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Abstract: Several cities worldwide are studying the replacement of their trolleybus systems with
diesel buses or battery electric buses, due to their flexibility and lower operational costs. Diesel
buses are considered a major cause of gas emissions in cities, while battery electric buses employ
cutting-edge technology, but there is still discussion around the topic due to their technology costs,
autonomy, and the sustainability of battery packs. In this study, we evaluated the trolleybus system’s
potential for reducing emissions, noise pollution, and greenhouse gases (GHGs) when compared to
diesel buses. Furthermore, we compared the trolleybus system with battery electric buses in terms
of cost and environmental benefits. To do so, a case study was conducted in São Paulo, Brazil, the
largest city in Latin America, which operates the second-highest trolleybus system on the American
continent. Our results show that the trolleybus system is a feasible alternative to diesel buses when
considering environmental aspects. It can be seen as a complementary service for urban transport
systems in the city’s transition to clean energy. Finally, the study implications indicate the need
for further investigation of the benefits of in-motion-charge technology to generate flexibility in
trolleybus systems, and the involvement of stakeholders in the transition matrix energy process in
urban bus systems beyond the direct costs.

Keywords: trolleybus; electric energy; urban transport system; transport analysis; sustainable cities

1. Introduction

Passenger urban transport is essential in enabling people to carry out their daily
activities, such as work, education, and leisure [1]. Every day, cities face the challenge
of moving their citizens through a complex system of individual and collective modes
of transportation while minimizing costs and reducing travel time [2]. At the same time,
they strive to maintain and improve transport infrastructure and mitigate noise and air
pollution, which can have severe health consequences and make urban life unpleasant
for residents [2]. The health damages associated with exposure to air pollution have been
estimated to cost the global economy USD 8.1 trillion, equivalent to 6.1 percent of global
GDP [3].
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Cities worldwide have experienced a shift in their economic landscape, where factories
have moved away from rural regions and urban areas have become dominated by service-
based industries. This change has resulted in a significant number of people being displaced
due to the growth of large-scale businesses in specific locations, which have attracted both
workers and consumers. Unfortunately, this approach has often failed to support the
development of local businesses, thereby limiting the potential for these areas to thrive.

Around 3000 people die every year as a result of air pollution, and the primary cause
of this pollution is transportation [4]. Diesel-fueled vehicles, in particular, are responsible
for emitting particles that are more harmful to human health than particles from most other
sources of air pollution [3]. As a result, society has been seeking alternative solutions to
reduce these emissions by implementing more sustainable energy sources.

In Poland, local governments employ reduced tax rates on means of transportation
to encourage hybrid and electric vehicles [5]. The European Union has set an ambitious
target to reduce total emissions to 55% for cars and 50% for vans by 2030 because road
transport contributes 25% of total annual emissions within the EU [6]. The São Paulo City
Hall, Brazil, intends to neutralize greenhouse gas (GHG) emissions by 2050, electrifying the
whole bus fleet of the city using battery buses [7]. The country has 107,000 diesel-fueled
buses responsible for 85.7% of public transport journeys in cities [8], whereas São Paulo, the
most populous one with more than 11 million people, has a bus fleet of 13,309 vehicles [7].

The emission of carbon dioxide (CO2) in the transportation sector is a significant
contributor to greenhouse gas (GHG) emissions caused by human/made activities [9].
One solution to control and mitigate these emissions that has been around for a century to
move people sustainably within cities is the trolleybus system. However, these systems
are disappearing, and battery electric buses (BEBs) are being considered as a solution for
reducing emissions from buses.

With those ideas in mind, this paper is seeking to provide answers to the following
research questions.

RQ1—Is the trolleybus efficient enough to be considered as an alternative for the
transition energy matrix in public transportation?

RQ2—In comparison to a diesel and battery electric bus, is the trolleybus system
feasible?

This paper proposes a case study in the biggest city in Latin America, São Paulo,
Brazil. The objective is to compare the trolleybus with diesel buses regarding no CO2,
noise, and GHG emissions. Moreover, we compare trolleybus with battery electric buses,
considering operational costs and environmental benefits. The city was chosen because it is
a metropolis with the second most extensive trolleybus system on the American continent.
Moreover, a case study allows us to have available data to compare the feasibility of public
transport electrification in detail, based on figures, and to bring accurate data to academic
discussion. The results of this research may motivate new studies worldwide with the
objective of investigating trolleybus efficiency as an alternative to public transport in cities
with these transport systems and discussing whether to maintain those systems in the
energy transition matrix.

2. Literature Review
2.1. Trolleybuses

Trolleybuses are electrically powered vehicles connected to an overhead network. The
term “trolleybuses” comes from the combination of the English words “trolley” (referring
to the wire) and “bus”. These systems can trace their roots back to the Elekromote, created
by Siemens and Holske in Germany in 1882 [10]. The UK saw its first two trolleybus lines
in operation in 1911 [11].

In 1920, trolleybus services expanded to America, to the United States, and consider-
able acceptance of this type of vehicle occurred within urban transport companies [12]. At
the same time, in Eastern Europe, trolleybuses were implemented in several cities [12].
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Trolleybus systems had a fast rate of adoption in Europe, and one of the reasons
was the conversion of part of the structure used by trams to the new trolleybus system.
They are equipped with tires, and provide more flexibility than trams and can be easily
maneuvered [13].

The use of trolleybuses increased rapidly between the 1930s and the 1950s. The UK
had the largest fleet in Western Europe, with London alone having 1764 vehicles [12].
There were 7280 trolleybuses in the US in 1952, an increase of 329% compared to 1939 [12].
Other countries such as Mexico, Spain, France, Italy, Yugoslavia, Greece, and Sweden also
implemented new trolleybus systems during this time [12].

In the latter half of the 20th century, trolleybus systems experienced a decline. Cur-
rently, there are trolleybus lines in only approximately 300 cities worldwide (Figure 1),
whereas in the past there were over 800 systems (as shown in Figure 1) [14,15]. However,
many of these trolleybus lines serve as a complementary mode of transport alongside other
forms of transportation.
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Currently, the majority of trolleybus systems are located in Europe and Asia, with
the highest concentration being in the former Soviet states. This is believed to be due to
the sanctions imposed by the US and Western Europe during the Cold War [16]. In Latin
America, there are currently 1064 trolleybuses in operation, accounting for 21% of the total
of 5084 electric buses in circulation in the region as of February 2024 [17].

The trolleybus system in Mexico City is the largest in Latin America, boasting 500 vehicles.
São Paulo city follows, with 201 vehicles [17]. Other cities in the region that offer trolley-
bus services include Córdoba, Rosario, and Valparaíso in Argentina, Quito in Ecuador,
Guadalajara in Mexico, and Mérida in Venezuela [17].

Trolleybuses now operate in 150 European cities [18,19]. Pardubice, Lausanne, Land-
skrona and Salzburg are examples of public transport that are exclusively made up of
these vehicles [20]. Trolleybuses benefit from their quiet operation, zero emissions, and
strong EU subsidies for green transport. Despite the many advantages of trolleybuses, their
previous disadvantages are the mains harnesses and the total dependence of the vehicle on
the power source.

Modern electric transport technology makes it possible not to set up another traction
network, and traditional trolleybuses can replace duobuses, using the current network and
moving outside it as electric buses. Electric buses are very expensive at the moment, and
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not every city can afford to change its rolling stock, especially cities which suffered mass
liquidations in the 60s and 70s. In the 20th century, it was possible to maintain these lines;
cities will continue to develop the existing infrastructure and modernize the rolling stock.
It cannot be ruled out that as the manufacturer’s technology progresses, the price of the
electric bus will become acceptable to individual cities and the trolleybus will “take off” its
harnesses, because the idea of electric transport will develop.

Poland is one of the largest bus markets in Europe. According to the PZPM (Polish
Automotive Industry Association) report, it is the third largest bus manufacturer in the
union. The vast majority (more than 80 percent) of buses produced in Poland are sold on
foreign markets (mainly Germany, France, and Scandinavia). EU standards clearly support
the development of urban transport with reduced noise and emissions, such as electric
buses and trolleybuses [21].

In Poland the two largest producers are Ursus and Solaris. Solaris vehicles drive on the
streets of dozens of cities in several countries: Austria, Bulgaria, Czech Republic, Estonia,
Germany, Italy, Poland, Portugal, Romania, Spain, Sweden, and Switzerland, as well as
Lithuania, Latvia and Hungary. Ursus Ekovolt trolleybuses, like Trollino Solarisa, are not
tied by harnesses to electric traction. Modern vehicles also have battery systems, which
allow them to move even outside the grid using electric drive. The minimum price of Ursus
Ekovolt reaches PLN 1.6 million, almost two times more expensive than a traditional bus.

2.2. In-Motion-Charging Technology

Trolleybus systems are often questioned due to their higher cost compared to diesel
buses and the risk of levers escaping from the overhead network, causing traffic disruptions.
However, newer models of trolleybuses come equipped with batteries that enable them to
travel independently from the network when necessary. These batteries are relatively small
and can be easily replaced at the end of their lifespan, unlike the stationary batteries used
in battery electric buses (BEBs).

Bartłomiejczyk and Połom [22] point out that trolleybuses are an important solution
for reducing the use of fossil fuels in urban public transportation. Trolleybuses use small
batteries in comparison to battery electric buses and these batteries enable trolleybuses to
operate without an overhead network, making the system more feasible with the help of
in-motion-charging (IMC) technology.

IMC technology (Figure 2) is an efficient and interesting solution for electrifying bus
systems. It works well with both battery buses and trolleybuses. In trolleybuses, the system
charges the batteries while they are connected to the overhead grid. Then, the stored
energy is used while traveling where there is no catenary. For every kilometer a trolleybus
travels while connected, it can travel another two or three kilometers disconnected from
the overhead grid, which reduces the infrastructure costs of trolleybuses. This technology
also allows network sharing for rapid recharging of battery buses [23].

According to Grygar et al. [24], trolleybuses that can be charged while in motion are
highly recommended for cities already operating this system. Electric buses have more
economic, environmental, and social benefits compared to diesel buses. Moreover, they can
use renewable energy sources to power up [25].

Also, according to Grygar et al. [24], battery-assisted trolleybuses are expected to be
implemented soon. These will combine traditional trolleybuses’ advantages with conven-
tional buses’ flexibility and mobility. However, this technology has certain limitations, such
as battery capacity and ambient temperature.

For instance, the trolleybus network in Tychy, Poland, has been modernized with
battery-powered trolleybuses. This upgrade has had several positive effects, including
protecting the environment, saving energy, and reducing gas emissions [16]. Furthermore,
it has made the trolleybus system more flexible and accessible to other areas of the city [16].
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2.3. Electric Bus Service in Passenger Transport

Electromobility has been seen as a solution to mitigate gas emissions and environ-
mental pollution. Countries worldwide set targets to change gasoline vehicles in favor of
electric ones. However, the increased demand for electricity to power electric vehicles and
other electronic devices is a bottleneck in this direction.

The transportation sector, particularly buses, is changing due to the increasing pressure
from governments worldwide to adopt more eco-friendly energy sources. However, the
bus sector’s biggest challenge is the lack of proper infrastructure to support the recharging
of these energy sources.

Numerous studies have explored the potential of implementing a matrix transforma-
tion system in the bus industry. Kaptasila et al. [26] analyzed the operational performance
of battery-electric, hybrid, and diesel buses in Portland, OR, USA. They found that electric
buses are faster than diesel buses, but they recommend deploying them on routes where
ramp use is historically infrequent.

Shifting towards alternative energy sources in urban bus systems is crucial to reducing
carbon footprints [27,28]. Moreover, Tong and Ng (24) suggest that battery electric buses
are replacing traditional diesel buses in urban public transport services. They also note that
over 30% of daily passenger trips in Hong Kong are made using battery electric buses.

Ribeiro et al. [29] affirm that BEBs are an essential tool for cities to reduce carbon
emissions in the transport sector. They are also more cost-effective than diesel buses.
However, it is important to note that the energy used to charge BEBs’ batteries must come
from renewable sources to ensure their environmental benefits. Using fossil fuel energy
would offset the positive impact of BEBs.

In this sense, trolleybus services can help lessen the impact of transitioning to battery
electric buses (BEBs), due to their usage of an overhead network. Because they require
fewer batteries, they can be a viable option for mitigating the effects of changing the energy
matrix in public transport by bus.

3. Materials and Methods

São Paulo is the main city of Brazil located in São Paulo state (a province in the
southeast region of the country), and it was established in 1554 by the Jesuits [30] During
the XX century it became the most important financial and economic center of Brazil, where
nowadays more than 11 million people live [30,31]. Located between latitude and longitude
47◦0′ W to 46◦20′ W and 23◦15′ S to 23◦60′ S, respectively, and covering an area of 5025 km,
the city has a diverse and robust economy that includes finance, commerce, services, and
manufacturing industries [32].
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Transportation has always been a major concern for administrators and politicians
throughout its development. As the city grew, so did the need for its population to move
around. In this regard, trolleybus systems were considered a solution based on foreign
experiences.

In this study, we used Carvalho’s methodology to estimate the CO2 emissions that
would have been produced if trolleybus services had not been adopted in the city [33].

Ekm (bus) = Ees/E f (1)

where
Ekm (bus) = emissions of CO2 (kg)/km by the bus service.
Ees = emissions of the energy source in CO2 (kg)/L.
Ef = energy efficiency in km/L.
Considering the values of Ees 3.2 CO2 (kg)/L and Ef 2.5 obtained by Carvalho [33], it

is possible to establish Ekm (bus), Equation (2):

Ekm (bus) = 3.2/2.1 = 1.28 CO2 kg/km (2)

To establish the distance traveled by the São Paulo trolleybus fleet per month, we
obtained the respective itinerary and distances from São Paulo Transporte S/A, the City
Hall company that manages the bus system in São Paulo city (Table 1).

Table 1. São Paulo Trolleybus Lines.

Line
Number Destination

Distance
(km)

Travel Fleet Total
(km/Month)Workdays Saturdays Sundays

2002/10 Circular 7.12 126 108 97 25.575

2100/10
Praça da Sé 15.27 178 86 - 65.050
Vila Carrão 15.59 168 86 - 62.984

2100/21
Pq. D. Pedro II 15.69 - - 86 5.397

Vila Carrão 14.64 - - 86 5.036

2290/10
Pq. D. Pedro II 25.87 208 120 89 140.008

São Mateus 21.33 200 114 81 110.489
2290/21 Pq. D. Pedro II 20.81 8 - - 3.663

3160/10
Pq. D. Pedro II 8.70 149 96 48 33.530
Vila Prudente 7.96 141 94 47 29.181

342M/10
Penha 16.07 204 150 89 87.485

São Mateus 16.10 204 143 84 86.876

4112/10 Circular 12.92 70 - - 19.897

4113/10 Circular 20.85 170 123 85 95.326

408A/10
Cardoso de Almeida 11.33 78 37 39 22.887

Machado de Assis 9.11 78 37 39 18.402

Total (km/month) 811.786

There are a total of 10 trolleybus lines currently operating, consisting of eight baselines
and two services. The term “services” refers to variations of the main lines that operate on
specific schedules. Table 1 provides a comprehensive summary of these trolleybus lines
that operate for a month, including 22 working days, 4 Saturdays, and 4 Sundays.

In this way, we adopted Equation (3) to determine Emissions.

Emta = Fm× Ekm (bus) (3)

where
Emat = emissions of CO2 avoided by the trolleybus, in kg.
Fm = the fleet mileage in km.
Ekm (bus) = emissions of CO2 (kg)/km bus service.
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Emissions of CO2 that were not emitted were converted into carbon credits to establish
a monetary value that allows us to quantify the gains of the system. To do so, we adopted
Equation (4).

CC = VCC× (Emta/1000) (4)

where
CC = carbon credits in EUR.
VCC = value of carbon credits in EUR per ton.
Emat = emissions of CO2 avoided by the trolleybus in kg.
We have calculated the negative impact on communities from the local and greenhouse

gas (GHG) emissions. The negative impact on communities is a disadvantage caused by
transport systems. It refers to the need for infrastructure and the environmental impacts
caused by transport systems [1,2].

We obtained the estimated values of local gases and GHG emissions according to
Tables 2 and 3 and Equations (5) and (6) [2].

LGC = MAPm× Dist× Pas (5)

where
LGC = Local gases cost.
Dist = Distance of the displacement in kilometers per month.
Pas = Number of passengers transported per month.

GHGC = MCCm× Dist× Pas (6)

where
GHGC = Greenhouse gases cost.
Dist = Distance of the displacement in kilometers per month.
Pas = Number of passengers transported per month.

Table 2. Marginal air pollution costs for metropolitan area (urban roads) in EUR per passenger ×
kilometer (MAPm).

Mode of Transportation Fuel Type Size (Engine Cubic Capacity
or Vehicle Dimension) Emission Class Value (EUR/Pass × km)

Bus (Ordinary Bus) Diesel 15 to 18 tonnes EURO V 0.0116
Bus (Coach) Diesel >18 tonnes EURO V 0.0135

Source: Data from [2].

Table 3. Marginal climate change costs for urban roads in EUR per passenger × kilometer (MCCm).

Mode of Transportation Fuel Type Size (Engine Cubic Capacity
or Vehicle Dimension) Emission Class Value (EUR/Pass × km)

Bus (Ordinary Bus) Diesel 15 to 18 tonnes EURO V 0.0060
Bus (Coach) Diesel >18 tonnes EURO V 0.0061

Source: Data from [2].

We considered the values of “ordinary bus” vehicles, which are urban buses with
EURO V technology in an urban area. There are two models of trolleybus in operation,
the first measuring 12.5 m (100 vehicles), with capacity for 80 passengers, and the second
measuring 15 m (101 vehicles), with capacity for 93 passengers. They can operate by
merging into some lines, or even eventually replacing diesel vehicles, so it was agreed to
use the 12.5 m trolleybus model for this study.

After establishing the environmental impact costs, we compared the operation of São
Paulo trolleybus systems with conventional diesel engine vehicles and battery electric buses.
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4. Results

The trolleybus network in São Paulo spans over 168.42 km and is supported by
22 Rectifying Transformer Stations (ETRs) [34,35]. The system is responsible for transport-
ing 8 million passengers per month [34,35]. As of 15 September 2023, there were 220 electric
buses in operation in São Paulo, out of which 201 were trolleybuses and the remaining 19
were battery-powered [34,35].

Upon converting the emissions avoided in CO2 by the 201 trolleybuses in Sao Paulo
city into carbon credits, Tables 4 and 5 display the corresponding values [36].

Table 4. CO2 not emitted by Trolleybus System in São Paulo city.

Variable Fleet Mileage per Month
in km (Fm)

Emissions of CO2 (kg)/km
for Bus Service (Ekm (bus)) Total (kg of CO2)

Emissions of CO2 avoided by
trolleybus in kg (Emat) 811,786 1.28 1,039,086.08

Table 5. Carbon Credit equivalent CO2 not emitted by Trolleybus System in São Paulo city.

Variable Value of Carbon Credits in
EUR per Ton (VCC) 1

Emissions of CO2 Are Avoided by
Trolleybus in Ton. (Emta/1000) Total EUR

Carbon Credits (CC) 64.02 1039.087 66,522.29
1 Carbon credit was EUR 64.02 per ton on 30/01/2024 [36].

According to the findings, the trolleybus operation in the city of São Paulo prevents
the release of 1,039,087 kg of CO2 into the atmosphere every month. This figure translates
to a monthly carbon credit of EUR 66,522.29 for the city, as per Equation (4).

In 2022, the trolleybus network had energy availability 99.9% of the time and under-
went 3317 interventions, of which only 194 were emergency. This proves the reliability of
the São Paulo trolleybus system [34].

Regarding negative impacts on communities, Table 6 presents the values calculated
for local gases and GHGs.

Table 6. Negative Impacts on Communities.

Variable EUR Pass./km Passengers (Month) Distance (Month) Factor Passenger per km Total (EUR per Month)

Local Gases Cost (LGC) 0.0116 8,000,000 811.786 9.85 92,754.67
Greenhouse Gases (GHG) 0.006 8,000,000 811.786 9.85 47,976.55

Total (EUR per Month) 140,731.22

The values for local gases and GHGs not emitted by the trolleybus correspond to EUR
140,731.22 per month or EUR 1,688,774.64 per year.

The benefits of reduction in emissions in consideration of the costs of maintenance of
the trolleybus system can be seen in Table 7 [37].

Table 7. Operational Cost of Trolleybus in the city of São Paulo based on no gas emissions.

Variable Operational Cost
(EUR/km)

Overhead Network
Maintenance (Month) Distance (Month) Carbon Credits

(CC)
Negative Impact
on Communities

Total (EUR
per Month)

Trolleybus System Cost 0.35 1 286,516.85 1 811.786 570,641.95
Benefits of no Emissions 66,522.29 140,731.22 207,253.51

Total Cost 363,388.44

1 Data from [37].
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Our results indicated that 36.31% of operational costs can be paid by no emissions
generated by the trolleybus operation. It is important to note that our analysis did not
account for other factors, such as noise pollution and the emission of NOx, which is the
primary pollutant released by diesel engines. Additionally, we need to consider the health
costs associated with diesel engine operation.

In comparison, as a battery electric bus, the trolleybus could be disadvantageous to
São Paulo city (Table 8) [37,38].

Table 8. Operational Cost of Battery Electric Bus in the city of São Paulo based on no gas emissions.

Variable Operational Cost
(EUR/km)

Overhead Network
Maintenance (Month) Distance (Month) Carbon Credits

(CC)
Negative Impact
on Communities

Total (EUR
per Month)

Trolleybus System Cost 0.35 1 286,516.85 1 811.786 −66,522.29 −140,731.22 363,388.44
Battery Bus Cost 0.55 2 - 811.786 −66,522.29 −140,731.22 239,228.69

Total Cost 98,497.47

1 Data from [37]. 2 Data from [38].

It is essential to take into account the cost of battery disposal and shorter lifespan when
considering trolleybuses versus battery buses. A trolleybus can be operated for 30 years or
more, similar to subway lines, while a battery bus can only be operated for 15 years and
requires battery pack replacements halfway through its lifespan [39,40]. Therefore, it is
crucial to analyze these factors before making a final decision.

5. Discussion

The trolleybus development in São Paulo city remains in the decade of 1920, when
the city of São Paulo had a population of 579 thousand inhabitants. At that time, the first
studies for the implementation of “electrobuses” commenced [41,42]. However, only in
1939, São Paulo City Hall concluded the feasibility of implementing trolleybus systems to
replace old trams operating since 1899 [41].

Unfortunately, the project was interrupted during World War II and resumed in 1946
when São Paulo City Hall began studies for the establishment of the Municipal Public
Transport Company (CMTC) that would inherit the tram system from the Light company,
which decided to abandon its transport operation in Brazil [41]. Light was an Anglo-
Canadian company that had controlled transport systems in São Paulo since 1899 [43].

On 22 April 1949, the first line of trolleybuses was inaugurated with used vehicles
acquired from an English Company BUT, connecting João Mendes Square—in the city
center—to General Polidoro Square, in the neighborhood of Aclimação (Figure 3).

The trolleybus implementation in São Paulo was a rather late process, and, in some
ways, the world was discussing the system’s feasibility at that time. The UK, for instance,
implemented the first line in 1911, and in 1939, 35 trolleybus systems were in operation on
the isle, involving 3429 vehicles. However, in 1954 London announced its plan to replace
all its trolleybuses with diesel buses—just five years after Sao Paulo’s first line—and
this was completed in 1962. Due to London’s decision, the last system in the UK, in
Bradford, was closed in 1972. The reasons for the trolleybus decline in the UK were a
mixture of operational inflexibility and cost. Despite the discontinued trolleybus, they
still outperformed the diesel buses in quiet, vibration-free operation, high performance
and overload capacity, long life, and low maintenance requirements. They offered the
advantages of no local pollution, due to the use of clean energy [11].

At the time, trolleybuses were seen as a significant improvement over the existing
tram system. The city’s transport planning was still in its early stages, and there was no
integrated vision of the transport network that would have ensured that different modes of
transport complemented each other [42]. As a result, model changes were made without
proper consideration, with people naturally assuming that the trolleybus system was a
natural evolution of the transport modes [42].
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In 1958, Brazil manufactured its first national trolleybus, leading to the expansion of
the trolleybus network [42]. By 1960 the system had 15 lines, and the fleet had grown to
156 units [42]. However, due to difficulties incorporating this technology into the existing
system, trolleybuses often operated alongside small-capacity diesel buses or on roads
without special treatment [38].

In 1963 a study conducted by CMTC discovered that running trolleybuses was more
cost-effective than using diesel buses or trams [10]. However, diesel vehicles continued to
dominate the fleet as trolleybuses were still considered expensive due to low demand for
this type of vehicle [10,34,45].

The oil crisis in the 1970s impacted the source of fossil fuels and led to a growing
concern for environmental issues in society. As a result, a study plan for a Trolleybus
Transport System (SISTRAN) was developed for São Paulo in 1976. The plan aimed to
create a system with medium transport capacity that would prioritize trolleybuses in
exclusive corridors. The pilot project was constructed on Avenida Paes de Barros in 1980
(as shown in Figure 4) [10,46].
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In 1993, the São Paulo City Hall privatized CMTC, and private companies took over
the operation of the trolleybuses. The companies were expected to refurbish the existing
vehicles and expand the fleet. By 1998 the system had reached its peak, with a network
spanning 264.75 km, 31 lines, and a fleet comprising 552 vehicles [42,48].

Starting from 2001, efforts to reduce the trolleybus network in São Paulo, Brazil,
intensified. The rationale behind this decision was that the costs of operating trolleybuses
were high, and the system lacked flexibility due to the overhead network [7]. As a result,
the trolleybus transport system gradually lost its significance.

However, the trolleybus fleet was revived between 2007 and 2014 when it was renewed
and expanded to 201 vehicles [35]. Despite this, in 2023, the mayor of São Paulo city
expressed the desire to deactivate the trolleybus network and switch to battery buses, due
to high operational costs [49].

Brazil is formed of 27 states, with São Paulo being the most populous and important
one, accounting for 20% of the country’s population [31]. The city of São Paulo serves as
the state capital.

In order to discuss the emissions figures for the city, it is important first to present
the data for the state as a whole (Figure 5). Afterward, we can calculate the percentage of
emissions specific to the city of São Paulo (Figure 6).

In 2022, nitrogen oxide (NOx) was the main gas emitted by diesel buses, with 14,644
thousand tons per year, followed by GHG with 3192 thousand tons per year and carbon
monoxide (CO) 2865 thousand tons per year.
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Figure 5. Emission of nocive gases in the atmosphere by São Paulo state bus fleet in 2022. Source:
authors using data from CETESB [50]. CO = carbon monoxide; NMHC = nonmethane hydrocarbon;
NOx = nitrogen oxides; PM = particulate matter; SO2 = sulfur dioxide; GHG = greenhouse gases.
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Figure 6. Emission of nocive gases in the atmosphere by São Paulo city bus fleet in 2022 esti-
mated based on fleet proportion. CO = Carbon monoxide; NMHC = Nonmethane Hydrocarbon;
NOx = Nitrogen oxides; PM = Particulate Matter; SO2 = Sulfur Dioxide; GHG = greenhouse gases.

NOx occurs when nitrogen reacts with oxygen in a high temperature in the combus-
tion chamber. NOx participates in the formation of photochemical “smog”, whose main
pollutant is ozone. It also contributes to the formation of acid rain and particulates [42].
CO is a gas resulting from incomplete fuel burning and, when inhaled, reduces the blood’s
ability to transport oxygen [51]. And the burning of fuels such as coal, natural gas, and
petroleum derivatives emits carbon dioxide (CO2) [52].

A rough estimate of emissions for São Paulo city could be made by considering the
fleet size. As the city has 39% of the urban bus fleet of the São Paulo state, we estimated that
the same equivalence could be made for emissions. Despite the limitations, this approach
allows us to have an idea regarding the emissions provoked by diesel vehicles and validate
the reduction in emissions caused by trolleybus systems in the city.

The fact is that the trolleybuses have been running in about 300 cities across the globe
for the past 130 years and trolleybus can operate by complementing other modes while
new developments such as in-motion charging have been introduced in a range of cities to
help the trolleybus fleets to advance [53].

The trolleybus is an important source of sustainable transport for cities and should be
improved instead of deactivated for diesel or battery-buses. This solution is much more
profitable for the public transport authorities than introducing electric buses which are
powered by large, high-capacity batteries with limited life expectancy [22]. This can thus
generate significant operating costs in the future (e.g., onboard battery replacement) and
affect the performance of the public transport system [22].

IMC trolleybuses present a promising solution for increasing the percentage of electric
public transport in cities that already have catenary infrastructure [54]. In the specific case of
São Paulo, there is a local company that provides the technology and currently manages the



Energies 2024, 17, 1377 13 of 17

trolleybus fleet in the city [40], reducing the costs of implementation. However, it ultimately
depends on the City Hall’s willingness to fund part of the necessary infrastructure.

Our findings regarding the feasibility of the trolleybus in São Paulo can be reinforced
by the work of Kliucininkas and Matulevicius [55], who carried out a comparative anal-
ysis of costs related to emissions from urban buses and trolleybuses in Lithuania. They
conclude that replacement of the bus by the trolleybus will decrease GHG emissions
by 389.69 g CO2/km in 2009 and 287.09 g CO2/km in 2010; at the same time, replace-
ment will save 0.042 EUR/km and 0.039 EUR/km for each respective year. Połom and
Wiśniewski [56] comparing diesel buses and trolleybuses in Gdynia and Sopot, Poland,
found that trolleybuses in public transport contribute to a reduction in the damage costs of
the emission of pollutants that amount to approximately EUR (€) 30,000–60,000 per year
for the analyzed lines.

According to Borowik and Cywiński [57], trolleybuses may be an eco-efficient solution
for public urban transport, and they stress the fact that public transport based on trolleybus
networks provides new opportunities for sustainable development of cities. The authors
describe the effects resulting from the modernization of an existing trolleybus transport
system in Tychy, Poland, using IMC technology, and highlight the impact of modernization
in creating a more sustainable transport system for city based on UN Agenda 2030 concepts.

São Paulo certainly can benefit from those ideas to carry on with its trolleybus system
instead of deactivating, it as proposed by City Hall [58].

6. Final Remarks
6.1. Conclusions

This study examines the trolleybus system in São Paulo, Brazil, with regard to its
potential for reducing emissions and its feasibility for use by the population. Currently, the
São Paulo City Hall is considering more sustainable transportation options, including the
use of battery-powered buses with zero gas emissions for its fleet of over 10,000 buses. The
trolleybus system, which has been in use for 74 years, could be a strategic addition to the
city’s transportation network, particularly when combined with battery-powered buses.

Insofar as we move towards more sustainable modes of transport, battery-powered
buses have emerged as a potential solution. However, implementing this technology
presents some significant challenges. One such challenge is the disposal of the batteries,
which leads to pollution. Additionally, providing sufficient energy to power these buses
is difficult, given the current energy generation capacity of the city. To address these
challenges, we need significant investments. However, the state does not own the energy
company, which makes it challenging to implement sustainable and cost-effective urban
transport systems in the short term. Furthermore, energy costs applied to companies
operating urban transport systems may make this solution unsustainable in the future.

Our results show that trolleybuses are a reliable and cost-effective solution for reducing
environmental emissions. In addition, trolleybuses can complement other systems for a
comprehensive and sustainable approach to transportation in cities.

In-motion-charging (IMC) technology can help solve the problem of limited overhead
networks, making it possible to extend trolleybus access to more areas of the city. In
addition, this technology can be shared with battery electric buses, enabling their batteries
to be recharged while in operation. This reduces the amount of time the bus is unavailable
for recharging and makes its operation more efficient. Some cities worldwide have been
benefiting from this implementation.

This study has certain limitations, as it did not have access to all emission costs of an
operational diesel-bus line, which is necessary to calculate all the environmental effects
and evaluate all the advantages of a trolleybus system operation. Therefore, more studies
will be required to have a comprehensive understanding of how cities can be made more
sustainable based on their transportation systems. However, this study is a significant first
step toward achieving this goal.
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6.2. Implications

Based on our research findings, we propose some directions for analyzing the im-
plications of the bus energy-matrix change in urban transport. It is important to note
that while comparing alternatives, immediate costs such as vehicle acquisition, infrastruc-
ture maintenance, autonomy, and flexibility should not be the only factors considered. A
comprehensive view that takes into account the vehicle’s lifetime, energy production capa-
bilities, and externalities for society, such as air pollution, excess of transport infrastructure,
and soil contamination, is necessary.

Rodrigues et al. [39] conducted a study comparing battery electric buses with diesel
vehicles in a bus rapid-transit system. They used the analytical hierarchy process to
analyze the data and found interesting results regarding the advantages of electric bus
adoption. This study confirms the assumptions found in our study regarding the need for
a comprehensive analysis that help to highlights the need for new methodologies that can
guide policymakers towards an efficient transition to a sustainable energy matrix in urban
bus transport.

Secondly, an energy transition from fossil fuels to electric energy requires the devel-
opment of infrastructure to support electric vehicles. Currently, there is a shortage of
equipment and energy supply to recharge the electric fleet. Our research suggests that the
trolleybus system can be optimized in cities where it is already operating and can be used
as a complementary system to create a sustainable transport system.

In this direction, a study conducted by Bartłomiejczyk and Połom [22] explored the
use of the catenary by trolleybuses with auxiliary power sources in Gdynia, Poland. The
study found that introducing trolleybuses with onboard batteries can expand the zero-
emission transport network in places with limited power supply capabilities. Therefore,
it is necessary to investigate the transformation of trolleybus systems running with IMC
technology adoption as a complementary sustainable transport system.

Last but not least, it is crucial to engage all stakeholders, including policymakers,
governments, communities, users, and investors, in the energy transformation matrix for
bus transportation. This is because transport infrastructure is expensive and requires a
clear set of rules to ensure its success and attract investors. Despite the fact that the initial
costs of implementing this solution may be high, its benefits, in the long run, will more
than make up for it. Nevertheless, this requires a concerted effort and further research to
determine the best course of action. While the trolleybus solution is a viable option, it is
important to explore other alternatives as well.

Sellitto et al. [59] proposed a tool for the assessment of the environmental performance
of bus transit operators. The tool was tested in six bus transit operations of a Latin America
city of about 1,500,000 inhabitants. They concluded that the more problematic criterion
was atmosphere; hence, an improvement strategy should focus on it. The comprehensive
methodology allows us to infer that a solution for a sustainable transport in cities requires
the participation of all the stakeholders to mitigate the issue, who should corroborate
regarding the necessity to develop more studies and methodologies involving different
actors in the solution to the problem.
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5. Witkowski, J.; Kusio, T.; Fiore, M.; Olesiński, Z. Taxation Preferences and the Uptake of Hybrid and Electric Vehicles in Poland’s
Ten Largest Cities: A Case Study. Sustainability 2024, 16, 1221. [CrossRef]
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