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Abstract: This article presents research results on the share of coal in the energy mix and the
impact of clean coal technologies on Poland’s energy mix. Two mathematical models were utilised:
the Boltzmann sigmoidal curve and a supervised machine learning model that employs multiple
regressions. Eight explanatory variables were incorporated into the model, the influence of which
on the explained variable was confirmed by Student’s ¢-test. The constructed models were verified
using ex post errors and the Durbin—-Watson and Shapiro-Wilk statistical tests. It was observed that
the share of coal in the mix decreased more dynamically after 2015 compared to previous years.
Furthermore, a simulation was conducted using the machine learning model, which confirmed the
hypothesis on the influence of clean coal technologies on the level of coal share in the Poland energy
production structure. As shown by the analysis and simulation, coal could be maintained in the
energy mixes of EU countries, and even if the negative aspects of using this fuel were limited—
primarily the emission of harmful substances—its share could even increase. It was noted that this
share could be higher by 22% assuming a return to the interest in CCT levels from before 2015 and
the reduction in CO, emissions using membrane techniques proposed by the authors. Clean coal
technologies would enable diversification of the energy mix, which is an important aspect of energy
security. They would also enable the gradual introduction of renewable energy sources or other
energy sources, which would facilitate the transition stage on the way to a sustainable energy mix.

Keywords: coal demand; clean coal technologies; machine learning

1. Introduction

Coal has always been the basis for Poland’s energy mix. It has been mined in Silesia at
least since the 17th century [1]. This is directly related to the rich coal deposits located in the
geographical area of Poland. Coal constitutes the basis for Poland’s energy security, which,
in connection with the war in Ukraine, is one of the most important topics, in addition to the
military security of the European Union. After more than three centuries of unchanging coal
domination in the structure of Poland’s energy carriers, the time for change has come. Hard
coal has been recognised as a fuel with a critical impact on the natural environment due to
its chemical properties, which results in the release of harmful gaseous substances and solid
waste during the extraction and combustion of this fuel. However, in times of increasing
global energy demand and limitations of other energy sources, such as renewable energy; it
is necessary to consider the possibility of continuing to use coal while limiting its negative
impact on the natural environment. This would make it possible to maintain energy security
and at the same time implement the assumptions of sustainable development. To make this
possible, it is necessary to use appropriate technological solutions that will enable clean
combustion and also use all the waste generated in the coal combustion process. There
is no doubt that changes in the structure of energy production are necessary due to the
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defects of the coal mining and combustion process. They have been known for many years,
but currently, the main impulse accelerating the modification of the energy mix structure
are the European Union guidelines, mainly the European Climate Law, European Green
Deal and Fit for 55 [2,3].

The traditional way of burning coal emits large amounts of greenhouse gases. These
are mainly carbon dioxide (CO;), sulphur oxides (SOx), nitrogen oxides (NOx) and par-
ticulate matter [4]. Coal is responsible for 90% of SO, emissions, 70% of dust emissions,
67% of NOx emissions and 70% of CO, emissions [5]. These gases are some of the causes of
global warming and climate change. Eliminating the negative impact of the use of coal in
the economy requires decisive steps. As one of them, it is possible to completely abandon
the use of coal. Most EU countries have chosen this option. It is also promoted in the EU
and constitutes the basic assumption of the EU’s decarbonisation process. However, this is
a very complex task, especially for countries with economies heavily dependent on coal.
These are primarily Poland, Germany and the Czech Republic [6]. Figure 1 presents the
share of coal in the total primary energy consumption. It includes selected countries where
the demand for coal exceeds 10%. The largest share was observed in Poland.
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Figure 1. Primary energy consumption by fuel: coal, EJ [6].

In the case of electricity production, the share of coal is significant for 10 EU countries
(Figure 2). Again, the highest level of dependence is typical primarily for Poland (at a level
of 70%), but also for the Czech Republic, Germany and Bulgaria.

Therefore, coal dependence is still significant in EU. Additionally, changes in the level
of demand for coal in the last two years are minor. In some countries, the share of coal has
not decreased and has even increased slightly. This is the result of the war in Ukraine and
the replacement of Russian natural gas with coal. The second way to reduce harmful gas
emissions without giving up coal is to implement clean coal technologies (CCTs) that allow
the continued use of coal without climate consequences.
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Figure 2. Production of electricity and derived heat by type of fuel (solid fossil fuels), [7].

Although the first solution is promoted in the European Union, clean coal technolo-
gies enjoy unwavering interest around the world. This is evidenced by the number of
publications on clean coal technologies presented in Figure 3. The number of publications
in ScienceDirect and Google Scholar was examined. In the period under study, that is,
between 2000 and 2022, the number of publications increased sevenfold and fivefold, re-
spectively. Therefore, the global interest in CCT is increasing, mainly in countries where
coal is an important component of the energy mix, such as China, India, Australia, Russia

and the USA [8].
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Figure 3. Number of publications on CCT in 2000-2022.

In Poland, interest in CCT decreased significantly since 2016, as evidenced by the num-
ber of patents submitted in years 2000-2019 and the number of publications (Figures 4 and 5).

Clean coal technologies include many different solutions used throughout the coal
and energy distribution chain. Currently, EU countries use them in various variants, scopes
and quantities. Some are mature technologies and others are in the development phase [10].
So, could clean coal technologies maintain coal in the energy mix? The authors conducted
research aiming to verify the assumption that there is a relationship between the use of
clean coal technologies and the demand for this fuel. If this assumption could be confirmed,
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it would mean that coal could still be the main source of energy and the basis of Poland’s
energy security.
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Figure 4. Number of publications on CCT in Polish, 2000-2022, Google Scholar.
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Figure 5. Number of patents related to CCT [9].

2. Clean Coal Technologies

Clean coal technologies (CCTs) are a group of solutions that affect the efficiency of the
coal mining and combustion process. The purpose of using CCT is to reduce the impact
of these processes on the environment and climate change [11]. These solutions can be
divided into three main categories:
e  Coal enrichment.
e  Coal transformation, supercritical combustion and combustion in oxygen atmosphere.
e  Exhaust gas treatment.

According to the place of application in the distribution chain, the technologies can be
divided as used in the following stages:

e  Operation and mechanical processing.
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e Inthe combustion process.
e During the management of waste generated in earlier stages.

Coal processing makes it possible to clean the fuel, remove waste rock and separate
impurities that may have mixed with the fuel during the exploitation process. The pre-
treatment of fuel is used due to the emission of greenhouse gases, but also the efficiency of
the fuel combustion process [12]. In Poland, depending on the grain size of the coal, various
enrichment methods are used. For grains larger than 20 mm, these are mainly heavy liquid
separators and pistonless jigs. For grains from 0.5 to 20 mm, fine jigs, spiral enrichers and
cyclones with heavy liquid are used. Flotation machines are used to enrich grains smaller
than 0.5 mm [13]. In the coal enrichment process, additional solutions can be used, such as
averaging coal quality parameters, creating coal-lime mixtures, selective grinding, or deep
coal enrichment [14]. It involves crushing the excavated material to release small elements
of waste rock and pyrite. After the crushing process is completed, additional enrichment
methods are used, such as flotation [15].

In addition to mechanical methods, such as separation and sorting, or chemical
methods, such as flotation, biological methods can also be used to enrich coal, i.e., the use
of living organisms to remove contaminants from coal [16]. They allow the sulphur and
ash content in coal to be reduced by using microorganisms such as fungi and bacteria. All
these methods and treatments aim to improve the calorific value of coal, reduce the content
of substances that interfere with the combustion process, and thus influence the amount of
greenhouse gas emissions.

Further steps to reduce the negative impact of coal on the natural environment should
be taken at the stage of coal combustion. There are many technological solutions that
can be used at this stage. These include, for example, power plants with fluidised bed
boilers [17], oxy-combustion [18], or supercritical power plants with steam boilers [19]. It is
also possible to use coal conversion processes, for example, gasification and underground
gasification [20,21]. Exhaust gas purification methods are also used, e.g., pre-combustion,
post-combustion or oxy-fuel combustion. The most popular techniques of cleansing exhaust
gases are CCS (Carbon Capture and Storage), CCU-CO; (Capture and Utilisation) and
CCUS-CO; (Capture, Utilisation and Sequestration) [22,23]; however, the use of CCS has
a negative impact on fuel combustion efficiency. CCS requires additional energy, which
increases the demand for coal [24]. It is assumed that the costs of building a power plant
with a CCS installation may increase by up to 30%, and the costs of energy production by
approximately 60% [25].

Another clean coal technology that can be used in the fuel combustion stage are
membrane techniques [26]. They are an alternative to CCS methods but have additional
advantages. First, the use of membranes is a process that does not require high energy
input, and the membrane installation can be used in all power plants, both coal and
gas, in those just under construction and those already existing [27]. Membranes do not
affect the continuity of power plant operation. The membrane is a selective barrier that
separates two phases and limits the transport of one of them [28]. The mixture of gases
produced in the coal combustion process constitutes the feed solution, which, after passing
through the membrane, is separated into permeate and retentate. Retentate is a mixture of
greenhouse gases (mainly carbon oxides, but also sulphur and nitrogen oxides), which can
be additionally separated in order to be captured, stored or further processed and used [29].
Despite numerous advantages, membranes also have disadvantages, mainly chemical and
mechanical resistance, as well as the need to regenerate membranes [30].

Clean coal techniques should also be implemented in the stage of managing waste
generated during the exploitation and combustion of coal. In the mining process, solid
waste is generated, mainly rock waste, methane and CO, gases, as well as water gener-
ated during exploitation and coal processing [31-33]. This publication focuses on waste
generated during coal combustion. Combustion process waste includes gases which, once
separated thanks to the CCT used in the previous step, can be effectively cleaned and used.
For example, in the case of COy, it can be used during the exploitation of natural gas and
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crude oil, in the production of beverages and food [34], animal feed, and the production of
biofuels and their components [35]. Sulphur oxides, in turn, are used during the production
of sulfuric acid or fertilisers [36]. Nitrogen oxides are used in the production of explosives
and in the production of nitric acid and fertilisers [37].

Coal combustion also produces waste in the form of slag, mill waste and, to a large
extent, fly ash. The disposal of the latter is a large problem. Coal ash storage involves
high fees, dusting problems and environmental pollution with heavy metals [38]. So far,
they have been used primarily in construction [39], backfilling mining excavations [40-42],
ceramics and agriculture [43]. However, the fact that they are a source of rare earth
elements (REEs), i.e., critical raw materials without which modern technology cannot
develop, brings a new way of managing this waste in accordance with the principles of a
circular economy [44]. So far, approximately 30% of fly ash generated in Poland is managed
annually. Polish ashes contain mainly light REEs such as neodymium, praseodymium,
cerium and lanthanum (up to 300 ppm), with heavy REEs in smaller amounts up to
150 ppm—mainly terbium, yttrium, ytterbium, lutetium, dysprosium, erbium and thul [45].
Currently, REEs are of great importance for the energy transformation because they are an
indispensable element of wind turbines and are also used in the construction of energy
storage facilities [46]. Considering their importance, price fluctuations and limited access
to deposits of elements, the possibility of obtaining them from fly ash is an excellent
solution. Rare earth elements can be obtained by using membrane techniques such as
reverse osmosis [47], emulsification liquid membrane [48], nanofiltration [49], hollow fibre
liquid membranes [50] and membrane methods.

The presented research aimed to verify the hypothesis about the existence of a rela-
tionship between the use of CCT and the share of coal in the Polish energy mix. For this
purpose, two mathematical models and statistical tests were used to verify the correctness
of the analysis. A description of these is presented in the Methods chapter.

3. Materials and Methods

The sigmoidal Boltzmann curve model was used to determine the forecast of coal
demand until 2025. The model is characterised by the following equation [51].

fit) = L)

- +a2
1+e

where x is the independent variable (year), i are individual observations, a1 is the horizontal
asymptote of the function f;(x), a, is the horizontal asymptote of the function f;(x), x¢ is the
middle value of the interval, x; are the years and dx is the slope of the function.

The Boltzmann model is defined by a function that takes the shape of the letter s. The
model parameter a1, i.e., the upper asymptote, means the upper limit to which the function
strives, and a; is the lower asymptote.

3.1. Machine Learning

One of the definitions of machine learning says that it is a subfield of artificial in-
telligence that represents a different way of programming. The sample data replace the
program’s rigid calculation rules of the programme. Learning methods or algorithms
extract statistical regularities from the given sample data and present them in the form
of models. Models can react to new, unknown data and classify them into categories or
make predictions [52]. Machine learning is a subset of artificial intelligence. It allows for
identifying patterns characterising a data set, classifying data and, on this basis, predicting
the desired results [53].

There are many varieties and methods of machine learning. For the purposes of
this research, supervised learning (SL) was used. Supervised learning allows expected
responses to be introduced into the model, which are called labels [54]. In the analysed case,
these are the values of the explained variable, i.e., the amount of demand for coal. With
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this solution, it was possible to analyse the relationship between the explanatory variables
and the explained variable. The machine learning model is designed to identify the rules
and relationships that connect variables. The machine learning algorithm involves training
a model on a set of training data. The consequence of the training stage is to obtain a
model ready for inference. The model is validated using test data set [55]. By comparing
the actual results obtained with the expected values, the effectiveness of the model and
the accuracy of the prediction process can be determined. Multiple linear regression was
used to forecast the demand for coal. Due to this, it was possible to introduce a larger
number of explanatory variables into the model [56]. The regression coefficients of the
model characterise the contribution of the independent variable in the process of predicting
the demand. The model used is described by the equation the following:

Z:ﬁ0+ﬁ1X1+"'+ﬁixi+8 @)
where x; are the explanatory variables, ¢ is a random variable and §; is the regression coefficient.

3.2. Methods of Variable Selection and Model Verification

In order to correctly select the set of explanatory variables, a Student’s t-test was
performed before introducing them into the regression model. This made it possible
to verify the importance of the impact of each explanatory variable on the demand for
hard coal. The test requires two hypotheses: HO, about the lack of statistical significance
of the influence of the explanatory variable, and H1, which states that the independent
variable influences the variable y and this influence is not accidental. The Student’s t-test is
performed according to the following formula [57]:

t )

_ X~ Mo

s/+/(n—1)
where 7 is the sample size, s is the standard deviation, i is the parameter value adopted
within HO and ¥ is the sample average.

The Student’s t-test statistics allows the p-value to be determined, i.e., the probability
that the null hypothesis is false (small p-values). The p-value should be related to the
level of significance. When p is less than the significance level «, it is necessary to reject
hypothesis HO in favour of hypothesis H1.

Before a time series can be used to build a mathematical model, it must be verified
whether it is stationary. In a stationary series, the mean and variance are constant and do
not change with the shift in the periods. Otherwise, a spurious regression phenomenon
may occur. The Dickey-Fuller test [58] was used, whose statistics verifying the occurrence
of a unit root are determined according to the following formula:

5
DF= 505 3)

A stochastic process that does not contain a root that lies inside or on the periphery of
the unit circle is a stationary process. The Dickey—Fuller test requires the formulation and
verification of hypotheses:

HO: there is a unit root in the time series, 6 = 0.

H1: the time series is stationary, 6 < 0 [59].

The built model should be verified to check whether the model correctly describes the
analysed phenomenon. For this purpose, the expired forecasts and model residuals are first
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determined. Then, ex post-forecast errors such as the Root-Mean-Square Error (RMSE) and
the mean absolute percentage error (MAPE) should be calculated [60-63]:

g2

RMSE = (| ==t (4)
n

MAPE = Zi=11/¥t] ‘:t/ ] 5)

where y; is the value of the explained variable in period ¢, n is the number of observations
and ¢; is the forecast error.

The determined residuals of the model, i.e., the differences between empirical and
theoretical variables, were also examined. It was verified whether the model residuals were
normally distributed and free of autocorrelation. For this purpose, the Shapiro-Wilk and
Durbin-Watson tests were used, respectively [64]. The Shapiro-Wilk test was used to verify
the hypothesis:

HO: the distribution of the random component of the model is normal;
H1: the random component of the model has a non-normal distribution.

The test statistics were determined according to the following formula [65]:

(z] . 2
w— Y api(€n—it1—€)

Yiq(ei— 5)2

where a,,; is a constant depending on 7 and k, ¢; are model residuals sorted in ascending
order, W* is a critical value taken from Shapiro-Wilk test tables and W > W’ is the
hypothesis that the normality of distribution should be maintained [66].

The HO hypothesis about the lack of autocorrelation of the model residuals was con-
firmed by the Durbin-Watson test. The autocorrelation of residuals indicates an incorrectly
selected model or failure to take into account patterns occurring in the time series in
the model:

(6)

2
Yl (ei—ei1)
Yige

where e, is the rest of the model and T is the length of the sequence of residuals.

DW = 7)

4. Results

The authors aimed to verify the hypothesis that the use of clean coal technologies
could influence the share of coal in Poland’s energy mix. For this purpose, it was first
necessary to determine measures and explanatory variables that would make it possible to
verify the existence of such a relationship. Based on the authors” experience [27,29] and
literature review [2,3,5,6,9,10,12,25,34,45], the set of indicators presented in Table 1 was
adopted for analysis.

When examining the impact of clean coal technologies on the volume of demand for
coal, it was necessary to focus on measures that would take into account the demand for
electricity and heat, the development and support for CCT and alternative energy sources
(RES), prices of the energy carrier and, most importantly, the EU energy policy.
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Table 1. Explanatory variables used to build forecast models.
Variables Source Type of Variable
Coal sales, Mg Industrial Development Agency [67] target
Gross electricity production (toe) Eurostat [7]
Energy consumption from renewable energy sources, EJ Energy Institute [6]
Number of patents IRENA [9]
Public investments in renewable energy, USD mil IRENA Features

Heat from coal, T] IRENA
Heat from renewable energy sources, T] IRENA

Greenhouse gas emissions intensity of energy

consumption, 2000 = 100 Eurostat

Coal price, PLN/Mg Industrial Development Agency

This set included the number of patents related to CCT, which indicates progress in this
field. Regulatory policy related to greenhouse gas emissions will affect the attractiveness of
coal as an energy source. The amount of CO, emissions was chosen as the measure in this
respect. For the most part, the decision on the energy source used is also dictated by the
prices of raw materials. Therefore, the coal price was also used as an explanatory variable.
State support for alternative energy sources means that even sources that are unprofitable
compared to coal can compete with it and reduce the demand for coal. The explanatory
variable in this case was public investment in renewable energy sources. The availability
of alternative energy sources is also important. Since, in the future, the role of coal will
be largely taken over by renewable energy sources and the European Union is focusing
on their development, they were the reference point when selecting explanatory variables.
Therefore, the amount of electricity and heat produced from renewable energy sources and
coal was adopted as a measure. The volume of fuel sales was used as an indicator of the
demand for coal.

The MLT 1.0 programme was written and used to perform all analyses necessary to
conduct the presented research. The programme was written in Java. The structure of the
model classes is presented in Figure 6. The programme can use two types of mathematical
models, i.e., the Boltzmann sigmoidal curve and machine learning using regression. These
models were initially selected by the authors based on visual analysis of the coal demand
time series. Additionally, the programme is equipped with tools to analyse input data and
verify the statistical significance of variables and the stationarity of the time series. If the
time series turns out to be nonstationary, the Data Differencing class includes code that
allows it to be reduced to a stationary form by differentiating the time series. In the Forecast
class, it is possible to obtain expired forecasts and forecasts for a selected number of periods
ahead, and determine model residuals and MAE, RMSE and MAPE errors. In the Residuals
autocorrelation and distribution normality class, the hypotheses about normality and lack
of autocorrelation of residuals are verified.

Apache libraries were used to build the tools used. Apache Spark is a unified analytics
engine for data processing. Spark provides a framework for data analysis, including
machine learning, via the MLib module [68].

First, an analysis of changes in the time series of demand for coal in Poland was carried
out in the years 2000-2022. A mathematical model was built in which the time variable was
used as the only independent variable. The Boltzmann sigmoidal curve model was used.

The MAPE error was less than 5%, which indicates its high accuracy. Figure 7 presents
empirical and theoretical variables and the forecast until 2025.
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Figure 7. Coal demand volume, actual values, expired forecasts and forecast until 2025.

The residuals of the model were normally distributed, but they showed a first-order
autocorrelation. This result indicates that the model was not able to describe all the
regularities that characterise the time series of demand for coal. Therefore, in the next step,
a multiple regression model was built that took into account a larger number of explanatory
variables. The stationarity of the time series was confirmed by the Dicket-Fuller test.

A supervised machine learning model was built. A multiple regression algorithm
was used. The input data were divided into two sets: training and testing. The analysis
concerned a time series, so the sequence of subsequent values was important. Therefore,
the chronology of the input data was preserved. 70% of the data was placed in the training
set and 30% in the testing set.

The amount of data used to train the model has a large impact on its quality. More
training data allow for a better understanding of the complexities and patterns that shape
the data set. The longer the time series, the more training data can be used to build the
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model. Long time series can reveal more complex patterns and trends in the data. In the
case of the analysed data with a one-year sampling period, the largest possible amount of
data on the analysed phenomenon was collected. The limitation was that data on renewable
energy sources, which developed in Poland after 2000, were used as explanatory variables.

Data that were to be used to build a multiple regression model were verified for statis-
tical significance. Student’s t-test was used. Ultimately, eight independent variables were
used to build the model, in which case the test indicated the influence of the independent
variable on the demand for coal. In all cases, the p-value was lower than the assumed
significance level of alpha = 0.01; therefore, the test indicated the statistical significance of
the analysed variables. The highest p-value occurred in the case of heat from renewable
energy sources and amounted to 5.40 x 10717, Several optimisation algorithms were used
to train the model. The Gradient Descent (GD) and Limited-memory GFGS (L-BFGS) algo-
rithms were used. These algorithms are often used in numerical optimisation for machine
learning. L-BFGS is a quasi-Newtonian algorithm with limited memory that allows for
finding linear regression parameters. GD is the simplest method that allows for finding
the local minimum of a function by iteratively improving the model parameters. Both
algorithms produced very similar results, but L-BFGS was ultimately chosen.

Figure 8 presents empirical and theoretical data as well as the forecast until 2025.
It can be seen that the model reflects the regularities of the time series of the explained
variable much more accurately. The average MAPE error for the created model was 9%.
For the training set, it was about 2.6%, and for the test set, it was 21%, which means that
the forecast can be considered acceptable.

1200
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é .
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= 400
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200
0
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Year
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Figure 8. Multiple regression model, divided into training and test data sets, and forecast until 2025.

The p-value for the Shapiro-Wilk test is 0.70, so there are no grounds to reject the null
hypothesis—the distribution is normal. The Durbin—Watson test statistic is 1.78, which
means that there is no autocorrelation of first-order residuals.

Test set error values: MAPE: 20.72, MAE 1.28 x 107 and RMSE: 2.04 x 10'.

The error values of the training set: MAPE 2.64, MAE: 2201036.98 and RMSE: 1.07 x 10",

Figure 9 presents a model that was built without dividing it into a training and testing
set. The MAPE error in this case is below 1%.

The Durbin—-Watson statistic in this case is 1.83, which means that there is no first-order
autocorrelation. The p-value for the Shapiro-Wilk test is 0.68, so there are no grounds to
reject the null hypothesis, and the distribution of residuals is normal.
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Figure 9. Multiple regression model and forecast until 2025.

Using the second ML model, the impact of the use of CCT on the demand for coal
was simulated. The changes were made to the explanatory variables directly related
to the CCT, i.e., the number of patents and the CO, emissions to reduce. Since 2016,
the use of CCT resulted in a decrease in CO, emissions by 70%. This level of emission
reduction was determined during the research on CO,-selective membranes conducted
by the authors [69]. The number of CCT patents maintained the trend that shaped this
time series until 2015. Figure 10 presents the simulation results, as well as the trend line
equations for the forecasted demand and that obtained as a result of the simulation. Not
only is the share of coal in the mix higher for the data obtained during the simulation, but
the slope of the time series of these values indicates a slower rate of decline in demand for
coal. These changes resulted in an increase in demand for coal in the years 2017-2025 by an
average of 22%.
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Figure 10. Results of the simulation of the coal share in Poland’s energy mix.
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5. Discussion

A machine learning model using multiple regression built on training data showed
a higher demand for coal than the empirical data after 2015. This is how the demand for
coal should develop after introducing real explanatory variables, but the additional steps
taken to remove coal from the energy mix resulted in a sharper-than-expected decline in
fuel demand. This change was initiated by the European Union’s climate policy, which
aims to decarbonise the energy sector of member states. This is mainly regulated by the
European Green Deal, which assumes that EU countries will achieve climate neutrality
by 2050. The Green Deal emphasises EU countries investing in renewable energy sources,
which are to take over the role of coal. The RED directives also specify the desired share of
renewable energy sources in energy consumption in the EU.

Therefore, the main focus was placed on replacing fossil fuels with ecological alter-
natives such as wind or solar energy. The conducted research confirmed the hypothesis
about the impact of the use of CCT on the share of coal in Poland’s energy mix. As shown
by analysis and simulation, coal could be maintained in the energy mixes of EU coun-
tries that have so far relied on it, and even if the negative aspects of using this fuel were
limited—primarily the emission of harmful substances—its share could have been higher
in the years 2017-2025 by an average of 22%. Due to the complicated political situation in
the EU and the military threat that has been present for two years, assumptions regard-
ing the method of decarbonisation of the energy sectors of the member states should be
reconsidered. In addition to coal, EU countries also use other fossil fuels with a similar
impact on the natural environment, especially crude oil, but also natural gas. The proposed
technological solutions can be used for all fossil fuels. Research on CCT may also lead to
innovative technological solutions that can be used not only in the energy industry, but
also in other branches of the economy.

It should also be remembered that the renewable energy technology thanks to which
we can use ecological energy sources is mainly created in China, or the components used to
build renewable energy installations come from there. Firstly, the high level of dependence
on one supplier raises problems related to energy security, and secondly, fossil fuels are
used during the production of renewable energy technologies. Relying solely on renewable
energy may therefore be another pitfall, not to mention problems related to the stability
of the energy system. Additionally, the European Union should consider whether it will
be able to compete with other countries, such as China or India. Removing coal from the
energy mixes of member states may result in an increase in the prices of goods and services
in the EU, which will cause the economy to have problems with competition from countries
that do not approach the issue of decarbonisation so rigorously. Furthermore, it should be
remembered that the EU is responsible for only 6% of global greenhouse gas emissions.
Even if it completely eliminates its emissions, it will not matter on a global scale. As NASA
research shows, the movements of air masses also cause these gases to be moved over
Europe from other parts of the planet. Additionally, it may lead to a threat to the EU’s
energy security and, consequently, to its military security.

The results obtained may translate into the development of a sustainable energy strat-
egy. This is especially important in the case of countries that have been relying on coal for
years. The strategy of changes introduced to the energy mixes of individual member states
should be adapted to their history, needs and capabilities. Countries deciding to use CCT
should take into account a number of elements in their strategy that will enable sustainable
energy production while limiting the negative impact on the environment. Governments
and the private sector should invest in the development of clean coal technologies that
will help reduce greenhouse gas emissions. Modernisation of the energy infrastructure
will enable the integration of current and new energy sources, improving efficiency and
increasing the reliability of energy supplies. International cooperation will also be neces-
sary, which will enable the exchange of knowledge and experiences. It will also promote
common goals for greenhouse gas reduction and sustainable development.
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Implementing such an energy strategy will make it possible to keep coal in the energy
mix while achieving the EU’s climate goals.

Further research should focus on identifying potential barriers and challenges related
to the implementation of clean coal technologies and developing strategies to overcome
them. It will also be necessary to appropriately shape public opinion about CCTs and the
benefits that may flow from their use, which will contribute to support for an energy policy
based on the sustainable use of coal.

6. Conclusions

The research conducted describes the impact of clean coal technologies on coal demand.
Factors that can be used to measure this impact have been identified. They were used to
build a supervised machine learning model using multiple regression. Research has shown
that after 2017, the demand for coal began to decline more intensely than previous historical
data showed. An additional stimulus in this regard was Directive 2018,/2001 promoting
renewable energy sources. It introduced new goals regarding the share of renewable energy
sources in energy mixes, as well as financial support mechanisms for renewable energy
sources. Only then could renewable energy sources start to compete with coal, especially
in the case of individual consumers. This resulted in changes in the structure of energy
production in Poland in favour of renewable energy sources. However, especially in the
case of EU countries, such as Poland, which still rely on coal, the energy transition may be
complicated and unfavourable in terms of energy security. Summarising:

e  Completely eliminating coal from the energy mixes of member states may increase
energy prices in the EU and hamper economic competitiveness.

e  The implementation of clean coal technologies can stabilise the share of coal in the
energy mixes of member states.

e  The European Union should continue to promote the diversification of energy sources.
CCTs provide an opportunity to keep fossil fuels in the energy mixes of EU countries.
This applies in particular to coal, which, as a fuel available in large quantities in the
European Union, guarantees the EU’s energy security.

e Itis necessary to develop an energy transformation strategy adapted to the needs and
capabilities of individual Member States.

e It will be necessary for the EU to cooperate with other countries such as the USA and
China in order to exchange best practices regarding CCT and joint action for climate
protection and the development of clean coal technologies.

e  Public awareness of CCT should also be increased in order to build social acceptance
for these types of solutions and rebuild a positive perception of coal.

e  The use of clean coal technologies can contribute to achieving EU goals related to the
reduction in greenhouse gas emissions. At the same time, it will enable a sustainable
and safe energy transition.
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