper focuses on evaluating 35 deep learning classifiers,
with a standout ensemble model combining Vision Transformer (ViT) and DenseNet161, achieving
a remarkable 100% accuracy on the dataset. This model demonstrates the exceptional potential
of deep learning in thermal diagnostic applications, particularly in predictive maintenance within
the renewable energy sector. Our findings underscore the synergistic combination of ViT’s global
feature analysis and DenseNet161’s dense connectivity, highlighting the importance of controlled
environments and sophisticated preprocessing for accurate thermal image capture. This research
contributes significantly to the field by providing a comprehensive dataset and demonstrating the
efficacy of several deep learning models in ensuring the operational efficiency and reliability of
wind turbines.

Keywords: deep learning; RGB imaging; thermal imaging; data fusion; wind turbine blades;
fault detection; image classification; ensemble learning; structural integrity; inspection

1. Introduction

The global shift towards sustainable energy solutions has prominently included wind
power, with wind turbines becoming ubiquitous onshore and offshore. These turbines,
especially their blades, are engineering marvels designed to efficiently convert wind’s
kinetic energy into electricity [1]. However, the blades are not impervious to environmental
stresses, which can lead to damage and necessitate the development of advanced detection
and repair techniques to ensure their ongoing functionality and safety [2]. The dynamics
of wind turbine performance, influenced by environmental intricacies such as wind veer
and the wind shadow effect, highlight the complex relationship between renewable energy
technology and atmospheric conditions [3].

Ensuring the integrity of Wind Turbine Blades (WTBs) is vital for the efficiency of
wind energy systems. Defects arising from environmental wear, material fatigue, or manu-
facturing issues can significantly impact turbine performance. While traditional inspection
methods are foundational, they often lack the capability to detect subtle or internal dam-
ages, prompting a need for more advanced diagnostic tools [2]. A significant advancement
in this field is the use of thermal imaging. This technique not only allows for the detection of
heat patterns caused by various defects such as delamination, cracks, and dents [4], but can
also offer more safety by enabling inspections from a further distance. This distance-based
approach can reduce the risks associated with close physical inspections, particularly in
challenging or hazardous environments.
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Further enhancing the capability of defect detection is the fusion of thermal imaging
with RGB imagery. This approach combines the high-resolution detail of RGB images with
the temperature variance detection of thermal images, creating a more comprehensive
view [5]. Such a fusion enables precise localization of thermal anomalies and offers a
detailed assessment of the blade’s condition. It allows for a multi-dimensional analysis of
the turbine blades, revealing not just the location (Where) but also the nature (What) of the
potential issues [5]. Additionally, the use of thermal imaging in tandem with RGB imaging
helps overcome some inherent limitations when these modalities are used individually,
such as the sensitivity of thermal imaging to environmental conditions, which can lead to
ambiguous results [6]. RGB images provide additional visual cues that help contextualize
thermal anomalies and distinguish between true defects and false positives from reflective
surfaces or variable temperatures [6].

Recent advancements, such as the work of Zhu et al., introduced novel techniques such
as the Regression Cropdata-processing method and an adaptive feature fusion module for
RGB and infrared images. These innovations have significantly enhanced the accuracy of
defect detection, differentiating actual defects such as coating failures from false positives
such as dust or organic residues. Their methods demonstrate substantial improvements in
detection accuracy and precision, with the adaptive feature fusion module increasing the
precision of detecting actual defects to 99% [7]. Zhu et al. also tackled the challenges of
defect detection in WTBs by proposing a multi-feature fusion residual network, augmented
by transfer learning. This approach has been shown to significantly reduce the training time
while ensuring accurate defect detection in WTBs [8]. Further contributions in the field include
Kwo et al.’s development of a calibration method for active optical Lock-in Thermography,
which has been effectively used to detect various defects in WTBs [9]. Sanati et al. explored
both passive and active thermography techniques, enhancing the quality of thermal images
through Step Phase and Amplitude Thermography [4]. Manohar et al. utilized Infrared
Thermography, particularly Lock-in Thermography, for the localization and sizing of deep-
lying defects in WTBs. They have developed a 3D depth estimation model that addresses the
limitations of classical depth estimation methods [10].

The integration of these advanced technologies has been further improved by the si-
multaneous capture of thermal and RGB images, made possible by recent sensor technology
advancements [4]. Modern data processing capabilities, powered by artificial intelligence
and machine learning algorithms, have further enhanced the efficiency and reliability
of these diagnostic tools [4]. However, the nuanced interpretation of fused thermal and
RGB images still requires expert knowledge and standardized methodologies to adapt to
different environmental and operational conditions [11–16].

Despite the significant progress in WTB inspection techniques, there remain notable
challenges that current methodologies struggle to address. One of the primary limitations
is the lack of adaptability to varied environmental conditions. This shortcoming often leads
to a decrease in the accuracy and reliability of defect detection under different operational
scenarios. Traditional methods, which primarily focus on either thermal imaging or RGB
imagery, fail to provide a comprehensive assessment of defects. Addressing these issues,
our research introduces an innovative methodology that combines the strengths of data fu-
sion and ensemble learning techniques. We integrate thermal imaging with high-resolution
RGB imagery to enhance the precision and depth of anomaly detection. This combination
not only improves the accuracy of identifying defects but also provides a robust framework
that can adeptly adjust to environmental variations. Our method, therefore, offers a sig-
nificant improvement over existing inspection techniques by being more adaptable and
comprehensive. The integration of these two imaging techniques allows us to create a more
detailed view of the WTBs. Thermal imaging excels in identifying temperature variances
indicative of potential defects, while RGB imagery provides high-resolution visual details
that assist in contextualizing these thermal anomalies. By fusing these two data sources,
we can accurately locate and characterize defects, distinguishing between genuine issues
and false positives caused by external factors such as reflective surfaces or inconsistent
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environmental temperatures. Our approach also incorporates advanced machine learning
algorithms, which further refine the analysis and interpretation of the fused imagery. These
algorithms are trained to recognize patterns and anomalies, increasing the efficiency and ac-
curacy of the inspection process. By leveraging ensemble learning, our method aggregates
the insights from multiple models, ensuring a more reliable and accurate identification of
defects. Overall, this advancement in WTB inspection represents a significant step forward
in maintaining the structural integrity and performance efficiency of wind turbines. By
offering a more accurate, efficient, and comprehensive solution, our methodology rein-
forces the role of wind turbines in sustainable energy production, ensuring their continued
reliability and effectiveness in harnessing wind power.

Below, we delve into the diverse applications of deep learning, highlighting its trans-
formative role in infrastructure inspection and maintenance across various energy sectors.

1.1. Deep Learning in WTB Defect Detection

Deep learning, a branch of machine learning, has revolutionized data processing by
mimicking the human brain’s neural networks. Utilizing multi-layered artificial neural
networks allows models to extract complex patterns from large, unstructured data sets,
finding significant use in image processing and classification [17]. This methodology’s
ability to learn directly from data has led to its widespread adoption in various fields [18].
Moving from the general concept of deep learning to a specific use case, Convolutional
Neural Networks (CNNs) emerge as a key player in image-related tasks. CNNs excel in
automatically learning spatial features. This capability makes them highly effective for
object detection, facial recognition, and image segmentation, demonstrating the practical
applications of deep learning in intricate tasks [17]. Deep learning has revolutionized
infrastructure inspection across various industries. Particularly in the energy sector, deep
learning can significantly improve the safety of inspection methods by enabling analysis
of remotely captured thermal images. For example, in wind turbine inspections, deep
learning models analyze thermal images to detect blade defects by identifying thermal
patterns indicative of different types of damage, thereby optimizing the precision and
efficiency of inspections [19]. In the context of solar farms, drones capture images that
are processed by deep learning models to identify issues such as dirt accumulation, panel
breakages, or other anomalies that could reduce the efficiency [20]. Similarly, deep learning
models analyze images or videos captured by drones or robotic devices to detect rust,
cracks, or leaks in oil and gas pipelines [21]. Aerial imaging is used to monitor power
lines by drones equipped with deep learning algorithms. They also be used for sagging
lines, vegetation encroachments, or damaged insulators [22]. The primary advantage of
employing deep learning in these applications is its ability to process large volumes of
data quickly and consistently, providing valuable insights for timely maintenance and
repairs [23]. As the energy industry continues to evolve, integrating deep learning into
regular inspection routines promises significant improvements in the safety, efficiency, and
longevity of critical infrastructure [24]. Utilizing multi-layered artificial neural networks
allows models to extract complex patterns from large, unstructured data sets, finding
significant use in image processing and classification [17]. This methodology’s ability to
learn directly from data has led to its widespread adoption in various fields [18].

In the realm of wind turbine inspections, deep learning has been particularly transfor-
mative. For example, Wu developed an efficient and accurate damage detector for WTB
images [25]. Zhang et al. explored image recognition of WTB defects using attention-based
mobilenetv1-yolov4 and transfer learning [26], while Peng et al. worked on motion blur
removal for drone-based WTB images using synthetic datasets [27]. Zhang and Wen intro-
duced SOD-YOLO, a small target defect detection algorithm for WTBs based on improved
YOLOv5 [28], demonstrating the depth of innovation in this field.

Other significant contributions include the works of Denhof et al., who conducted
automatic optical surface inspection of wind turbine rotor blades using CNN [29]. Qiu et al.
proposed an automatic visual defects inspection of WTBs via a YOLO-based small object
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detection approach [30]. Similarly, Shaheed and Aggarwal analyzed wind turbine surface
defect detection from drones using U-Net architecture [31]. Carnero et al. discussed a portable
motorized telescope system for WTBs damage detection [32], and Zhou et al. focused on wind
turbine actual defects detection based on visible and infrared image fusion [7].

1.2. Research Imperative and Study Objectives

In the field of renewable energy, ensuring the structural soundness of WTBs is a
critical task. These blades are perpetually exposed to a variety of environmental and
operational stresses. Therefore, the ability to detect defects efficiently, accurately, and
quickly is essential for maintaining their operational effectiveness, safety, and durability.
Traditional inspection methods, which typically rely on either RGB or thermal imaging,
have significant limitations. RGB imaging offers high-resolution visual details but is
ineffective in identifying subsurface irregularities. On the other hand, thermal imaging is
adept at detecting temperature variations that may signify defects, but it lacks the necessary
visual clarity to pinpoint these issues accurately.

To overcome these limitations, our research introduces a novel approach that syner-
gizes multi-spectral imaging. We combine the high-resolution detail of RGB images with
the thermal anomaly detection capabilities of thermal images. This integrated process
enhances both the precision and comprehensiveness of our defect detection methodology.
The incorporation of data fusion techniques further strengthens our analysis, allowing for
more nuanced interpretation of the complex data derived from these two imaging types.

Our research also stands out by implementing ensemble learning. This approach inte-
grates multiple predictive models to refine the accuracy of anomaly detection, particularly
crucial for the diverse and intricate nature of WTB defects. The diverse nature of defects of-
ten requires a multifaceted detection approach, which singular imaging techniques struggle
to provide. In addition, we conduct a comprehensive exploration of various deep learning
architectures, including CNNs, ResNets, DenseNets, Inceptions, and transformer-based
models. These architectures are pivotal in effectively processing and interpreting the multi-
modal data from RGB and thermal images. Our selection criteria prioritize reducing the risk
of misclassification of defects, which carry significant safety and economic implications.

A key consideration in our approach is operational efficiency. We aim to minimize
inspection downtime of wind turbine and the resultant lack of energy production, which
is particularly crucial for large wind farms. Our focus is on models that strike a balance
between high diagnostic accuracy and computational efficiency. This is in alignment
with the latest advancements in edge computing, promising significant cost savings and
enhancing the practicality of regular turbine maintenance. The objectives and contributions
of this research are as follows:

(a) Objectives of This Research:

1. Conduct an in-depth evaluation and comparison of existing deep-learning classi-
fiers for WTB inspection.

2. Develop a novel thermal imaging dataset, thereby enhancing the understanding
of blade conditions.

3. Generate industry recommendations based on our comparative analysis of deep
learning classifiers.

4. Identify areas for further research, aiming to bridge knowledge gaps in deep
learning classifiers for thermal imaging-based inspections.

(b) Contributions of This Research:

1. Introducing a synergistic use of Thermal and RGB Imaging for enhanced
WTB inspection.

2. Creating a novel thermal imaging dataset at UVU’s Machine Learning and Drone
Lab, featuring high-resolution images.

3. Developing an ensemble learning model, integrating Vision Transformer (ViT)
and DenseNet161, to achieve unparalleled classification accuracy.
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The remainder of this paper is structured as follows: Section 2 details the methodology,
including the data collection process and the specific deep learning models employed.
Section 3 presents our experiments, results, and comparative analyses. The final section
summarizes our findings and discusses future research directions, emphasizing the poten-
tial advancements and practical applications of our research in wind turbine maintenance.

1.3. Overview of the Deep Learning Models Used for Comparison

In this section, we explore the deep learning models that we have employed for the
classification of thermal images of WTBs. The advancement of deep learning in image
recognition tasks has paved the way for innovative diagnostic methods, and in this study,
we delve into this sophisticated realm to unlock its potential for enhancing wind turbine
structural integrity assessment.

Traditional architectures such as AlexNet and VGG have laid the groundwork in the
domain of deep learning. However, their deeper iterations can sometimes be computa-
tionally extensive for certain tasks. In contrast, ResNets, through their innovative skip
connections, enable the creation of deeper networks without the associated challenges of
traditional architectures. For scenarios where model efficiency and deployment speed are
paramount, compact architectures such as SqueezeNet and MobileNets emerge as ideal
choices. DenseNets, with their unique feature-reuse mechanism, potentially offer enhanced
accuracy with a reduced parameter count. On the other hand, recent architectures such
as EfficientNet and ViTs stand out for their cutting-edge performance, albeit at the cost of
increased complexity and computational demands.

CNNs, specifically designed for processing grid-like data such as images, are highly
efficient in capturing spatial hierarchies and patterns. Their convolutional layers are adept
at extracting features from images, recognizing textures, shapes, and other visual elements,
which is vital for identifying anomalies in wind turbine blades. Conversely, Artificial
Neural Networks (ANNs), lacking spatial feature extraction capabilities, are less suitable
for image classification tasks that require an understanding of spatial hierarchies. Recurrent
Neural Networks (RNNs), ideal for sequential data, do not align well with the spatial
data structure in images and are less efficient in processing the high dimensionality of
raw image data. This comparative analysis solidifies our choice of CNNs for classifying
thermal images of wind turbine blades, given their architectural advantages in extracting
and processing spatial features.

1.3.1. AlexNet

The inception of AlexNet in 2012 by Alex Krizhevsky, Ilya Sutskever, and Geoffrey
Hinton marked a transformative era in the field of deep learning [33]. This model, a trailblazer
in the ImageNet Large Scale Visual Recognition Challenge, dramatically reshaped image
classification tasks and underscored the potential of deep learning, as depicted in Figure 1.
AlexNet’s architecture comprises five convolutional layers, each responsible for extracting
progressively complex features, and three fully connected layers that culminate these features
into specific class identifications [33]. It was among the first to adopt Rectified Linear Unit
(ReLU) activations for enhanced training efficiency and introduced dropout layers as an
innovative method to prevent overfitting [34,35]. Designed for optimal performance on two
Nvidia GTX 580 GPUs, AlexNet set the foundation for leveraging GPU computing power in
deep learning. The impact of AlexNet is profound, continuing to resonate across a myriad of
deep learning models that have emerged since its introduction [33].



Energies 2024, 17, 673 6 of 29

Figure 1. AlexNet architecture [36].

1.3.2. VGG

Developed by the Visual Geometry Group (VGG) at the University of Oxford in 2014,
the VGG models have been instrumental in demonstrating the significance of depth in neu-
ral networks [37]. These models, featuring architectures with up to 19 layers, underscored
the principle that a network’s performance can be substantially enhanced by increasing its
depth. A key characteristic of the VGG architecture is the adoption of 3 × 3 convolutional
filters, which facilitate intricate feature detection while maintaining a manageable num-
ber of parameters [37]. The VGG family, encompassing variants such as VGG11, VGG13,
VGG16, and VGG19, offers diversity in depth. This range allows for a balance between
detailed feature representation and the risk of overfitting [37]. Some versions of the VGG
models also integrate batch normalization, enhancing the efficiency and stability of the
training process [38]. Despite their substantial computational requirements, VGG models
are renowned for their profound depth and robust feature extraction capabilities, making
them highly effective for transfer learning tasks [37].

1.3.3. Inception and Xception

The Inception architecture, also known as GoogLeNet, represents a significant ad-
vancement in neural network design. Developed by Google, its goal was to create a network
that is deep and wide but maintains computational efficiency. A key feature of this archi-
tecture is the Inception module, as shown in Figure 2, which integrates concurrent pooling
and convolutions of varying sizes (1 × 1, 3 × 3, and 5 × 5). This design allows the network
to capture image features at multiple scales and abstraction levels. Mathematically, an
Inception module can be represented as:

I(x) = [ f1×1(x), f3×3(x), f5×5(x), fpool(x)], (1)

where fn(x) denotes a convolution operation with an n × n filter and fpool(x) is a pooling
operation. These operations are performed in parallel and their outputs are concatenated.
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Figure 2. Inception block.

The subsequent versions, such as Inception v3 and v4, introduced factorized convolu-
tions, asymmetric convolutions, grid-size reduction, and auxiliary classifiers to mitigate
the vanishing gradient problem. Inception v3, for instance, emphasized computational
efficiency by using 1 × 1 convolutions for dimensionality reduction and factorized larger
convolutions for a balance between performance and efficiency.

Xception, termed Extreme Inception, is an evolution of the Inception model that sets
itself apart by replacing the standard convolutions in the Inception modules with depthwise
separable convolutions. This advanced convolution technique, essential to Xception, is de-
signed to separately learn spatial features through depthwise convolution and channel-wise
correlations through pointwise convolution. This approach not only enhances parameter
efficiency but also improves performance in intricate image recognition tasks.

Depthwise separable convolution consists of two stages. The first stage, depthwise
convolution, applies a single filter to each input channel. For an input feature map X of
dimensions H × W × D (height, width, depth), the depthwise convolution operation is
represented as:

Yi,j,d =
k−1

∑
m=0

k−1

∑
n=0

Xi+m,j+n,d · Fd,m,n , (2)

where Fd,m,n denotes the filter for channel d. The second stage, pointwise convolution, then
combines these features using 1 × 1 filters:

Zi,j,d′ =
D−1

∑
d=0

Yi,j,d · F′
d′ ,d , (3)

producing the final output Zi,j,d′ , with F′
d′ ,d being the pointwise filter. The distinct phases

of standard convolution, depthwise convolution, and pointwise convolution are visually
demonstrated in Figure 3.

1.3.4. Residual Networks

The development of Residual Networks (ResNets) by Kaiming He and colleagues at
Microsoft Research addressed the challenge of training deeper networks in deep learning [39].
ResNets introduced the concept of residual blocks, which focused on learning residual map-
pings to simplify the learning process [39]. The residual block allowed the network to adjust
the identity mapping by a residual amount, achieved through skip connections that facilitated
the flow of gradients and mitigated the vanishing gradient problem [39].

The core idea of a residual block is to learn the residual function F(x) instead of the
direct mapping H(x). This residual function is defined as:

F(x) = H(x)− x, (4)

where x is the input to the residual block, and H(x) represents the desired output mapping
of the network. The output of a residual block is the sum of the residual and the input,
which can be expressed as:

Output = F(x) + x =
(

H(x)− x
)
+ x = H(x) (5)
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(a) Standard Convolution

(b) Depthwise Convolution

(c) Pointwise Convolution
Figure 3. Illustration of the stages in depthwise separable convolution as used in Xception [40].

This formulation allows the network to learn identity mapping by default, facilitating
the training of deeper models. Skip connections, also known as shortcuts, are a critical
component of residual blocks, which enable the direct addition of the input of a layer to
its output, as depicted in Figure 4. These connections allow for an unimpeded flow of
gradients through the network, mitigating the vanishing gradient problem.

Figure 4. Residual blocks [36].
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ResNets, or Residual Networks, offer a variety of architectural depths, with variants such
as ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152, where the numbers denote the
count of layers in each model [39]. These deeper models, as depicted in Figure 5, are capable of
discerning increasingly complex features, albeit at the cost of higher computational demands.
Additionally, there exist wide versions of ResNets, which expand the number of filters in
each layer, thereby enhancing the model’s performance but also increasing its computational
requirements [39].

Figure 5. ResNet architecture [36].

The legacy of ResNets can be seen in their significant influence on the field of deep
learning, inspiring subsequent models that manage both performance and computational
resources, effectively [39].

1.3.5. Compact Architectures

SqueezeNet, a collaborative effort between DeepScale, the University of California,
Berkeley, and Stanford University, aimed to reduce the number of parameters in the model
while maintaining competitive accuracy. The key innovation of SqueezeNet is the Fire
module, which addresses the high parameter demands of traditional convolutional lay-
ers. This module incorporates a squeeze convolutional layer to compress the input data,
followed by an expanded layer that utilizes 1 × 1 and 3 × 3 filters to capture intricate
patterns [41]. SqueezeNet has undergone significant evolution since its inception. The
initial version, SqueezeNet 1.0, successfully reduced the model size to under 1 MB without
compression [42]. SqueezeNet 1.1, its successor, introduced computational improvements
that halved the required FLOPs without sacrificing accuracy. This lean architecture makes
SqueezeNet well suited for deployment on edge devices with limited storage and computa-
tional capacity, offering expedited inference crucial for real-time applications [43].

1.3.6. Dense Connectivity Networks

DenseNets, short for Densely Connected Convolutional Networks, were introduced
by Huang et al. [44]. Building on the concept of skip connections introduced by ResNets,
DenseNets ensure that each layer receives inputs from all preceding layers, maximizing
information flow within the network through dense inter-layer connectivity [44]. The
distinctive feature of DenseNets is the Dense Block where each layer within the block ingests
concatenated feature maps from all previous layers, in contrast to traditional models where
a layer’s input is solely the output of the preceding layer [44].

Dense connectivity in DenseNets offers several benefits. It improves the gradient flow
during backpropagation, addressing the vanishing gradient problem in deep networks [44].
It also fosters feature reuse across layers, increasing network efficiency and reducing the
number of required parameters [44,45]. This parameter-efficient model achieves high
accuracy due to the comprehensive feature maps available from dense connections [46].
Additionally, DenseNets reduce redundancy, with layers learning new, complementary
features on top of the accessible original features [47].

DenseNets come in various configurations denoted by the number following the model
name, indicating the number of layers in the network, such as DenseNet121, DenseNet169,
DenseNet201, and DenseNet161 [33,48]. To manage the feature map dimensions effectively
as the network deepens, DenseNets incorporate ‘transition layers’ between dense blocks.
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These transition layers, usually composed of batch normalization, a 1 × 1 convolution,
and 2 × 2 average pooling, serve to control the feature map count and reduce their size,
preparing them for the subsequent dense blocks. [49,50].

1.3.7. Mobile Architectures

The landscape of pervasive computing today, populated with an array of smart devices,
IoT apparatuses, and edge computing nodes, necessitates machine learning models that
are both powerful and lightweight. These models are designed to empower devices with
limited computational resources with advanced deep learning functionalities. Among
these, MobileNetV2 [51], MobileNetV3 [52], and EfficientNet [53] stand out as pioneering
mobile architectures. Next, we discuss each version of MobileNet:

a. MobileNetV2 is the successor of MobileNet and is engineered to balance performance
with computational efficiency. It introduces the concept of Inverted Residuals, where,
unlike traditional residual blocks that increase and then decrease the channel di-
mensions, it starts with a slim depthwise convolution on the input and then uses a
pointwise convolution to expand it. This technique helps in saving computational
resources. Following the expansion, MobileNetV2 employs a linear bottleneck, main-
taining the expanded channel size to prevent the loss of information that might occur
due to non-linearities such as the ReLU function applied prematurely.

b. MobileNetV3 builds upon V2, integrating the principles of the latter with innova-
tions that emerge from a combination of design finesse and automated architecture
searches. It presents two versions: Large and Small, each tailored to different op-
erational scenarios. The Large model prioritizes accuracy with a slight increase in
computational demand, whereas the Small model focuses on conserving compu-
tational resources. This version of MobileNet advances with the incorporation of
h-swish activation functions and leverages neural architecture search for enhanced
efficiency optimization.

c. EfficientNet deviates from the traditional practice of manual architecture modifi-
cations or reliance on neural architecture search. Instead, it utilizes a systematic
scaling approach that proportionally increases the network’s width, depth, and input
resolution, maintaining a balance in size and computation. EfficientNet’s cornerstone
is the compound coefficient, denoted as ϕ, which governs the uniform scaling across
all dimensions. This coefficient is derived empirically to ensure the model grows
harmoniously across its width, depth, and resolution. Starting with the base model
EfficientNet-B0, increasing the compound coefficient leads to a series of variants,
namely, B1, B2, and so on. Each increase aims to boost performance, but it also results
in greater complexity and computational expense.

1.3.8. Vision Transformers (ViTs)

ViTs mark a paradigm shift in computer vision, challenging the dominance of CNNs [54].
Originating from the transformer architecture used in natural language processing, ViTs adapt
these principles for image classification tasks [54,55]. The core of ViTs is the transformer
architecture, originally designed for sequential data in natural language processing [54]. The
attention mechanism is central to this architecture, allowing the model to focus on different
segments of the input sequence. In the context of ViTs, this translates to focusing on various
parts of an image [56]. The calculation of the attention mechanism in ViT is detailed in the
formula below, and the attention mechanism used in ViT is illustrated in Figure 6. Additionally,
the architecture of ViT is depicted in Figure 7.

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V, (6)

where Q, K, and V represent the query, key, and value matrices, respectively. In this context,
Q (query) refers to the matrix that contains the representation of the input that we are
trying to find relevant information for. K (key) represents the matrix that we compare the
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query against to find the relevant pieces of information. The term V (value) is the matrix
containing the data that we actually want to retrieve. The dimension of the key, denoted as
dk, influences the scaling factor in the softmax calculation.

Figure 6. Attention Mechanism [36].

In ViTs, an image is divided into patches, akin to how text sequences are treated in
NLP [57]. These patches are embedded into a sequence of tokens:

Patch Embedding: E = [E1, E2, . . . , EN ], (7)

where Ei represents the embedded vector for the i-th patch and N is the number of patches.
These embedded patches are then processed through multiple layers of the transformer,
capturing both local and global image contexts [58].

In our implementation, the ViTForImageClassification model from the transformers
library is utilized [59]. This model processes images in patches (e.g., 16 × 16 pixels) with
an input resolution of 224 × 224 pixels and is pre-trained on the ImageNet dataset [60].
The classifier layer of the model is adapted for a binary classification task, reducing the
output neurons to two [61]. This demonstrates the adaptability of ViTs across different
image classification scenarios.

Figure 7. ViT architecture [36].
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In the following section, we will delve into the specific experimental setups, including
dataset details and the training process. We will also discuss the selection and configuration
of models, the application of transfer learning, evaluation metrics, and a thorough analysis
of the results. This will provide a comprehensive understanding of how our methods
translate into tangible outcomes in the realm of WTB inspection.

2. Methodology

This section delves into the comprehensive methodology underpinning our research,
focusing on the data collection process and the deployment of deep learning models for
the classification of thermal images of WTBs. Our objective is to assess the capability of
deep learning techniques in identifying issues related to the structural integrity of WTBs,
an essential factor in predictive maintenance within the renewable energy sector.

2.1. MSX Technology

At the Machine Learning and Drone Lab of Utah Valley University, our research
team is dedicated to enhancing a thermal imaging dataset for wind turbine blade (WTB)
inspection. A key component in this endeavor is the FLIR C5 Compact Thermal Camera, as
shown in Figure 8. This camera is especially notable for its Multi-Spectral Dynamic Imaging
(MSX) technology, which is referenced in [62,63]. MSX technology plays a crucial role in
combining thermal and standard RGB (Red, Green, Blue) imaging, thereby providing a
more nuanced and comprehensive method for data collection and analysis. This paper
delves into the intricacies of MSX technology, explores the dataset generated through this
technology, and examines the models developed for differentiating between faulty and
healthy images of WTBs.

The MSX technology plays a pivotal role in integrating thermal and RGB imaging, en-
abling a more detailed and effective method of data acquisition and analysis. In this section,
we delve into the intricacies of MSX technology, explore the dataset generated through this
technology, and examine the models employed for categorizing images of WTBs as either
faulty or healthy.

Figure 8. FLIR C5 camera, equipped with MSX technology.

MSX technology significantly enhances thermal imaging by superimposing high-
resolution RGB imagery onto thermal data. This advanced technique combines detailed
RGB visuals with the thermal data, yielding a composite image that is both intricate and
informative. The integration of clear RGB imagery into the thermal images not only enriches
the contextual understanding but also ensures the accuracy and integrity of the data sets.

The FLIR C5 camera was chosen not only for its MSX feature but also for its cost-
effectiveness, making it an ideal choice within the constraints of our research. The MSX
technology in the FLIR C5 facilitates the real-time integration of visual details with thermal
images. This cost-effective solution is crucial for the accuracy of our dataset, providing
genuine and consistent data without the need for post-capture fusion. The images produced
are particularly useful for inspecting WTBs, as they comprehensively capture both thermal
anomalies and essential visual details, crucial for an accurate assessment.
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Thermal imaging technology captures infrared radiation emitted by objects, which
is then translated into an image representing the temperature distribution of the area
inspected. This technology is excellent for identifying heat-related issues but traditionally
lacks the visual context of non-thermal features, making it challenging to interpret details
in the environment [64–67]. Standard thermal imaging presents images based solely on
temperature differences. While effective for detecting areas of heat and cold, it does not
provide visual details, such as texture or specific shapes, which are often necessary for a
complete understanding of the scene or object being inspected. MSX technology, utilized in
devices such as the FLIR C5 Compact Thermal Camera, enhances standard thermal imaging
by superimposing high-resolution RGB imagery onto thermal data [62]. This technology
is designed to merge the visual clarity of RGB imaging with the functional insights of
thermal imaging. MSX technology addresses the limitations of standard thermal imaging
by embedding high-contrast, high-resolution details from an onboard digital camera onto
thermal images in real-time. This integration allows for a more intuitive understanding
of the thermal data, as the thermal image is overlaid with clear visual details [68,69]. The
key advantage of MSX over standard thermal imaging is the enhanced feature recognition
and clarity it provides. MSX images are not only thermally informative but also visually
detailed, allowing for easier identification of objects, structural features, and potential issues
in the thermal landscape. In practical applications, such as the inspection of WTBs, MSX
technology proves to be superior [70,71]. The composite images generated by MSX offer a
more comprehensive understanding of the condition of the blades, combining the thermal
anomalies detected with visual cues that aid in pinpointing specific issues. Our dataset
comprises 1000 thermal images, each with a resolution of 320 × 320 pixels, significantly
benefiting from the MSX feature. These images are directly integrated with visual and
thermal details during capture, thus preserving data authenticity. We have categorized
the images into two sets: 500 images of healthy blades, and 500 faulty images with the
forms of damage cracks, holes, and erosion. In our dataset, the incorporation of MSX and
RGB–Thermal Fusion provides a composite view that enriches the images with contextual
visual cues. These cues are vital for precise detection and categorization of anomalies
via machine learning algorithms, enabling the training of robust models for identifying
potential damages in WTBs. Figure 9 showcases examples of these visualizations.

(a) (b) (c)
Figure 9. Visualizations of WTBs in our experiments. (a) Digital RGB visualization of WTBs;
(b) Thermal-only visualization of WTBs; (c) MSX visualization of WTBs.

Conscientious curation of the dataset included adjusting the background temperature
settings in the FLIR C5 camera to compensate for the effect of external thermal sources. This,
along with the camera’s integrated MSX technology, ensured the accurate representation
of the visual aspects of turbine blade conditions in the corresponding thermal images.
External thermal sources that could affect WTBs include solar radiation, reflections from
nearby structures, and ambient temperature variations. Controlled environmental settings
were utilized to normalize these conditions and further minimize the noise in thermal data.
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2.1.1. Handling Parallax Effects in MSX Imaging

The integration of MSX technology in the FLIR C5 camera inherently addresses several
challenges associated with multi-spectral imaging, including the parallax effect. Parallax, a
phenomenon where the position or direction of an object appears differently when viewed
from different perspectives, can significantly impact the accuracy of merged thermal and
RGB images. In the context of MSX technology, parallax could potentially lead to misalign-
ments between thermal and RGB layers of the image. Such misalignments might obscure or
falsely represent thermal anomalies, crucial for identifying defects in wind turbine blades.
The FLIR C5’s MSX technology is designed to minimize these parallax effects. It achieves
this through real-time processing and intelligent alignment algorithms that overlay thermal
data onto high-resolution RGB imagery. This process ensures the accurate representation
of thermal anomalies in the context of the visual details provided by the RGB layer. Ad-
dressing parallax in MSX imaging is crucial for accurate defect detection. Misalignment
caused by parallax could lead to incorrect interpretations of thermal anomalies, resulting
in either missed defects or false positives. The MSX technology significantly contributes to
minimizing these effects, thereby crucially improving the reliability and precision of our
defect detection process. Our examination of the images generated by MSX illustrates the
technology’s effectiveness in addressing challenges related to parallax. The high level of
accuracy in defect detection and localization across our dataset indicates the robustness of
the MSX technology’s parallax correction mechanism.

Each image in the dataset originates from the FLIR C5 camera’s native 160 × 120 sensor
resolution and is upscaled to 320 × 320 pixels using the FLIR Tools software, safeguarding
the data fusion integrity. The camera’s cloud connectivity features significantly expedited
data management throughout the collection process. Utilizing RGB–Thermal Fusion, our
dataset combines the strengths of both imaging modalities, enhancing object detection and
situational awareness, especially in low visibility conditions and for edge detection. This
fusion approach is proven to outperform traditional RGB models, especially in periods of
limited visibility, making it ideal for rapid and accurate WTB integrity assessments [16].
Our approach ensures that the dataset is not only analytically robust but also immediately
applicable for practical field inspections.

Figure 10 illustrates a sample set of RGB and thermal images from the wind turbine
blades we studied. In these images, the blades are shown in a state of disrepair. More
specifically, Figure 10a,b display sample images of a WTB with cracks. Figure 10a presents
the blade in MSX format, highlighting the detailed visualization of the cracks, while
Figure 10b shows the same blade in RGB format. The cracks are noticeably clear in the
thermal image, with the thermal contrast sharply outlining the fissures. This highlights
potential weak spots in the blade’s structural integrity. Figure 10c,d focus on different
damage types. Figure 10d illustrates the blade with erosion and holes in RGB format,
whereas Figure 10c depicts these damages in Thermal Fusion format. The effectiveness of
the Thermal Fusion image in revealing areas of material erosion or holes can be attributed
to the changes in emissivity at these points. For example, cracks and holes often act
as high-emissivity spots, resulting in a different thermal reading due to the contrast in
emissivity between the damaged areas and the original material. This distinction is crucial
for maintenance decisions, as the thermal imaging technology’s sensitivity to emissivity
variations facilitates the early detection of such defects and enables effective preventive
maintenance strategies.
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(a) (b)

(c) (d)
Figure 10. Visualization of WTB defects using multiple imaging techniques. (a) Sample MSX
imaging of cracks; (b) Sample RGB imaging of cracks; (c) Sample MSX imaging of erosions and holes;
(d) Sample RGB imaging of erosions and holes.

2.1.2. Dataset Preparation

The dataset underwent a rigorous refinement process. From the initial comprehensive
dataset, we methodically divided it into training and validation subsets, ensuring both sets
had a balanced representation of the classes. This 80–20% partitioning was instrumental in
facilitating effective model training. In addition to these steps, our preprocessing approach
involved several advanced techniques to enhance the robustness of our model, particularly
for defect detection in thermal images captured by drones in the future.

To account for the varying orientations of defects that may occur in drone-captured
imagery, we applied extensive rotation and flipping transformations to our dataset. This
involved rotating each image at angles of 90°, 180°, and 270°, along with horizontal and
vertical flipping. As a result, each original image was transformed into 16 unique variations,
effectively increasing the diversity of our dataset by 1600%. This extensive augmentation
ensures that our model is robustly trained to recognize defects in any orientation, which
is critical for effective aerial surveillance applications. Recognizing the susceptibility of
thermal imaging systems to real-world imperfections, we incorporated the injection of
random Gaussian noise into the dataset. This augmentation was designed to make the
model more resilient to the slight variations and imperfections typically encountered in
field conditions, thereby improving its reliability in practical scenarios. Furthermore, given
the propensity for motion blur occurring in images captured from drones, we introduced
Gaussian blur as part of our preprocessing pipeline. This step is particularly important
for mimicking the impact of drone movement and focus variations on the image quality.
By training our model on these slightly blurred images, we aimed to reduce its sensitivity
to sharpness and focus inconsistencies, which are common challenges in aerial thermal
imaging. These preprocessing measures, while not explicitly detailed in our code, are
indicative of the meticulous and comprehensive nature of our approach. They complement
the initial steps of cropping, denoising, normalization, and resolution standardization,
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ensuring that our models are provided with data of the highest quality and diversity, thus
paving the way for effective training and robust performance.

3. Experiments and Results

In this section, we detail the comprehensive experiments conducted and the insightful
results obtained in our endeavor to harness deep learning for the classification of thermal
images of WTBs. Our experimental framework is designed to rigorously test various ad-
vanced neural network models, carefully evaluating their efficacy in accurately identifying
structural anomalies in the blades. These experiments are not only crucial for validating
our theoretical model configurations but also pivotal in demonstrating the practical appli-
cability and effectiveness of our approach in real-world scenarios within the renewable
energy sector.

3.1. Data Acquisition and Preprocessing Techniques

We curated a comprehensive dataset consisting of 1000 thermal images, each of which
was rigorously processed to ensure uniformity and consistency across the dataset. This
process involved several critical steps, including cropping, centering, and resizing each
image to a uniform resolution of 320 × 320 pixels, as well as categorizing them as healthy or
faulty for the purpose of WTB inspection. Our dataset is composed of 500 images of healthy
blades and 500 images of faulty blades, ensuring a balanced representation between the
two classes. The faulty images include various types of defects such as cracks, erosion,
and holes, providing a comprehensive coverage of common fault types in wind turbine
blades. During the preprocessing phase, we specifically focused on techniques suitable
for thermal imaging, which included normalization to maintain consistent pixel intensity
values across all images, and various augmentation techniques such as random rotation,
flipping, noise injection, and blurring, designed to simulate the challenging conditions of
real-world aerial photography.

3.2. Strategic Data Partitioning

In aligning with best practices in machine learning, we strategically partitioned our
dataset into subsets designated for training, validation, and testing, with a distribution of
80%, 10% (of the training dataset), and 20%, respectively. This approach was specifically
chosen to minimize the risk of overfitting and to validate the capability of our models to
generalize effectively to new, unseen data.

3.3. Optimization of Model Parameters and Hyperparameter Tuning

Our methodology for refining the model’s hyperparameters was comprehensive,
ensuring the robustness and reliability of our ensemble model. We employed a two-
pronged approach: initially applying a random search to explore a wide range of values,
followed by Bayesian optimization to fine-tune and converge upon the most effective
parameters. This dual approach allowed us to benefit from both the extensive search space
of the random search and the precision of Bayesian optimization.

Specifically, the Bayesian optimization process was pivotal in determining the optimal
threshold value for decision making in our ensemble model. We utilized a probabilistic
model that was iteratively updated based on the performance metrics of previously evalu-
ated hyperparameter sets. This method efficiently navigated the search space to hone in
on the values that balanced the precision–recall trade-off most effectively. As a result, we
found our decision threshold to be best set at 0.7, after testing values between 0.5 to 0.8,
enhancing the model’s predictive accuracy while maintaining an excellent balance between
sensitivity and specificity.

The ranges for other key hyperparameters were selected as follows:

• Learning Rate: set between 1 × 10−5 and 1 × 10−4, to fine-tune the speed of conver-
gence against the stability of the training.
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• Batch Size: varied between 16 and 128, to optimize computational resources and
gradient estimation.

• Optimizer: chose the Adaptive Moment Estimation (Adam) for its efficiency in adjust-
ing learning rates across parameters.

• Weight Decay: established within 1 × 10−4 to 1 × 10−2, balancing adaptability and
regularization to avert overfitting.

• Early Stopping: implemented to monitor validation loss and cease training when no
improvement occurred over a set number of epochs.

This rigorous hyperparameter tuning process forms the foundation for the outstanding
performance of the ensemble model in anomaly detection tasks.

3.4. Deep Learning Model Configurations

Our research involved a comprehensive range of deep learning models, each fine-
tuned to analyze thermal images of WTBs for the purpose of identifying whether the blades
were healthy or faulty. These models were methodically grouped based on the nature of
their terminal layer, such as classifiers or fully connected layers, with notable examples like
AlexNet, various iterations of VGG and DenseNet, and MobileNet. This grouping proved
crucial for making precise fine-tunes for binary classification. Our ensemble included a
spectrum of architectural styles, from classic convolutional networks like AlexNet and
VGG to more sophisticated designs like ResNet and DenseNet, as well as cutting-edge
models like ViT and EfficientNet. This varied selection enabled an in-depth examination of
different image classification strategies and their effectiveness in assessing the condition of
WTBs. A key element of our methodology was tailoring each model for binary classification
to distinguish unequivocally between healthy and faulty blades. We employed a structured
approach in setting up the models, using a base_config dictionary as a central tool to
systematically organize the models based on their architecture and the adaptations needed
for the end layer modifications.

3.5. Transfer Learning Approach

In our research focused on detecting anomalies on wind turbine blades, we employed
a transfer learning strategy that utilizes the extensive pre-trained knowledge from models
based on the ImageNet dataset. ImageNet, known for its vastness and diversity, has been a
cornerstone in the advancement and benchmarking of cutting-edge deep learning models
for image classification. By pre-training our models on ImageNet, we laid a solid foundation
for them to recognize and understand various image features. This foundational knowledge
is especially advantageous in handling the complexities and specific characteristics of
thermal images used in wind turbine inspections [60,72].

Reduced Training Time with ViT

The application of ViT model in our study significantly reduced the training time. This
efficiency is primarily due to ViT’s prior training on the extensive and diverse ImageNet
dataset, enabling it to start with a robust understanding of various image features. As
a result, the adaptation of ViT to our specific task of anomaly detection in wind turbine
blades required less time compared to training a model from scratch. This reduction in
training time is a key benefit of transfer learning, particularly when dealing with large and
complex datasets as in our case. Furthermore, ViT’s ability to process images in patches
and its attention mechanism, which focuses on different segments of the input, contributed
to its rapid and effective adaptation to our task.

To further elaborate on this approach, the subsequent points outline the key stages
and methods we implemented in our study. These include the initial phase of pre-training
on the ImageNet dataset, followed by detailed fine-tuning and layer adjustments, all of
which are integral to improving our ability to detect anomalies in wind turbine blades.

a. Pre-Training on ImageNet: Each model used in our study was initially pre-trained
on the ImageNet dataset. This pre-training involved exposing the models to a large
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variety of images, allowing them to learn a wide range of features, from basic shapes
and textures to more complex patterns. This process endowed the models with
a significant degree of generalized image recognition capability, which forms an
essential basis for further specialization in our specific task.

b. Transfer Learning Implementation: We employed the transfer learning technique
by fine-tuning these pre-trained models on our dataset of thermal images of WTBs.
This approach allowed us to emphasize the learned features from ImageNet while
adapting the models to the nuances of our specific application. The fine-tuning
involved partial retraining of the models, where the initial layers, responsible for
capturing basic image features, were kept frozen, and the deeper layers were trained
to align with our task-specific features.

c. Layer Adjustment Strategies: A crucial aspect of our transfer learning approach was
the adjustment of the final layers of the models to suit our binary classification task.
This entailed transforming the output layers to yield predictions in a binary format,
corresponding to the healthy and faulty conditions of the turbine blades. Additionally,
we experimented with varying the number of layers to be retrained and the extent of
their training, striking a balance between retaining learned features and adapting to
new data.

Through this transfer learning approach, we effectively utilized the vast knowledge
base of ImageNet to enhance the performance of our models on a specialized task. This
methodology not only accelerated the training process, but also improved the models’
accuracy and generalization capabilities in distinguishing between healthy and faulty
turbine blades.

3.6. Results Analysis

This subsection delves into the detailed results obtained from the application of
various deep learning models on our dataset, with a focus on their performance across
multiple metrics. Table 1 shows the performance metrics of 35 implemented models,
highlighting their accuracy, precision, recall, and F1-score. The F1-score is a harmonic mean
of precision and recall, providing a single metric that balances both the false positives and
false negatives. It is particularly useful in situations where an uneven class distribution
might render metrics like accuracy. The F1-score ranges from 0 to 1, with a higher value
indicating better model performance and a more balanced trade-off between precision and
recall. Table 1 orders the models by their performance, demonstrating the comparative
effectiveness of each architecture in the context of image classification of healthy and faulty
for WTBs. Particularly notable are the performances of the ViT and DenseNet models, which
stand out with high accuracy and F1-scores, exemplifying their precision and effectiveness
in this task.

The F1-score is calculated as follows:

F1-score = 2 × precision × recall
precision + recall

(8)

Table 1. Average performance metrics of implemented models after 10 random training runs (in %).

Performance Model Name Avg. Accuracy (%) Avg. Precision (%) Avg. Recall (%) Avg. F1-Score (%)

1 The Ensemble Model 100 100 100 100
2 ViT 97.98 97.97 97.99 97.98
3 densenet161 97.95 98.93 97.03 97.96
4 resnet152 97.87 97.89 96.95 97.42
5 densenet201 97.45 96.97 97.94 97.46
6 wide_resnet50_2 97.48 96.13 98.96 97.52
7 vgg16 97.49 97.02 97.99 97.50
8 densenet169 97.02 95.21 99.02 97.08
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Table 1. Cont.

Performance Model Name Avg. Accuracy (%) Avg. Precision (%) Avg. Recall (%) Avg. F1-Score (%)

9 vgg13 97.03 96.10 98.02 97.05
10 vgg19_bn 96.02 97.94 94.02 95.94
11 vgg11 96.03 95.12 97.02 96.06
12 wide_resnet101_2 96.04 94.25 98.03 96.10
13 densenet121 96.03 95.12 97.02 96.06
14 resnet101 96.52 96.06 97.02 96.54
15 vgg11_bn 96.52 95.17 98.02 96.57
16 vgg16_bn 96.52 95.17 98.02 96.57
17 efficientnet_b1 94.82 93.72 96.02 94.87
18 mobilenet_v2_0.75 94.77 91.52 98.52 94.87
19 inception_v4 95.27 93.82 96.72 95.25
20 squeezenet1_0 95.52 95.98 95.02 95.50
21 resnet18 95.52 98.94 92.02 95.36
22 vgg13_bn 95.52 91.76 95.71 95.71
23 efficientnet_b0 94.52 94.08 95.02 94.55
24 vgg19 94.52 96.86 92.02 94.38
25 resnet50 94.52 93.22 96.02 94.59
26 mobilenet_v2_0.5 94.02 90.52 98.02 94.12
27 mobilenet_v3_medium 93.52 90.02 97.52 93.62
28 xception 95.02 93.29 97.02 95.12
29 resnet34 95.02 91.69 99.02 95.21
30 mobilenet_v2 95.02 91.69 99.02 95.21
31 inception_v3 95.02 96.89 93.02 94.92
32 mobilenet_v3_large 92.52 89.01 97.02 92.84
33 squeezenet1_1 91.02 88.70 94.02 91.28
34 mobilenet_v3_small 89.02 83.07 98.02 89.93
35 alexnet 88.98 83.61 97.02 89.79

Figure 11a,b illustrate the confusion matrices for the DenseNet and ViT models, re-
spectively. These matrices provide a detailed breakdown of the classifiers’ performance,
showing the true positives, true negatives, false positives, and false negatives. The high
accuracy of these models is reflected in the significant number of correct predictions.

(a) Confusion Matrix for DenseNet (b) Confusion Matrix for ViT

Figure 11. Confusion matrices of the top two models.

The Receiver Operating Characteristic (ROC) curves for DenseNet and ViT are depicted in
Figures 12 and 13, respectively. ROC curves are essential tools in evaluating the performance
of classification models, as they provide a visual representation of the trade-off between
the True Positive Rate (TPR) and the False Positive Rate (FPR) across various threshold
settings. This trade-off is crucial in determining the balance between correctly identifying
positive cases and avoiding false alarms. For each model, the ROC curve plots the TPR
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against the FPR at different classification thresholds, providing insight into the classifier’s
performance under varying conditions. The Area Under the Curve (AUC) of these ROC plots
serves as a quantifiable measure of the model’s discriminative ability. A higher AUC value
indicates a better performance of the model in distinguishing between the two classes—in
this case, the healthy and faulty conditions of the wind turbine blades. The AUC is a valuable
metric as it summarizes the ROC curve into a single number, enabling a straightforward
comparison between different models. A model with an AUC close to 1 demonstrates excellent
classification ability with a high true positive rate and a low false positive rate, whereas a
model with an AUC closer to 0.5 suggests performance no better than random chance.

Figure 12. ROC curve for DenseNet.

Figure 13. ROC curve for ViT.

The training and validation loss functions for DenseNet and ViT are demonstrated
in Figures 14 and 15, respectively. These figures showcase the learning progression of
each model throughout the training and validation phases. It is important to note that for
ViT, there is a slight increase in the validation loss. This phenomenon can be attributed to
the relatively small size of our dataset and the limited extent of the validation set. How-
ever, it is crucial to understand that this increase does not detrimentally affect the overall
performance of the model, indicating that ViT maintains its robustness and effectiveness
despite these constraints. This scenario underscores the importance of considering dataset
characteristics when interpreting model behavior and performance metrics. It is worth
noting that despite the high evaluation metrics achieved by both DenseNet and ViT mod-
els, instances of misclassification were observed, as shown in Figures 16 and 17. These
misclassifications underscore the necessity of employing ensemble methods to enhance
predictive performance.
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Figure 14. Loss functions for DenseNet.

Figure 15. Loss functions for ViT.

Figure 16. Misclassified images by DenseNet.

Figure 17. Misclassified images by ViT.

3.6.1. Implications for Ensemble Learning

The distinct misclassifications by different models suggest complementary strengths
and weaknesses. This observation leads to the consideration of ensemble learning as
a strategy to combine these strengths, potentially mitigating individual limitations and
capitalizing on their collective capabilities for more accurate predictions. Ensemble learning,
by combining models such as DenseNet and ViT, could exploit the complementarity of
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DenseNet’s densely connected features and ViT’s ability to capture global dependencies,
potentially leading to a more robust and accurate system for WTB inspection.

In summary, this analysis not only highlights the importance of model selection
relative to the task and dataset characteristics but also underscores the capabilities of deep
learning in image pattern recognition, even with limited data. It further emphasizes the
potential of ensemble learning to enhance the accuracy and robustness of predictive models
in practical applications.

3.6.2. Ensemble Learning

Ensemble learning is a machine learning approach where multiple models, often termed
weak learners, are collaboratively employed to solve the same problem. The central concept
is that the aggregation of predictions from several models can compensate for their individ-
ual weaknesses, thereby enhancing the accuracy and generalization on unseen data [73,74].
Common methods of ensemble learning include bagging, boosting, and stacking [75,76].

Bagging involves training numerous models in parallel on different subsets of the
data to decrease variance and avert overfitting [75]. Boosting sequentially trains models,
with each focusing on previously misclassified data points to minimize bias and improve
robustness [75]. Stacking uses a new model to combine the predictions of multiple models,
learning the optimal way to amalgamate these predictions [77].

As illustrated in Figure 18, the collective performance of multiple weak classifiers can
surpass the effectiveness of individual classifiers, especially when each contributes a unique
perspective [78]. This concept is central to our study, where we evaluate a variety of archi-
tectures such as DenseNet, ViTs, and ResNets. Each of these architectures exhibits distinct
capabilities in classifying thermal images of WTBs [79]. The variability in misclassified sam-
ples among different models underscores the uniqueness of each classifier’s approach to
prediction, reinforcing the potential of an ensemble strategy to enhance overall accuracy [80].

Figure 18. Illustration of ensemble learning with weak classifiers, which demonstrates the comple-
mentary strengths of individual models when combined [78].

Ensembling top-performing models with high accuracy and F1-scores can leverage
their collective strengths and address individual misclassifications, thus improving the
overall prediction performance [80]. For instance, combining models such as ViT and
DenseNet161 is a strategic choice, given their already high accuracy and balance between
precision and recall [80]. This ensemble approach can exploit DenseNet’s dense convolu-
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tional connections and ViT’s global image analysis capabilities [80]. Practically, this could
involve averaging the predicted probabilities from both models for each class, selecting the
class with the highest combined probability as the final prediction. Alternatively, a more
sophisticated meta-model could be developed to perform this aggregation, potentially
incorporating additional promising models [80].

3.6.3. Ensemble Learning Results

The ensemble model, integrating the strengths of both ViT and DenseNet161, exhibited
remarkable performance in detecting defects in WTBs. This model achieved a perfect
classification accuracy of 100%, a testament to its efficiency and reliability in this high-stakes
application. Attaining an accuracy of 100% on our dataset, the ensemble model surpassed
the individual performances of its constituent models. As shown in Figure 19, while
ViT and DenseNet161 individually achieved an accuracy of around 98%, their combined
prowess in the ensemble configuration led to flawless classification accuracy.

To address the potential for misclassification, we conducted extensive testing of the
ensemble model. Despite the individual models ViT and DenseNet161 showing instances
of misclassification, when combined in the ensemble model, their strengths complemented
each other, eliminating the occurrence of false positives and false negatives across multiple
runs. Specifically, the ensemble model was run 10 times, each time achieving 100% accuracy
with no observed misclassifications. This absence of errors can be attributed to the models’
complementary nature in the ensemble, where one model’s weaknesses are offset by the
other’s strengths, thus reinforcing the reliability of our approach for practical applications
such as wind turbine maintenance.

In tuning our ensemble model, which combines the capabilities of ViT and DenseNet161,
we meticulously explored a range of hyperparameters to ensure optimal performance. The
process involved the following:

• Model Weight Optimization: We adjusted the relative contributions of ViT and
DenseNet161 within the ensemble. Through extensive testing, we found a weight
ratio of 60:40 to be most effective, though we evaluated ratios from an even split to a
70:30 distribution.

• Integration Strategy: Various integration strategies were tested to determine how best
to combine the outputs of the two models. We experimented with simple averaging,
weighted averaging (with weights from 0.1 to 0.9), and stacking approaches. A
weighted averaging with a bias of 0.6 towards the ViT model’s output was identified
as the superior method.

• Decision Thresholds: To fine-tune our model’s sensitivity and specificity, we em-
ployed Bayesian optimization techniques to find the optimal decision threshold for
classifying images as defective or non-defective. After testing thresholds ranging
from 0.5 to 0.8, we established 0.7 as the ideal balance point, which maximized both
precision and recall.

These hyperparameter tuning steps were critical for harnessing the synergistic effects
of the ensemble model, culminating in its exemplary defect detection performance as
evidenced by our results.

Correspondingly, the ensemble model not only excelled in accuracy but also in other
crucial evaluation metrics. The F1-score, which harmonizes precision and recall, reached
the optimal value of 100%. This is a direct implication of the model achieving 100%
accuracy in a balanced dataset, which inherently signifies no false positives or false neg-
atives, thus leading to perfect precision and recall scores. In other words, the ensemble
model’s precision and recall were also at their theoretical maximum, demonstrating its
exceptional capability in correctly identifying all defective and non-defective segments in
the turbine blades without any errors. This level of performance in precision and recall,
alongside the perfect F1-score, underscores the model’s robustness beyond just accuracy. It
highlights the model’s unparalleled proficiency in both detecting defects (precision) and
accurately classifying non-defective areas (recall), which is crucial in applications such as
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wind turbine maintenance where the cost of misclassification can be high. Throughout
our study, all evaluation metrics, including accuracy, precision, recall, and F1-score, have
been comprehensively discussed for all models. The focus on the ensemble model’s 100%
accuracy underscores its comprehensive performance across all these metrics, reinforcing
its suitability and reliability for high-precision applications like WTB defect detection.

Figure 19. Comparison of accuracy and F1-Scores for ViT, DenseNet161, and the proposed imple-
mented ensemble model.

To provide a comprehensive understanding of the model’s performance, we compared
the ensemble model with the individual performances of ViT and DenseNet161. As shown
in Figure 19, the ensemble model not only improved accuracy but also enhanced precision,
recall, and F1-scores compared to the individual models. The F1-score, a crucial metric in
anomaly detection due to its balance of precision and recall, was particularly improved,
reaching the optimal value of 100%. This demonstrates the ensemble model’s advanced
capability to correctly identify all defective and non-defective segments without error,
which is essential for practical applications such as wind turbine maintenance where
misclassification has significant consequences.

The ensemble model’s success is attributed to the synergistic combination of ViT and
DenseNet161. While ViT excels in capturing global features of the blade images, DenseNet161
is adept at recognizing finer, localized details. This complementary pairing allowed the
ensemble model to leverage the global contextual understanding of ViT and the detailed
analytical capability of DenseNet161, resulting in unparalleled classification accuracy.

The perfect accuracy of the ensemble model has significant practical implications for
wind turbine maintenance. It ensures highly accurate and reliable defect detection, paving
the way for more effective predictive maintenance strategies. This could lead to reduced
downtime, enhanced turbine longevity, and overall more efficient energy production.

3.6.4. External Validation on Operational Wind Turbine Data

To further assess the generalizability of our ensemble model, we conducted external
validation using a unique dataset provided by Chen, Xiao [81]. This dataset contains
drone-based optical and thermal imagery of wind turbine blades in operation, captured
separately due to the technical constraints of using two distinct cameras that do not capture
images simultaneously.

For this validation, we innovatively processed 100 healthy and 100 faulty images
to create a fused dataset. The fusion process involved using OpenCV’s alpha blending
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technique, where we manipulated the alpha parameter to control the blend of optical and
thermal images. Specifically, we set alpha to 0.7, allowing the optical image to contribute
70% to the fused image, with the remaining 30% contributed by the thermal image. This
balanced approach was critical for overcoming the challenge of temporal misalignment, a
prevalent issue with separately captured images. The alpha parameter’s role was to ensure
that the final fused image maintained a dominant visual influence from the optical data
while effectively incorporating thermal data characteristics. Figures 20 and 21 showcase
examples of these fused images, illustrating both healthy and faulty conditions.

(a) (b)
Figure 20. Examples of fused images from the external dataset showing a healthy wind turbine
blade [81]. (a) Healthy blade—view 1; (b) Healthy blade—view 2.

(a) (b)
Figure 21. Examples of fused images from the external dataset showing a faulty wind turbine
blade [81]. (a) Faulty blade—view 1; (b) Faulty blade—view 2.

Importantly, our pre-trained ensemble model, which integrates ViT and DenseNet161,
was directly applied to this externally fused dataset without any retraining or fine-tuning.
This approach was intended to rigorously test the model’s ability to generalize and adapt
to new, real-world data, a vital aspect of its practical applicability.

Despite the challenges in image fusion due to temporal misalignment, our ensemble
model successfully classified all instances with 100% accuracy. This remarkable achieve-
ment in the external validation emphasizes the robustness and adaptability of our model
to operational environments and enhances confidence in its deployment for wind turbine
maintenance.

4. Conclusions and Future Directions

This research, conducted at Utah Valley University’s Machine Learning and Drone
Lab, represents a substantial breakthrough in the inspection of WTBs. Utilizing the FLIR
Thermal Camera’s Multi-Spectral Dynamic Imaging (MSX) technology, we created a unique
dataset comprising 1000 thermal images. This dataset includes a comprehensive range
of conditions, capturing both healthy and faulty blades with various forms of damage
including cracks, holes, and erosion. The integration of high-resolution RGB imagery with
thermal data using MSX technology enriches the dataset with precise visual cues, crucial
for accurate anomaly detection and categorization.
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Our rigorous testing and analysis process included a comprehensive evaluation of
35 different models, such as various versions of ResNet, VGG, MobileNet, along with en-
semble models, ViT, and DenseNet161. This extensive evaluation highlights the importance
of a holistic approach in machine learning model selection and optimization, especially for
complex diagnostic tasks. The ensemble model emerged as the top performer, excelling in
accuracy, precision, recall, and F1-score.

The proposed ensemble model, combining ViT and DenseNet161, leverages this
dataset to achieve a 100% accuracy rate in defect detection, setting a new paradigm in
renewable energy infrastructure maintenance. This model exemplifies the potential of
advanced machine learning techniques in complex industrial settings. The effectiveness of
the ensemble model is attributed to the synergistic blend of ViT’s global feature analysis and
DenseNet161’s local pattern recognition capabilities, which, along with the meticulously
curated dataset, allows for the nuanced and highly accurate identification of defects.

Looking forward, the research opens up several avenues for future exploration. Ex-
panding the dataset will enhance the model’s robustness and improve diagnostic accuracy
across diverse scenarios. Advancements in defect detection methodologies, particularly in
the classification of defect types, are vital for more detailed diagnostics. Exploring the depth
assessment of defects could offer comprehensive insights into their severity. Furthermore,
integrating thermal imagery with data from other sensors, such as acoustic and vibra-
tion monitors, proposes a multifaceted diagnostic approach. The use of drones equipped
with thermal cameras for data collection offers an efficient method for comprehensive
inspections in challenging environments.

In summary, this study lays a solid foundation for future research in WTB inspection.
It emphasizes the potential of integrating advanced imaging technologies and machine
learning models to develop more accurate, efficient, and practical maintenance tools in the
renewable energy sector. Future research directions include the following:

• Expanding the dataset to enhance model robustness and diagnostic accuracy across
diverse scenarios.

• Advancing defect detection methodologies to classify types of defects for more detailed
diagnostics.

• Exploring the depth assessment of defects to provide comprehensive insights into
their severity.

• Integrating thermal imagery with data from other sensors, such as acoustic and
vibration monitors, for a multifaceted diagnostic approach.

• Implementing drones equipped with thermal cameras for efficient and comprehensive
data collection in challenging environments.
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