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Abstract: Due to environmental concerns, natural refrigerants and their use in refrigeration and air
conditioning systems are receiving more attention from manufacturers, end users and the scientific
community. The study of heat transfer and pressure drop is essential for accurate design and more
energy efficient cycles using natural refrigerants. The aim of this work is to provide an overview of
the latest outcomes related to heat transfer and pressure drop correlations for ammonia, propane,
isobutane and propylene and to investigate the current state of the art in terms of operating conditions.
Available data on the existing correlations between heat transfer coefficients and pressure drops for
natural refrigerants have been collected through a systematic search. Whenever possible, validity
intervals are given for each correlation, and the error is quantified. It is the intention of the authors
that this paper be a valuable support for researchers and an aid to design, with particular reference
to heat pumps. A procedure based on the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement was adopted, and the Scopus database was used to query the
relevant literature. A total of 135 publications qualified for inclusion in the survey; 34 articles report
experimental investigations for unusual geometric conditions. Of the 101 selected papers related to
usual geometric conditions, N = 50 deal only with HTC, N = 16 deal only with pressure drop and
the remainder (N = 35) analyse both HTC and pressure drop. Among the 85 HTC papers, N = 53
deal with the evaporating condition, N = 30 with condensation and only N = 2 with the heat transfer
correlations under both conditions. Most of the 101 articles concern propane and isobutane. The high
temperatures are less widely investigated.

Keywords: natural refrigerants; two-phase flow; heat transfer; pressure drop; correlations; systematic
review

1. Introduction

Refrigeration and air conditioning play an important role in modern society, providing
thermal comfort and food safety. However, the widespread use of synthetic refrigerants,
particularly fluorinated gases (F-gases), has led to serious environmental concerns, as
they contribute significantly to the greenhouse effect and climate change. In response to
these problems, international regulations have imposed restrictions on the use of F-gases,
pushing industry towards the adoption of more sustainable solutions. In this context,
natural refrigerants have gained increasing attention as environmentally friendly and
low-impact alternatives [1].

These refrigerants, such as ammonia (R717), hydrocarbons and carbon dioxide (R744),
have been studied to replace CFCs, HCFCs and HFCs in refrigeration, air conditioning
and heat pump systems. They have zero ozone depletion potential (ODP), and most have
near-zero global warming potential (GWP) compared to CFCs and HCFCs.

However, the use of natural refrigerants will be complex, mainly due to the need to
adapt refrigeration and air conditioning systems to their characteristics.

In this context, the experimental study of heat transfer and pressure drop and their
correlations becomes very important in optimising the energy efficiency of the system and
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to ensure reliable performance. In addition, the flow pattern studies will help to determine
how natural refrigerants behave under different operating conditions, contributing to a
more accurate design.

Sunden et al. [2], in their systematic review, presented a meta-analysis and regression
analysis of the available pressure drop and heat transfer data for both single-phase and
two-phase flows for several refrigerants with attention to enhanced configurations of
heat exchangers.

Cavallini et al. [3] provide a comprehensive review of recent research on the heat
transfer and pressure drop of natural refrigerants (CO2, NH3, C3H8, R600a, nitrogen) in
mini channels, with the aim of properly designing heat transfer equipment.

The review by Thome et al. [4] focuses on flow boiling heat transfer, two-phase pressure
drop and the flow patterns of ammonia and hydrocarbons. A comparison of experimental
data in smooth tubes with four flow boiling correlations is presented. It is suggested that
more experimental data be obtained from properly conducted experiments and that new
correlations or modified correlations be made on the basis of the existing ones.

This article presents a systematic review to evaluate the available correlations re-
garding the heat transfer (HT) and pressure drop (PD) of natural refrigerants such as
ammonia (R717) and hydrocarbons (R290, R600a, R1270). The most common geometries
and operating conditions are analysed for each refrigerant.

Whenever possible, validity intervals are given for each correlation and the error
is quantified. It is the intention of the authors that this could be a valuable support for
researchers and an aid to design, with particular reference to heat pumps.

2. Materials and Methods

A systematic review of heat transfer and pressure drop correlations for natural refrig-
erants was conducted following the PRISMA guidelines [5]. This approach to literature
review aims to collect all evidence that meets pre-defined eligibility criteria to answer a
specific research question. It uses explicit, systematic methods to minimise bias and, thus,
provide reliable findings from which conclusions can be drawn and decisions made.

The workflow consists of four phases: identification, screening, eligibility and in-
clusion. In the first phase, a number of research questions were formulated to accu-
rately identify the objectives of the systematic review and, consequently, to examine the
available literature:

• Are there heat transfer and pressure drop correlations that can predict the experimental
data of natural refrigerants?

• How accurate are the current correlations?
• Which natural refrigerants receive more attention?

Specifically, for this research, the Scopus database was queried, using a combination
of keywords and Boolean operators to find relevant studies. Specifically, the keywords in
the following items were searched in the “Article title, Abstract and Keywords” fields:

1. “Heat transfer” OR “heat transmission”;
2. “Pressure drop” OR “frictional pressure gradient”;
3. “Natural refrigerant” OR hydrocarbons OR propane OR R290 OR C3H8 OR isobutane

OR R600a OR C4H10 OR propylene OR R1270 OR C3H6 OR ammonia OR R717
OR NH3;

4. Correlation OR “prediction method” OR “predictive method” OR “relationship” OR
“as a function of”;

5. Combustion OR kerosene OR coal (only for “Article Title and Keywords” fields).

The queries from #1 to #5 were combined as follows: #1 OR #2 AND #3 AND #4 AND
NOT #5.

Inclusion and exclusion criteria were then defined and applied through the identifica-
tion, screening and inclusion steps to select the relevant studies for the review, which were
then analysed in detail.
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Inclusion criteria:

• The research must include heat transfer and/or pressure drop correlations.
• Natural refrigerants must be evaluated, in particular R717, R290, R600a and R1270.
• The papers can be reviews but also reporting data and correlations.

Exclusion criteria:

• The articles focus on combustion, toxicity, flammability and risk.
• The studies concern particular natural refrigerants (e.g., CO2) that are not considered

in this review.
• The papers partly deal with heat transfer and pressure drop, but no correlations are

reported.
• The studies refer to synthetic refrigerants and/or refrigerant blends.
• The papers are conference papers.
• The papers are purely reviews, not reporting data and correlations.
• The language is not English.

In the screening phase, the titles and the abstracts of all the articles identified in the
first stage were rigorously assessed against the defined inclusion and exclusion criteria.
The papers that met the criteria were analysed in more detail through a full reading of the
text (eligibility stage).

A period of 15 years was chosen to give priority to more recent studies, and only those
written in English were selected.

The division of labour consisted of a first phase in which the first author independently
selected the relevant material, followed by a second stage in which both authors reviewed
all papers. In cases of doubt, the senior author made the final decision.

3. Results

A total of 1366 articles were analysed in the first identification step. Duplicates
of 24 articles were removed before the screening phase. As shown in Figure 1, of the
1342 original articles, N = 728 were excluded because their titles did not meet the inclusion
criteria and N = 213 were excluded because of their abstracts. From the 401 articles
obtained, those for which the full text was not available were subtracted. This resulted in
N = 353 papers that were assessed for eligibility. A thorough reading of the full text of the
articles and the application of the exclusion criteria resulted in a final sample of 135 articles
that were assessed in the review.

The 135 articles included are summarised in Tables 1–4.
It should be noted that the tables are constructed with some assumptions and conven-

tions, which are specified below.
Table 1 shows the source of the data used for the correlation and the geometry studied,

highlighting the main focus of the article. As in Table 3, the reader is referred to the citing
article in this review (first column) when the number of external databases is greater than 3.

Table 2 shows the operating conditions and correlations for only the natural refrig-
erants of interest in this review (R717, R290, R600a, R1270). Different refrigerants appear
in the table in the case of universal correlations and have, therefore, been developed with
different refrigerants.

The most frequent dimensionless parameters used in the correlations reported in
Tables 2 and 4 are summarised in the Nomenclature Section.

The “R” column refers only to the refrigerants used to develop the correlation. If the
experimental data available in the literature and related to the refrigerant of interest for
the present work are used to test the correlation, the corresponding error is reported in the
“AAD” column.

When the experimental results related to the refrigerant of interest for the present
work are coupled with an existing correlation, the corresponding error is reported in the
table (column “AAD”) together with the corresponding reference.
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Aǧra (2012) [6] R600a 
Analytical model and 
experimental study 

Horizontal smooth copper tube,  
di = 4 mm 

TP annular flow condensation 
HT 

Ahmadpour (2019) 
[7] 

R600a Experimental study 

Horizontal straight copper tube,  
di = 8.7 mm Condensation HT, effect of lu-

bricating oil on condensation 
HT Horizontal U-shaped copper tube, 

di = 8.7 mm 

Akbar (2021) [8] R290 Experimental study Horizontal smooth stainless steel 
tube, di = 3 mm TP flow boiling HT 

Figure 1. PRISMA flowchart for studies included in this review.

The error between the model prediction and the experimental data is reported as
average absolute deviation (AAD), calculated according to Equation (1):

AAD =
1
N

N

∑
i=1

∣∣∣∣∣y(i)pred − y(i)exp

y(i)exp

∣∣∣∣∣ (1)

It should be noted that some authors expressed the error in a different way. Some
expressed error as the percentage of data falling within a certain range, others as the
coefficient of determination (R2). This is indicated with an asterisk in Tables 2 and 4. The
error values related to the mean deviation without the absolute value are indicated by AD.

Table 3 shows the source of the data used for the correlation and the geometry studied,
highlighting the main focus of the article in cases of unusual configurations.

Table 4 shows the operating conditions and correlations for only the natural refriger-
ants of interest in this review, in cases of unusual configurations.

As described, Tables 3 and 4 refer to unusual configurations. In fact, among N = 135
articles included, N = 34 articles discuss different geometries, or different motion or heat
transfer regimes. More specifically, N = 12 articles refer to various geometrical config-
urations (e.g., helicoidal tubes or heat pipes, etc.); N = 6 articles are related to the heat
transfer in cases of microfin tubes; N = 6 analyse the pool boiling heat transfer; N = 6
deal with external HTC; and N = 3 study falling film evaporation. One article refers to a
thermosyphon configuration.

The most investigated refrigerants are propane and isobutane. The majority of the
articles were published after 2017.

The following paragraphs provide some details of the articles summarised in Tables 1
and 2.
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Table 1. Summary of the type of data, geometries and research highlights of the articles included in
this review.

First Author/Year R Data Geometry/Material/Orientation Research Highlights

Aǧra (2012) [6] R600a Analytical model and
experimental study

Horizontal smooth copper tube,
di = 4 mm

TP annular flow
condensation HT

Ahmadpour
(2019) [7] R600a Experimental study

Horizontal straight copper tube,
di = 8.7 mm Condensation HT, effect of

lubricating oil on
condensation HTHorizontal U-shaped copper tube,

di = 8.7 mm

Akbar (2021) [8] R290 Experimental study Horizontal smooth stainless steel tube,
di = 3 mm TP flow boiling HT

Ali (2021) [9]
R1234yf
R152a

R600a, R134a
Experimental study Vertical stainless steel tube,

di = 1.60 mm, Lh = 245 mm Flow boiling frictional PD

Allymehr (2020) [10] R290 Experimental study A smooth tube, MF1, MF2,
do = 5 mm Flow boiling HT and PD

Allymehr (2021) [11] R600a
R1270 Experimental study A smooth tube, MF1, MF2,

do = 5 mm Evaporation HT and PD

Allymehr (2021) [12]
R290
R600a
R1270

Experimental study A smooth tube, MF1, MF2,
do = 5 mm Condensation HT and PD

Amalfi (2016) [13]

R134a, R245fa,
R236fa, R717, R290

R600a, R1270,
R1234yf

R mixtures

External experimental
database [14]

Brazed/gasketed/welded/shell and
plate heat exchanger (PHE),
β = 27–70◦, dh = 1.7–8 mm

Flow boiling HT and TP
frictional PD

Anwar (2015) [15] R600a Experimental study Vertical stainless steel tube,
di = 1.60 mm, Lh = 245 mm

Flow boiling HT and
dryout characteristics

Arima (2010) [16] R717 Experimental study Vertical plate evaporator Flow patterns and forced
convective boiling HT

Asim (2022) [17] R600a Experimental study Vertical stainless steel tube,
di = 1.60 mm, Lh = 245 mm Flow boiling HT

Ayub (2019) [18] R717, R134a
R410A

External experimental
database (see [18]) PHE, β = 0–65◦ Evaporation HT

Basaran (2021) [19] R600a

Steady-state numerical
simulations

(CFD code ANSYS
Fluent 19.2)

Horizontal smooth circular
microchannel, di = 0.2–0.6 mm

Condensation HT and
TP PD

Basaran (2021) [20] R600a Experimental study and
thermal simulation model Microchannel, dh = 0.2–0.6 mm Condensation HT and PD

Butrymowicz
(2022) [21]

R134a, R507A,
R600a Experimental study Horizontal copper tubular channel,

di = 12 mm
Flow boiling HT under
near critical pressure

Butrymowicz
(2022) [22] R290 Experimental study Aluminium mini channel condenser

and evaporator
Condensation and

evaporation frictional PD

Cao (2021) [23] R600a Experimental study
Aluminium mini channel,

di = 8 mm, vertical/horizontal inclined
angles 0◦–180◦

Condensation HT and
frictional PD

Choi (2009) [24] R290 Experimental study Horizontal smooth stainless steel mini
channels, di = 1.5, 3.0 mm

TP flow boiling HT
and PD

Choi (2014) [25] R744, R717
R290, R1234y Experimental study Horizontal circular stainless steel

smooth tube, di = 1.5, 3 mm Evaporation HT

Cioncolini
(2011) [26]

R22, R32, R134a
R290, R600a

R718, R12
R236fa, R245fa

External experimental
database (see [26])

Vertical/horizontal tubes,
di = 1.03–14.4 mm

Liquid film thickness, void
fraction and convective

boiling HT

Da Silva (2023) [27] R600a Experimental study Horizontal aluminium multiport
extruded tube, di = 1.47 mm

Flow patterns, void
fraction distribution and

flow boiling PD
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Table 1. Cont.

First Author/Year R Data Geometry/Material/Orientation Research Highlights

Da Silva Lima
(2009) [28] R717 Experimental study Horizontal smooth stainless steel tube,

di = 14 mm
Flow patterns, diabatic

and adiabatic frictional PD

Dalkilic (2010) [29] R600a Experimental study Horizontal smooth copper tube,
di = 4 mm

Annular flow
condensation frictional PD

Darzi (2015) [30] R600a Experimental study

Horizontal copper smooth round tube,
dh = 8.7 mm

Condensation HT and PD
Horizontal copper flattened tubes,

dh = 5.1–8.2 mm

De Oliveira
(2016) [31] R600a Experimental study Horizontal smooth stainless steel tube,

di = 1.0 mm, Lh = 265 mm
TP flow patterns and flow

boiling HT

De Oliveira
(2017) [32]

R290
R600a Experimental study Horizontal stainless steel tube,

di = 1.0 mm, Lh = 265 mm
Flow patterns and TP flow

boiling frictional PD

De Oliveira
(2018) [33] R290 Experimental study Horizontal smooth stainless steel tube,

di = 1.0 mm, Lh = 265 mm
Flow patterns and flow

boiling HT

De Oliveira
(2020) [34] R1270 Experimental study Horizontal stainless-steel circular tube,

di = 1 mm
Flow patterns and flow

boiling HT

De Oliveira
(2023) [35] R1270 Experimental study Horizontal stainless-steel circular tube,

di = 1 mm
Flow patterns and flow

boiling frictional PD

Del Col (2014) [36] R290 Experimental study Horizontal copper mini channel,
di = 0.96 mm, Ra = 1.3 µm

TP condensation and flow
boiling HT, frictional PD

Del Col (2017) [37] R1270 Experimental study Horizontal copper mini channel,
di = 0.96 mm, Ra = 1.3 µm

Condensation and flow
boiling HT, adiabatic TP

PD

ElFaham (2023) [38]
R290
R600
R600a

External experimental
database (see [38])

Horizontal/vertical stainless
steel/copper tubes,
di = 0.168–7.7 mm

TP flow boiling HT

Fang, Xiande
(2019) [39]

R717
R290
R600a

External experimental
database (see [39])

Horizontal/vertical upward copper/
stainless steel single circular tubes,

dh = 0.96–14 mm
Saturated flow boiling HT

Fang, Xianshi
(2023) [40] R600a External experimental

database [41]

Horizontal copper circular smooth and
spiral coil inserted tubes,

di = 8.1 mm

Condensation frictional
PD

Fries (2019) [42] R290 Experimental study Horizontal mild steel plain tubes,
di = 14.65, 20.8 mm Condensation HT and PD

Fries (2020) [43] R290
R1270 Experimental study Copper tube, di = 15 mm

Mild steel tube, di = 14.65 mm PD in TP flow

Fronk (2016) [44] R717 External experimental
database [45]

Horizontal smooth stainless steel tube,
di = 0.98–2.16 mm

Pure ammonia
condensation HT,

high-temperature-glide
zeotropic ammonia–water

mixtures

Gao (2018) [46] R717 Experimental study Horizontal smooth stainless steel tube,
di = 4 mm

Flow boiling HT, adiabatic
TP frictional PD

Gao (2019) [47] R717 Experimental study Horizontal smooth stainless steel tube,
di = 4, 8 mm TP PD

Ghazali (2022) [48] R290 External experimental
database (see [48])

Horizontal smooth stainless steel tubes,
di = 1–6 mm

Pre-dry out TP
evaporation HT, genetic
algorithm optimization

Ghorbani (2017) [49] R600a Experimental study Horizontal flattened copper tube,
dh = 7.29 mm

Condensation HT,
R600a–oil–nanoparticle

mixtures

Guo (2018) [50]

R1234ze(E)
R290
R161
R41

Experimental study Horizontal smooth copper tube,
di = 2 mm Condensation HT
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Table 1. Cont.

First Author/Year R Data Geometry/Material/Orientation Research Highlights

Huang (2012) [51]
R134a
R507a

R12, R717

Experimental study and
external experimental

database [52]

Brazed PHE, β = 28–60◦,
dh = 3.51 mm

TP flow boiling HT and
PD

Ilie (2022) [53] R717 Experimental study PHE, β = 60◦, dh = 10 mm Boiling HT

Inoue (2018) [54]
R32, R410a
R1234ze(E)

R152a
Experimental study Horizontal smooth copper tube,

di = 3.48 mm Condensation HT

Kanizawa
(2016) [55]

R134a
R245fa
R600a

External experimental
database (see [55])

Horizontal smooth stainless steel tube,
di = 0.38–2.60 mm Flow boiling HT

Khan, T.S.
(2012) [56] R717 Experimental study PHE, β = 60◦ TP evaporation HT and

PD

Khan, M.S.
(2012) [57] R717 Experimental study PHE, β = 30◦ TP evaporation HT and

PD

Koyama (2014) [58] R717 Experimental study Titanium plate evaporator, channel
height = 1, 2, 5 mm Flow boiling HT

Lee (2010) [59] R290
R600a Experimental study Horizontal smooth copper tube,

di = 5.80–10.07 mm Condensation HT

Lillo (2018) [60] R290 Experimental study Horizontal circular smooth stainless
steel tube, di = 6 mm, Lh = 193.7 mm

TP flow boiling HT and
PD, dry-out incipience

vapor quality

Liu (2016) [61] R290 Experimental study
Horizontal square stainless steel mini

channel, dh = 0.952 mm,
Ra = 3.2 µm

Condensation HT and PD

Liu (2018) [62] R600a
R227ea, R245fa Experimental study Vertical rectangular copper mini

channel, dh = 2.76
Flow patterns and flow

boiling HT

Longo (2012) [63]
R600a
R290
R1270

Experimental study Brazed PHE, β = 60◦, dh = 10 mm Vaporization HT and
frictional PD

Longo (2017) [64] R290
R1270 Experimental study Horizontal smooth tube, di = 4 mm

Forced convection
condensation HT,

condensation frictional PD

Longo (2020) [65] R600a Experimental study Horizontal smooth copper tube,
di = 4 mm

Flow boiling HT and
frictional PD

Longo (2023) [66] R290
R1270 Experimental study Brazed PHE, β = 65◦ Nucleate boiling HT

López-Belchí
(2016) [67] R290 Experimental study

Horizontal square aluminium
multiport mini channel tube,

di = 1.16 mm

TP condensation HT and
frictional PD

Macdonald
(2016) [68] R290 Experimental study Horizontal smooth copper tubes,

di = 7.75, 14.45 mm
Condensation HT and

frictional PD

Macdonald
(2016) [69] R290 Experimental study Horizontal smooth copper tubes,

di = 7.75, 14.45 mm

Flow visualization,
condensation HT and

frictional PD

Macdonald
(2017) [70] R290 Experimental study Horizontal circular smooth tube,

di = 7.75 mm
Flow visualization and

condensation HT

Maher (2020) [71]

R134a, R245fa
R125, R744

R236ea, R22, R152a
R32, R410a

R1234ze(E), R290
R600a, R1234yf

R1234yf

External experimental
database (see [71])

Horizontal circular tubes,
di = 0.509–8.0 mm

Two-phase flow frictional
PD

Maqbool (2012) [72] R717 Experimental study Vertical circular stainless steel mini
channel, di = 1.70, 1.224 mm Flow boiling TP PD

Maqbool (2012) [73] R717 Experimental study Vertical circular stainless steel mini
channel, di = 1.70, 1.224 mm Flow boiling HT
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Table 1. Cont.

First Author/Year R Data Geometry/Material/Orientation Research Highlights

Maqbool (2013) [74] R290 Experimental study
Vertical circular stainless steel mini
channel, di = 1.70 mm, Ra = 0.21 µm,

Lh = 245 mm

TP flow boiling HT and
frictional PD

Mohd-Yunos
(2020) [75] R290 External experimental

database (see [75])
Vertical/horizontal tubes,

di = 1–6 mm

TP evaporation HT and
genetic algorithm

optimization

Moreira (2021) [76] R134a, R600a
R290, R1270 Experimental study Horizontal smooth stainless steel tube,

di = 9.43 mm

Flow patterns and
convective condensation

HT

Morrow (2021) [77]
R717
R290
R600a

External experimental
database (see [77])

Horizontal/vertical,
round/square/rectangular/flat,

smooth tubes, di = 0.952–10.07 mm
Flow condensation HT

Murphy (2019) [78] R290 Experimental study Vertical aluminium mini channel,
di = 1.93 Condensation HT and PD

Nasr (2015) [79] R600a Experimental study Horizontal smooth copper tube,
di = 8.7 mm

Flow patterns and flow
boiling HT

Oh (2011) [80] R22, R134a, R410A,
R290, R744 Experimental study Horizontal circular smooth stainless

steel tubes, di = 0.5, 1.5, 3.0 mm
Flow patterns and TP flow

boiling HT

Pamitran (2009) [81] R290 Experimental study Horizontal smooth stainless steel mini
channels, di = 1.5, 3.0 mm TP flow boiling HT

Pamitran (2011) [82] R290
R717 Experimental study Horizontal circular stainless steel

smooth tube, di = 1.5, 3 mm Evaporation HT

Patel (2018) [83]
R290, R22

R1234yf, R1234ze,
R410a, R32

External experimental
database (see [83])

Horizontal mini channel,
dh = 0.952–1.150 mm

Condensation TP
frictional PD

Pham (2019) [84] R22, R32, R410a
R290 Experimental study

Horizontal aluminium multiport
rectangular mini channel,

dh = 0.83 mm

Condensation HT and TP
frictional PD

Qiu (2015) [85] R600a Experimental study Horizontal smooth copper tube,
di = 8 mm

Saturation flow boiling HT
and adiabatic frictional PD

Sempértegui-Tapia
(2017) [86]

R134a
R1234ze(E), R1234yf

R600a
Experimental study Horizontal stainless steel tube,

di = 1.1 mm Flow boiling HT

Sempértegui-Tapia
(2017) [87]

R134a, R1234ze(E)
R1234yf, R600a Experimental study

Horizontal circular/square/triangular
stainless steel tube,
dh = 0.634–1.1 mm

TP frictional PD

Shafaee (2016) [88] R600a Experimental study Horizontal copper smooth tube,
di = 8.1 mm

Flow boiling HT, effect of
coiled wire inserted tubes

on HT

Shah (2009) [89]

R718
halocarbon Rs

HC Rs
organics

External experimental
database (see [89])

Horizontal/vertical/downward
inclined tubes, dh = 2–49 mm Condensation HT

Shah (2016) [90]
R718, R744,

halocarbon Rs,
HC Rs

External experimental
database (see [90])

Horizontal
round/square/rectangle/semi-

circle/triangle/barrel-shaped single-
and multi-channels,

dh = 0.1–2.8 mm

Condensation HT

Shah (2017) [91]

R718, R744
R717

halocarbon Rs
cryogens

HC Rs

External experimental
database (see [91])

Horizontal/vertical,
round/rectangular/triangular single-

and multi-port channels,
dh = 0.38–27.1 mm

Saturated boiling HT prior
to critical heat flux

Shah (2017) [92]

R718, R744
cryogens, R12, R113

R22, R134a
HC R (R50, R290)

External experimental
database (see [92])

Horizontal/vertical tubes,
dh = 0.98–25 mm

Dispersed flow film
boiling HT
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Table 1. Cont.

First Author/Year R Data Geometry/Material/Orientation Research Highlights

Shah (2021) [93] R718, HC Rs, R717,
halocarbon Rs

External experimental
database (see [93]) PHE, β = 30–75◦ Condensation HT

Shah (2022) [94]

R718, R744
halocarbon R,

HC, R717 cryogens,
chemicals

External experimental
database (see [94])

Horizontal/vertical,
round/rectangular/triangular single-

and multi-port channels,
dh = 0.38–41 mm

Saturated boiling HT

Tao (2019) [95] HFCs, HC Rs
HFOs, R744

External experimental
database (see [95])

Brazed/gasketed PHE,
β = 25.7–70◦, dh = 3.23–8.08 mm

Condensation HT and
frictional PD

Tao (2020) [96] R717 External experimental
database [97] PHE, β = 63◦, dh = 2.99 mm

Flow patterns,
condensation HT and TP

frictional PD

Turgut (2016) [98] R717 External experimental
database [28]

Horizontal circular smooth stainless
steel tube, di = 14 mm

Flow pattern map, flow
boiling TP PD

Turgut (2021) [99] R290 External experimental
database (see [99])

Vertical/horizontal smooth stainless
steel/copper tubes,

dh = 0.3–7.7 mm

Saturated TP flow boiling
HT

Turgut (2022) [100]
R717

External experimental
database (see [100])

Horizontal smooth stainless steel tube,
dh = 3–14 mm

Flow boiling HT
R600a Horizontal smooth stainless steel tube,

dh = 1.1–8.0 mm

Umar (2022) [101] R290 Experimental study Horizontal stainless steel smooth tube,
di = 3 mm TP flow boiling PD

Wang, S.
(2014) [102] R290 Experimental study Horizontal smooth copper tube,

di = 6 mm
TP saturated flow boiling

HT and frictional PD

Wang, H.
(2016) [103] R717 External experimental

database (see [103])

Horizontal/vertical stainless
steel/aluminium/carbon steel tube,

di = 1.224–32 mm
Flow boiling HT

Wen (2018) [104] R290
Numerical simulation
CFD software ANSYS

Fluent 16.1

Horizontal circular smooth mini
channel, dh = 1 mm

Condensation HT and
frictional PD

Yang (2017) [105] R600a Experimental study Horizontal smooth copper tube,
di = 6 mm

Flow patterns, flow
boiling HT and TP

frictional PD

Yuan (2017) [106]
R134a, R22, R717,

R744, R236fa,
R245fa, R1234ze

External experimental
database (see [106])

Horizontal smooth circular stainless
steel/aluminium/copper tube,

di = 0.5–14.0 mm
Annular flow boiling HT

Zhang, Y.
(2019) [107]

R290
R600a

External experimental
database (see [107])

Horizontal smooth stainless
steel/copper tube, di = 1–6 mm

Boundary layer theory
and flow boiling HT

Zhang, J.
(2021) [108]

R134a
R236fa, R245fa

R1233zd (E)
R1234ze(E)

R290, R600a

Experimental study Brazed PHE, β = 65◦, dh = 3.4 mm Condensation HT and
frictional PD

Zhang, J.
(2021) [109]

R134a
R236fa, R245fa

R1233zd (E)
R1234ze(E)

R290, R600a

Experimental study Brazed PHE, β = 65◦, dh = 3.4 mm Flow boiling HT and
frictional PD

Zhang, R.
(2021) [110] R717 Experimental study Horizontal smooth stainless steel tube,

di = 3 mm

Flow patterns, TP flow
boiling HT and frictional
PD, dry out phenomenon

Zhang, R.
(2022) [111] R717 Experimental study Horizontal smooth steel tube,

di = 3 mm

Flow boiling TP, HT and
TP frictional PD, dry out

phenomenon

R = refrigerant, TP = two phase, HT = heat transfer, PD = pressure drop, PHE = plate heat exchanger,
β = chevron angle, MF = microfin, di, dh, do = inner, hydraulic, outer diameter, Lh = heated length, Ra = roughness,
HC Rs = hydrocarbon refrigerants.
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Table 2. Summary of the operating conditions, HTC and PD correlations of the papers included in this review.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New

PD Correlation AAD (%)

Aǧra (2012) [6] R600a
Tsat = 30–43 ◦C

–
–

– G = 47–116 h =
−k dT

dyy=0
(Tsat−Tw )

Tw = tube wall temperature
* ±20% – –

Ahmadpour
(2019) [7] R600a

–
psat = 510–630 kPa

x = 0.04–0.80
–

G = 140–280
Straight tube: Cavallini and Zecchin [112], Shah [113]

* ±20 – –U-shaped tube: Traviss et al. [114]
Shah [89]

Akbar (2021) [8] R290
Tsat = 0–11 ◦C

–
x = 0–1

q = 5–20 G = 50–180 Aizuddin et al. [115] 11.6 – –

Ali (2021) [9]
R1234yf
R152a

R600a, R134a

Tsat = 27, 32 ◦C
–
–

– G = 50–500 – –
Based on Cavallini et al. [116]

F = x0.9525(1−x)0.414

3.25

* 71.78% ± 30%

Allymehr
(2020) [10] R290

Tsat = 0, 5, 10 ◦C
–

x = 0.14–1
q = 15–33 G = 250–500

ST: Liu and Winterton [117]
MF1: Rollmann and Spindler [118]
MF2: Rollmann and Spindler [118]

6.2
14.8
26.3

ST: Xu and Fang [119]
MF1: Diani et al. [120]
MF2: Diani et al. [120]

11.7
3

12.7

Allymehr
(2021) [11]

R600a Tsat = 5, 10, 20 ◦C
–

x = 0.11–1
q = 15–34 G = 200–515

ST: Shah [121]
MF: Rollmann and Spindler [118]

6.4
–

ST: Xu and Fang [119]
MF: Diani et al. [120]

6.6
–

R1270 ST: Liu and Winterton [117]
MF: no reliable correlation

8.5
–

ST: Xu and Fang [119]
MF: Diani et al. [120]

4.4
–

Allymehr
(2021) [12]

R290

Tsat = 35 ◦C
–

x = 0.12–0.89
– G = 200–500

ST: Dorao and Fernandino [122]
MF1: Cavallini et al. [123]

4.9
7.9

ST: Macdonald and Garimella [69]
MF: Diani et al. [120]

7.9
–

R600a ST: Dorao and Fernandino [122]
MF1: Cavallini et al. [123]

5.8
7.8

ST: Xu and Fang [124]
MF: Diani et al. [120]

11.0
–

R1270 ST: Dorao and Fernandino [122]
MF1: Cavallini et al. [123]

11.0
13.6

ST: Macdonald and Garimella [69]
MF: Diani et al. [120]

6.4
–

Amalfi
(2016) [13]

R134a, R245fa,
R236fa

R717, R290
R600a, R1270,

R1234yf
mixtures

Tsat = −25–39 ◦C
–

x = 0–0.95
q = 0.1–50.0 G = 5.5–610

For Bd < 4,
Nutp = 982β∗1.101We0.315

m Bo0.320ρ*−0.224;
For Bd >= 4,

Nutp = 18.495β∗0.248Re0.135
v Re0.351

lo Bd0.235Bo0.198ρ*−0.223

22.1 (all data)
ftp = 15.698CWe−0.475

m Bd0.255ρ*−0.571

C = 2.125β∗9.993 + 0.955
21.5 (all data)

Anwar
(2015) [15] R600a

Tsat = 27, 32 ◦C
–

x = 0–0.8
q = 20–130 G = 50–350 Li and Wu [125] −0.48 (AD) – –

Arima
(2010) [16] R717

Tsat = 13.9, 17.9,
21.6 ◦C

psat = 0.7, 0.8, 0.9
x = 0.1–0.4

q = 15, 20, 25 G = 7.5, 10, 15
hloc
hlo

= 16.4
(

1
Xvv

)1.08

hlo = 0.023 λl
dh

[
G(1−x)dh

µl

]0.8
Pr0.4

l

* ±25% – –

Asim (2022) [17] R600a
Tsat = 27, 32 ◦C

–
–

q = 5–245 G = 50–500 Mahmoud and Karayiannis [126] 14.17 – –
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Table 2. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New

PD Correlation AAD (%)

Ayub (2019) [18] R717, R134a
R410A

–
psat = 0.136–1.445 MPa

–
– –

Nu =
(

1.8 + 0.7 β
βmax

)
Re

(0.49−0.3
σRe f

σammonia
)

eq

Bo−0.2
eq βmax = 65◦

* ±30% (all data) – –

Basaran
(2021) [19] R600a

Tsat = 40 ◦C
–

x = 0.3–0.9
q = 40 G = 200–600

Nu =
HTCdh

λl

Nu =

{
0.2516Re0.6860

eq , f or Reeq < 2300
0.3215Re0.6548

eq , f or Reeq > 2300

10.22

f = ∆p dh
L

2ρtp
G2

f ={
0.8393Re−0.2200

eq , f or Reeq ≤ 2300
0.7344Re−0.2260

eq , f or Reeq > 2300

17.42

Basaran
(2021) [20] R600a

Tsat = 0.82056 ◦C
–
–

– G = 200–600 Nu = 0.2963Re0.6642
eq ** 6.8 (po) Sakamatapan and Wongmisses [127] –

Butrymowicz
(2022) [21]

R134a, R507A,
R600a

–
pr = 0.501–0.985

x = 0.1–1
q = 0.4–10 G = 60–200

Based on Gungor–Winterton [128],
h = hGW exp

[
−45.8

(
1 − Bo−0.016

m
)]

hGW = hconvE + hpbShconv = 0.023 λ
Di

Re0.80
l Pr0.40

hpb = 55p0.12
r (−logpr)

−0.55 M−0.50q0.67

E = 1 + 24000Bo1.16 + 1.37X−0.86

S =
[
1 + 1.15 × 10−6E2Re1.17

ri
]−1

* R2 = 0.51 (all
data) – –

Butrymowicz
(2022) [22] R290

Tsat,e = 8 ◦C
Tsat,c = 34 ◦C

–
–

– G = 50–160 – –

Based on Müller-Steinhagen [129],
∆p = ∆pvo ββ = C f (1 + ζ)

Condensation:
ζ = 64

0.3164
µl

µ0.25
v

ρv
ρl
(Gdh)

−0.75

C f = 1.858 + 6.154 × 10−5Revo

* R2 = 0.832

Evaporation:
C f = 3.925 + 4.120 × 10−5Revo

* R2 = 0.555

Cao (2021) [23] R600a
–

psat = 530–620 kPa
–

– G = 25–41.25

htp = 0.012Re0.81
l Pr1.42

l Φl
λl
dh

ϕ2
l = 1 + C

Xtt
+ 1

X2
tt

C = 21
(
1 − e−0.319dh

) 9.8 fl = 0.35Re−0.36
l

where Rel < 2000
7.3

Choi (2009) [24] R290
Tsat = 0, 5, 10 ◦C

–
x = 0–1

q = 5–20 G = 50–400

h = 55p0.12
r (−0.4343lnpr)

−0.55 M−0.5q0.67

F = MAX
(

0.5ϕ f , 1
)

S = 181.485
(
ϕ2

f

)0.002
Bo0.816

ϕ2
f = 1 + C

X + 1
X2

C = 1732.953Re−0.323
tp We−0.24

tp

9.93
C =

(
ϕ2

f − 1 − 1
X2

)
X =

1732.953Re−0.323
tp We−0.24

tp

10.84



Energies 2024, 17, 1478 12 of 50

Table 2. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New

PD Correlation AAD (%)

Choi (2014) [25]

R744
R717
R290

R1234yf

Tsat = 0–10 ◦C
–

x = 0–1
q = 5–60 G = 50–600

htp = Fhlo + Shpb

hlo = 0.023 kl
D

[
G(1−x)d

l

]0.8( cpl l
kl

)0.4

F = Max
[(

0.007
(

φ2
l

)1.15
+ 0.95

)
, 1
]

hpb = 55p0.12
r (−0.4343lnpr)

−0.55 M−0.5q0.67

S = Cre f

(
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R744 
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Tsat = 24 °C 

psat = 340.3 kPa 
x = 0.09–0.98 

q = 4.5–18.5 G = 35–170 – – Hwang and Kim [130] 
7.96 
(AD) 

Da Silva Lima (2009) 
[28] 

R717 
Tsat = −14–14 °C 

– 
x = 0.05–0.6 

q =12–25 G = 50–160 – – Moreno Quibén and Thome [131] 9.5 

Dalkilic (2010) [29] R600a 
Tsat = 30–43 

psat = 4–5.73 bar 
x = 0.45–0.9  

– G = 75–115 – – 
Chen et al. [132] 

Mishima and Hibiki [133] 
* ±30% 

Darzi (2015) [30] R600a 
– 
– 

x = 0.1–0.8 
q = 17 G = 154.8–265.4 

Based on Shah [89], ℎ = 1.3 𝑑𝑑 . 𝑥1 − 𝑥 . ( ) ℎ  
* 90%±17 Jung and Radermacher [134] * 80%±25 

De Oliveira (2016) 
[31] 

R600a 
Tsat = 25 °C 

–  
x = 0–0.92 

q = 5–60 G = 240–480 Kim and Mudawar (2013) [135] 
4.4 

(AD) 
– – 

De Oliveira (2017) 
[32] 

R290 Tsat = 25 °C 
– 
– 

q = 5–60 G = 240–480 – – 
Zhang et al. [136] 21.66 (AD) 

R600a Mishima and Hibiki [133] −5.54 (AD) 

De Oliveira (2018) 
[33] 

R290 
Tsat = 25 °C 

psat = 952.2 kPa 
– 

q = 5–60 G = 240–480 Li and Wu [125] 
−8.5  
(AD) 

– – 

De Oliveira (2020) 
[34] 

R1270 
Tsat = 25 °C 

psat = 1154.4 kPa 
x = 0.01–0.99 

q = 5–60 G = 240–480 Bertsch et al. [137] 
22.8 
(AD) 

– – 

De Oliveira (2023) 
[35] 

R1270 
Tsat = 25 °C 

psat = 1154.4 kPa 
q = 5–60 G = 240–480 – – Hwang and Kim [130] 

2.65 
(AD) 

2
f

)0.3421

Bo0.0469

Cre f ,R717 = 0.5018 Cre f , R290 = 0.12

12.28 (all data)
11.09 (R717)
10.02 (R290)

– –

Cioncolini
(2011) [26]

R22, R32, R134a,
R290
R600a

R718, R12
R236fa
R245fa

–
p = 0.1–7.2 MPa

x = 0.19–0.94
q = 3–736 G = 123–3925

1 + α+
t = ht

kl
Nu = 77.6 × 10−3t+0.90Pr0.52

l

10 ≤ t+ ≤ 800; 0.86≤ Prl ≤ 6.1
t = (1 − e)(1 − x) Gd

4µl

13.0
(all data) – –

Da Silva
(2023) [27] R600a

Tsat = 24 ◦C
psat = 340.3 kPa

x = 0.09–0.98
q = 4.5–18.5 G = 35–170 – – Hwang and Kim [130] 7.96

(AD)

Da Silva Lima
(2009) [28] R717

Tsat = −14–14 ◦C
–

x = 0.05–0.6
q =12–25 G = 50–160 – – Moreno Quibén and Thome [131] 9.5

Dalkilic
(2010) [29] R600a

Tsat = 30–43
psat = 4–5.73 bar

x = 0.45–0.9
– G = 75–115 – – Chen et al. [132]

Mishima and Hibiki [133] * ±30%

Darzi (2015) [30] R600a
–
–

x = 0.1–0.8
q = 17 G = 154.8–265.4

Based on Shah [89],

h f lat = 1.3
(

d
dh

)0.8( x
1−x

)−0.0008(G−205)hshah
* 90%± 17 Jung and Radermacher [134] * 80% ± 25

De Oliveira
(2016) [31] R600a

Tsat = 25 ◦C
–

x = 0–0.92
q = 5–60 G = 240–480 Kim and Mudawar (2013) [135] 4.4

(AD) – –

De Oliveira
(2017) [32]

R290 Tsat = 25 ◦C
–
–

q = 5–60 G = 240–480 – –
Zhang et al. [136] 21.66 (AD)

R600a Mishima and Hibiki [133] −5.54 (AD)

De Oliveira
(2018) [33] R290

Tsat = 25 ◦C
psat = 952.2 kPa

–
q = 5–60 G = 240–480 Li and Wu [125] −8.5

(AD) – –

De Oliveira
(2020) [34] R1270

Tsat = 25 ◦C
psat = 1154.4 kPa

x = 0.01–0.99
q = 5–60 G = 240–480 Bertsch et al. [137] 22.8

(AD) – –

De Oliveira
(2023) [35] R1270

Tsat = 25 ◦C
psat = 1154.4 kPa

–
q = 5–60 G = 240–480 – – Hwang and Kim [130] 2.65

(AD)
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Table 2. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New PD

Correlation AAD (%)

Del Col
(2014) [36] R290

Tsat,aPD,cHT = 40 ◦C
Tsat,bHT = 31 ◦C

–
x = 0.05–0.6

q,bHT = 10–315

G,aPD = 200–800
G,cHT =

100–1000
G,bHT = 100–600

cHT: Moser et al. [138]
bHT: Thome et al. [139]

7.22
3.9 (AD) Del Col et al. [140] 9.1

Del Col
(2017) [37] R1270

Tsat,aPD,cHT = 40 ◦C
Tsat,bHT = 30 ◦C

–
–

q,bHT = 10–244
G,aPD = 400, 600
G,cHT = 80–1000
G,bHT = 100–600

cHT: Moser et al. [138]
bHT: Sun and Mishima [141]

16.4
8.6 Friedel [142] 7.3

ElFaham
(2023) [38]

R290
R600
R600a

Tsat = −35–43 ◦C
–

x = 0–1
q = 5–315 G = 50–1100 Kew and Cornwell [143] 24.6 (all

data) – –

Fang, Xiande
(2019) [39]

R717
R290
R600a

Tsat = 1.06–31 ◦C
psat = 2.15–11.06 bar

x = 0–0.99
q = 5–130 G = 20–600 Fang et al. [144]

4.7
6.5

10.2
– –

Fang, Xianshi
(2023) [40] R600a

Tsat = 38.5 ◦C
–

x = 0.05–0.79
– G = 115–365 – – Nualboonrueng

et al. [145]
Non-annular flow 32.52

Annular flow 10.18

Fries (2019) [42] R290
–

psat = 12–16 bar
–

– G = 300–400 Thome [146] (for low x)
Cavallini and Zecchin [112] (for high x)

–
– Friedel [142] –

Fries (2020) [43] R290
R1270

–
pr = 0.25

–
– G = 300, 450, 600 – – Friedel [142] * ±20% (all

data)

Fronk
(2016) [44] R717

Tsat = 30–60 ◦C
pr = 0.10–0.23

–
– G = 75–225

Annular flow model:

Nua =
hD
kl

= 0.023Re0.8
l Pr0.4

l

(
1 + 0.27

(
Uv
Ul

)0.21
f−0.46
i

)
Uv
Ul

=
( x

1−x

)( ρl
ρv

)( 1−ε
ε

)
δ = 1

2 (D − Di) =
D
2

(
1 −

√
ε
)

ε = β

1+Vvj/j

Vvj = 0.336X0.25Ca0.154
l

(√
ρl
ρv

− 1
)0.81

j

X =

√
(dp/dz)l
(dp/dz)v

Cal = l (1−q)G
ρl σ

f =

{ 16
Re f or Re < 2000
0.079Re−0.25 f or Re ≥ 2000

Non-annular flow model:

Nuwavy =

[(
1 + 0.741

[ 1−x
x

]0.3321
)−1

Nu f ilm + Nupool

]
Nu f ilm =

(
D
kl

)
0.725

(
k3
l ρl(ρl−ρv)ghlv

µl D(Tsat−Tw,i)

)0.25

Nupool = 0.023Re0.8
l Pr0.4

l
(
1 − x0.087

)

12.8 – –
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Table 2. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New PD

Correlation AAD (%)

Gao (2018) [46] R717
Tsat = −15.8–5 ◦C

–
–

q = 9–21 G = 50–100 Gungor and Winterton [147] 19.6 Müller-Steinhagen and Heck [129] 16.1

Gao (2019) [47] R717
Tsat = −15.8–4.6 ◦C

–
x = 0–0.9

– G = 20–200 – –

Based on Müller-Steinhagen and Heck [129],
▽p f = F(1 − x)1/3 + Bx3

F = A +
(

1 + 0.007695Bd−0.03573Relo
0.3940

)
(B − A)x

A =
(

dp
dz

)
lo
= flo

2G2
ρl D ;

B =
(

dp
dz

)
vo

= fvo
2G2
ρv D

I f Relo ≤ 1187 flo =
16

Relo
I f Relo > 1187 flo =

0.079
Relo

0.25

13.5

Ghazali
(2022) [48] R290

Tsat = 5–25 ◦C
–

x = 0.4–1
q = 2.5–60 G = 50–500

Based on Mohd-Yunos et al. [75],
htp = Shnb + Fhlo

hnb = 55p2.12
r (−0.4343lnpr)

−0.55 M−0.5q0.67

hlo = 0.023Re0.8
l Pr0.4

l
kl
D

S = b1

(
ϕ2

f

)b2
Bob3

F = MAX
[(

b4

(
ϕ2

f

)b5 − b6

)
, 1
]

f or x ≤ 1 b1 to b6
= 0.176, 0.096,−0.117, 0.1, 0.748,−0.076

17.02 – –

Ghorbani
(2017) [49] R600a

Tsat = 36.2–45.6
–

x = 0.06–0.78
− G = 110–372 Shah [89] 13

AD – –

Guo (2018) [50]

R1234ze(E)
R290
R161
R41

Tsat = 35–45 ◦C
–

x = 0–1
q = 8–30 G = 200–400

Based on Koyama et al. [148],

ϕ2
v = 1 + 15.6

(
vl
vv

)0.17
×(

1 − e−0.6
√

We0.8
l Bd0.625

)
Xtt + X2

tt

21.6 (R290) – –

Huang
(2012) [51]

R134a
R507a

R12, R717

Tsat = 1.9–13
–

xout = 0.2–0.95
q = 1.9–10.8 G = 5.6–52.3

Nutp =

1.87 × 10−3
(

qd0
kl Tsat

)0.56
(

ilgd0
α2

l

)0.31

Pr0.33
l

d0 = 0.0146 θ

[
2σ

g(ρl−ρg)

]0.5

θ = 35◦ f or hydrocarbon re f rigerants

7.3 (all data) – –

Ilie (2022) [53] R717
Tsat = −9–(−2) ◦C

–
x = 0.5

q = 4–7.3 G = 1.8–2.6 Shah [113] 14.23 – –
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Table 2. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New

PD Correlation AAD (%)

Inoue (2018) [54]

R32, R410a,
R1234ze(E)

R152a

Tsat = 35 ◦C
–
–

– G = 100–400 Nu = 0.17
√

fv(ϕv/Xtt)(µl /µv)
0.1{x/(1 − x)}0.1Re0.87

l
fv = 0.26Re−0.38

v

* ±30% (all data)
– –* ±30% R290

External data [65]

Kanizawa
(2016) [55]

R134a
R245fa
R600a

Tsat = 21.5–58.3 ◦C
–

x = 0.01–0.93
q = 5–185 G = 49–2200

htp = Fhc + Shnb

hnb = 0.0546 kl
db

[(
ρv
ρl

)0.5( qdb
kl Tsat

)]0.670(
ρl−ρv

ρl

)−4.33
×(

ilvd2
b

( ρl cpl
kl

)2
)0.248

db = 0.51
√

2σ/[g(ρl − ρv)]

hc = 0.023 kl
d Re0.8

l Pr1/3
l

F = 1 + 2.50X−1.32

1+We0.24
uv

S = 1.06Bd−8.10−3

1+0.12
(

Re2p,mod/10000
)0.86

11 (all data)
No good

agreement (R600a)
– –

Khan, T.S.
(2012) [56] R717

Tsat = −25–(−2)◦C
–

xout = 0.5–0.9
q = 21–44 G = 8.5–27 Nutp = 82.5

(
ReeqBoeq

)−0.085
(pr)

0.21 * 75% ± 4% ftp = 212
(
Reeq

)−0.51
(pr)

0.53 * 90% ± 5%

Khan, M.S.
(2012) [57] R717

Tsat = −25–(−2) ◦C
–

xout = 0.5–0.9
q = 21–44 G = 5.5 Nutp = 169

(
ReeqBoeq

)−0.04
(pr)

0.52 * 70% ± 4% ftp = 673, 336
(
Reeq

)−1.3
(pr)

0.9 * 90% ± 7%

Koyama
(2014) [58]

R717 –
psat = 0.7, 0.9 MPa

–
q = 10, 15, 20 G = 5–7.5

For δ = 1 mm,
h

hliq
= 52.2

(
1

Xvv

)0.90

hliq = 0.023
(

kl
Dh

)[
G(1−x)Dh

l

]0.8
Pr0.4

l

* 85% ± 30%

– –

For δ = 2 and 5 mm,
h

hliq
= 48.6

(
1

Xvv

)0.79 * 88% ± 30%

Lee (2010) [59]
R290 Tsat = 40 ◦C

–
x = 0–0.9

– G = 35.5–178.8 Haraguchi et al. [149]
13.75

– –
R600a 6.57

Lillo (2018) [60] R290
Tsat = 25–35 ◦C

–
x = 0–1

q = 2.5–40.0 G = 150–500

Based on Wojtan et al. [150],
hwet =

(
h3

cb + h3
nb

)1/3

hcb = 0.0133Re0.69
δ Pr0.4

l
λl
δ

hnb = 0.8hCooper
hcb,new = 0.5hcb
hnb,new = 1.7hnb

8.2 Friedel [142] 20.8

Liu (2016) [61] R290
Tsat = 40, 50 ◦C

psat = 1.37–1.71 MPa
x = 0.1–0.9

– G = 200–500 Kim et al. [151] 13 Kim and Mudawar [152] ±30%
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Table 2. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New

PD Correlation AAD (%)

Liu (2018) [62] R600a
R227ea, R245fa

Tsat = 27.5–45.5 ◦C
–

x = 0–0.8
q = 3.60–10.50 G = 32.20–116.8

htp = aBobFrc
loBdd

(
ρl
ρv

)e kl
Dh

a = 17022, b = 0.939, c = 0.347,
d = 0.581, e = 0.23

14.93 (all data)
17.09 (R600a) – –

Longo
(2012) [63]

R600a
R290
R1270

Tsat = 9.8–20.2 ◦C
–

x = 0.21–1
q = 4.3–19.6 G = 6.6–23.9

Cooper [153]
Gorenflo [154]
Gorenflo [154]

17.2
16.2
27.1

∆p f (kPa) = 1.525KE/V
(

Jm−3)
KE/V = G2/(2ρm)

KE/V = Kinetic energy per unit
volume, Jm−3

8.8 (all data)

Longo
(2017) [64]

R290
R1270

Tsat = 30, 35, 40 ◦C
psat = 1.075–1.650 MPa

x = 0.12–0.95

– G = 75–400 Akers et al. [155] 9.0 Friedel [142] 14.5

13.0 12.4

Longo
(2020) [65] R600a

Tsat = 5–20 ◦C
psat = 1.195–3.045 bar

x = 0.08–0.75
q = 15–30 G = 100–300 Fang et al. [144] 6.2 Wang et al. [156] 15.49

Longo
(2023) [66]

R290
R1270

Tsat = 9.9–10.4 ◦C
psat = 0.63–0.79 MPa

x = 0.24–1
q = 2.9–28.3 G = 5.0–17.8 Longo et al. [157] 7.7

6.9 – –

López-Belchí
(2016) [67] R290

Tsat = 30, 40, 50 ◦C
psat = 1.08–1.71 MPa

–

q =
15.76–32.25 G = 175–350 Koyama et al. [158] 18.44 Sun and Mishima [159] 6.88

Macdonald
(2016) [68] R290

Tsat = 30–94 ◦C
–
–

– G = 150–450 Cavallini et al. [160] 24 Garimella et al. [161] 26

Macdonald
(2016) [69] R290

Tsat = 30–94 ◦C
–
–

– G = 150–450

hadjusted = hcondensationXLM

hcondensation =
h f ilmθ+hpool (2π−θ)

2π

XLM =

(( kl,wall−subcool
kl,sat

)2
− 0.3

)
1

p0.1
r

11

dp
dz =

(
dp
dz

)
l
+ C

[(
dp
dz

)
l

(
dp
dz

)
v

]0.5

dp
dz

∣∣∣
l
= 1

2
fl ρl v2

l
dh

where : vl =
G(1−x)

ρl
dp
dz

∣∣∣
v
= 1

2
fvρvv2

v
dh

where : vv = G(1−x)
ρv

C = 20Re−0.15

S1.15
r Bd−0.2Sr = vv/vl

18

Macdonald
(2017) [70] R290

Tsat = 30–75 ◦C
pr = 0.25–0.67

–
– G = 150–450

Based on Macdonald and Garimella [69],
hcorrected = hcorrelation

χ∆Tχ∆T =

(( kl,wall−subcool
kl,sat

)2
− 0.3

)
1

p0.1
r

5.4 – –

Maher
(2020) [71]

R134a
R245fa

R125, R744
R236ea, R22,

R152a
R32, R410a
R1234ze(E)

R290, R600a
R1234yf

Tsat = 25–55 ◦C
–
–

– G = 35.5–2094 – –

(
∆p
∆L

)
tp
=

G2
tp

2Dρtp

(
0.79Re−0.25

tp

)1.4
+

+
[
0.17

(
0.69lnRetp − 2.2

)−1.5
]1/0.7

Retp =
Gtp D

[(1−x)µl+xµv ]
0.94( 1−x

µl
+ x

µv

)1−0.94

30
(all data)
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Table 2. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New

PD Correlation AAD (%)

Maqbool
(2012) [72] R717

Tsat = 23, 33, 43 ◦C
–
–

q = 15–355 G = 100–500 – –

Based on Tran et al. [162],(
dp
dz

)
f
=
(

dp
dz

)
Lo

Φ2
LO

Φ2
LO =

1 +
(
4.3Y2 − 1

)
[0.2Co1.2x0.875×

×(1 − x)0.875 + x1.75]

Y2 =

(
dp
dz

)
VO(

dp
dz

)
LO

16

Maqbool
(2012) [73] R717

Tsat = 23, 33, 43 ◦C
–
–

q = 15–355 G = 100–500 Cooper [163] 20 – –

Maqbool
(2013) [74] R290

Tsat = 23, 33, 43 ◦C
–
–

q = 5–280 G = 100–500 Cooper [164] 18 Müller-Steinhagen and Heck [129] 17

Mohd-Yunos
(2020) [75] R290

Tsat = −35–25 ◦C
–
–

q = 5–190 G = 63.9–480

Based on Choi et al. [25],
htp = Shnb + Fhlo

Case I : f or 0.0 < x < 1.0

S = 2
(
ϕ2

f

)−0.073
Bo0.128

F = MAX
[(

1.074
(
ϕ2

f

)0.178
− 0.38

)
, 1
]

Case I I : f or 0 < x ≤ 0.6

S = 0.8
(
ϕ2

f

)0.124
Bo0.093

F = MAX
[(

1.226
(

ϕ2
f

)0.107
− 0.28

)
, 1
]

f or 0.6 < x < 1.0

S = 1.989
(
ϕ2

f

)−0.867
Bo−0.322

F = MAX
[(

1.534
(
ϕ2

f

)−0.293
+ 0.754

)
, 1
]

33.16
25.26 – –

Moreira
(2021) [76]

R134a
R600a
R290
R1270

Tsat = 35 ◦C
–

x = 0–1
q = 5–60 G = 50–250

htp = Nu λl
d

Nu = JhPrl
1/3

Jh =

{
0.0053 Reeq Reeq ≥ 25, 000
0.79 Reeq

0.51 Reeq < 25, 000

– – –

Morrow
(2021) [77]

R717
R290
R600a

Tsat = 24–60 ◦C
–

x = 0–1
– G = 20–800

Shah [90]
Kim [151]
Shah [165]

41
14
15

– –
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Table 2. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New

PD Correlation AAD (%)

Murphy
(2019) [78] R290

Tsat = 47, 74 ◦C
psat = 1.6, 2.8 MPa

x = 0.1–0.9
– G = 75–150

Nu = 0.0841
Prl Re1.329

l
T+

F1.263

F =
(

fv
8

)0.5( x
1−x

)0.5(1 − 2.85X0.523)
T+ =

0.707PrlRe0.5
l Rel < 50

5Prl + 5ln
[
1 + Prl

(
0.09636Re0.585

l − 1
)]

50 < Rel < 1125
5Prl + 5ln(1 + 5Prl) + 2.5ln

(
0.00313Re0.812

l
)

Rel > 1125

13.4

(
dp
dz

)
f
= 1

2 fint
(Gx)2

ρv α2.5
1
D

fint
fl

= 0.0019X0.6Re0.930
l,actual φ−0.121

12

Nasr (2015) [79] R600a
–

pavg = 5–6 bar
x = 0–0.7

q = 10–27 G = 130–380 Gungor-Winterton [128] 12.23 – –

Oh (2011) [80]
R22, R134a,

R410A, R290,
R744

Tsat = 0–15 ◦C
–

x = 0–1
q = 5–40 G = 50–600

htp = Shnbc + Fhl

S = 0.279
(
ϕ2

f

)−0.029
Bo−0.098

F = MAX
[(

0.023ϕ2.2
f + 0.76

)
, 1
]

hnbc = 55p2.12
r (−0.4343lnpr)

−0.55 M−0.5q0.67

hl



= 4.36 kl
D i f Rel < 2300

=
(Rel−1000)Prl

(
fl
2

)(
kl
D

)
1+12.7

(
Pr2/3

l −1
)( F f

2

)0.5 i f 3000 ≤ Rel ≤ 104

=
Rel Prl

(
fl
2

)(
kl
D

)
1+12.7

(
Pr2/3

l −1
)( F f

2

)0.5 i f 104 ≤ Rel ≤ ×106

= 0.023 kl
D

[
G(1−x)D

µl

]0.8
(

Cpl µl
kl

)0.4

Rel ≤ ×106

15.28 (all data) – –

Pamitran
(2009) [81] R290

Tsat = 0, 5, 10 ◦C
–

x = 0–1
q = 5–20 G = 50–400

htp = Shnbc + Fhlo

S = 0.6226
(
ϕ2

f

)0.1068
Bo0.0777

hnbc = 55p0.12
r (−0.4343lnpr)

−0.55 M−0.5q0.67

F = 0.023ϕ2
f + 0.977

hlo = 0.023 λl
D

[
G(1−x)D

µl

]0.8
(

Cpl µl
kl

)0.4

ϕ2
f = 1 + C

X + 1
X2

C(tt) = 20, C(vt) = 12, C(tv) = 10, C(vv) = 5

8.27 – –

Pamitran
(2011) [82]

R290
R717
R744

Tsat = 0–10 ◦C
–

x = 0–1
q = 5–70 G = 50–600

htp = Fhlo + Shpb

hlo = 0.023 kl
D

[
G(1−x)D

l

]0.8( cpl l
kl

)0.4

F = Max
[(

0.009
(

φ2
l

)2
+ 0.76

)
, 1
]

hpb = 55p0.12
r (−0.4343lnpr)

−0.55 M−0.5q0.67

S = Cre f

(
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ϕ = 1 + CX + 1X  C = 1732.953Re . We .  

Choi (2014) [25] 

R744 
R717 
R290 

R1234yf 

Tsat = 0–10 °C 
– 

x = 0–1 
q = 5–60 G = 50–600 

ℎ = Fℎ + Sℎ  ℎ = 0.023 𝑘𝐷 𝐺(1 − 𝑥)𝑑µ . 𝑐 µ𝑘 .
 F = 𝑀𝑎𝑥[(0.007(𝜑 ) . + 0.95), 1] ℎ = 55p . (−0.4343𝑙𝑛p ) . 𝑀 . 𝑞 .  S = C (ɸ ) . Bo .  C , = 0.5018 C , = 0.12 

12.28 (all 
data) 

11.09 (R717) 
10.02 (R290) 

– – 

Cioncolini (2011) [26] 

R22, R32, R134a, R290 
R600a 

R718, R12 
R236fa 
R245fa 

– 
p = 0.1–7.2 MPa 

x = 0.19–0.94 
q = 3–736 G = 123–3925 

1 + 𝛼 = ℎ𝑡𝑘 Nu = 77.6 × 10 𝑡 . Pr .  10 ≤ 𝑡 ≤ 800;     0.86 ≤ Pr ≤ 6.1 𝑡 =  (1 − 𝑒)(1 − 𝑥) 𝐺𝑑4𝜇  

13.0 
(all data) 

– – 

Da Silva (2023) [27] R600a 
Tsat = 24 °C 

psat = 340.3 kPa 
x = 0.09–0.98 

q = 4.5–18.5 G = 35–170 – – Hwang and Kim [130] 
7.96 
(AD) 

Da Silva Lima (2009) 
[28] 

R717 
Tsat = −14–14 °C 

– 
x = 0.05–0.6 

q =12–25 G = 50–160 – – Moreno Quibén and Thome [131] 9.5 

Dalkilic (2010) [29] R600a 
Tsat = 30–43 

psat = 4–5.73 bar 
x = 0.45–0.9  

– G = 75–115 – – 
Chen et al. [132] 

Mishima and Hibiki [133] 
* ±30% 

Darzi (2015) [30] R600a 
– 
– 

x = 0.1–0.8 
q = 17 G = 154.8–265.4 

Based on Shah [89], ℎ = 1.3 𝑑𝑑 . 𝑥1 − 𝑥 . ( ) ℎ  
* 90%±17 Jung and Radermacher [134] * 80%±25 

De Oliveira (2016) 
[31] 

R600a 
Tsat = 25 °C 

–  
x = 0–0.92 

q = 5–60 G = 240–480 Kim and Mudawar (2013) [135] 
4.4 

(AD) 
– – 

De Oliveira (2017) 
[32] 

R290 Tsat = 25 °C 
– 
– 

q = 5–60 G = 240–480 – – 
Zhang et al. [136] 21.66 (AD) 

R600a Mishima and Hibiki [133] −5.54 (AD) 

De Oliveira (2018) 
[33] 

R290 
Tsat = 25 °C 

psat = 952.2 kPa 
– 

q = 5–60 G = 240–480 Li and Wu [125] 
−8.5  
(AD) 

– – 

De Oliveira (2020) 
[34] 

R1270 
Tsat = 25 °C 

psat = 1154.4 kPa 
x = 0.01–0.99 

q = 5–60 G = 240–480 Bertsch et al. [137] 
22.8 
(AD) 

– – 

De Oliveira (2023) 
[35] 

R1270 
Tsat = 25 °C 

psat = 1154.4 kPa 
q = 5–60 G = 240–480 – – Hwang and Kim [130] 

2.65 
(AD) 

2
f

)−0.2093

Bo0.7402

Cre f ,R717 = 0.45 Cre f , R290 = 0.38

19.81 (all data)
17.94 (R290)
22.52 (R717)

– –
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Table 2. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New

PD Correlation AAD (%)

Patel (2018) [83]

R290, R22
R1234yf,

R1234ze, R410a,
R32

Tsat = 30–50 ◦C
–

x = 0.1–0.9
– G = 150–800 – –

ϕ2
New = 1 + C

X + 1
X2

CNew =
0.3572Re0.05021

lo Su0.099
vo F0.025H0.015

Suc
vo =

ρvσdh
µ2

v
,

(
dp
dz

)
tp
=
(

dp
dz

)
l
ϕ2

l

10.08

Pham (2019) [84] R22, R32, R410a,
R290

Tsat = 48 ◦C
–

x = 0.1–0.9
q = 3–15 G = 50–500

h = 2.76Bo0.053Re0.528
eq

(
1−x
Prl

)−0.386(
(1 − x)0.8 + x

pr

)−0.76

(
g

Ghlv
Ao
Ai

)0.305(
Φv
Xtt

)−0.045 kl
d

ϕ2
v = 1 + CXtt + X2

tt

C = λx0.35(1 − x)0.25
(

p
pc

)0.31
Re0.09

tp We0.09
tp

λ =
24
(
1 − 1.355β + 1.947β2 − 1.701β3 + 0.956β4 − 0.254β5

)
18.14 – –

Qiu (2015) [85] R600a
Tsat = 20 ◦C

–
x = 0.05–0.85

q = 5–10 G = 200–400 Shah [121] 21.75 Groennerud [166] 19.07 (G=400)
28.55 (G=200)

Sempértegui-
Tapia (2017) [86]

R134a
R1234ze(E),

R1234yf R600a

Tsat = 31, 41 ◦C
–

x = 0–0.93
q = 15–145 G = 200–800

Based on Kanizawa et al. [55],

htp =
[
(Fhl)

2 + (Shnb)
2
]0.5

hl according to Dittus and Boelter,
hnb according to Stephan and Abdelsalam

F = 1 +
2.55X−1.04

tx(
1+We−0.194

uG

)
S = 1.427Bd0.032

1+0.1086(10−4Rel F1.25)
0.981

11.4 (all data)
14.0 (R600a) – –

Sempértegui-
Tapia

(2017) [87]

R134a,
R1234ze(E)

R1234yf
R600a

Tsat = 31,41 ◦C
–

x = 0.05–0.95
– G = 100–1600 – –

Based on Müller-Steinhagen and
Heck [129](

dp
dz

)
tp
= F(1 − x)1/λ +

(
dp
dz

)
vo

xλ

F =
(

dp
dz

)
lo
+ ω

((
dp
dz

)
vo
−
(

dp
dz

)
lo

)
x

ω = 3.01e−0.00464Revo /1000; λ = 2.31

Deq =
√

4A
π ;
(

dp
dz

)
ko
= 2fko

G2
Deqρk

fko =
16

Reko
laminar f low, circular channel

10.2 (all data)
9.3 (R600a)
7.2 (R290,
external

data [36])

Shafaee
(2016) [88] R600a

–
pavg = 4–6 bar
x = 0.08–0.7

q = 18.6–26.1 G = 109.2–505 Shah [121] 15 – –
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Table 2. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New

PD Correlation AAD (%)

Shah (2009) [89]

R718
halocarbon Rs

HC Rs
organics

–
pr = 0.0008–0.9
x = 0.01–0.99

– G = 4–820

hI = hlo

(
µl

14µg

)n
[
(1 − x)0.8 + 3.8x0.76(1−x)0.04

p0.38
r

]
hlo = 0.023Re0.8

lo Pr0.4
l

n = 0.0058 + 0.557pr

hNu = 1.32Re−1/3
l

[
ρl(ρl−ρg)gk3

l
µ2

l

]1/3

Boundary between Regime I and II:
Jg ≥ 0.98(Z + 0.263)−0.62

htp =

htp = hI in Regime I
htp = hI + hNu in Regime I I
htp = hNu vertical tubes in Regime I I I

14.4 (all data)
11.2,13.7
(R600a)

16.4,15.210.5,20.5
(R290)

17.2,32.6 (R1270)

– –

Shah (2016) [90]
R718, R744,

halocarbon Rs,
HC Rs

–
pr = 0.0055–0.94

x = 0.02–0.99
– G = 20–1400

hI =

hlo

[
1 + 1.128x0.817

(
ρl
ρv

)0.3685( µl
µv

)0.2363
×
(

1 − µv
µl

)2.144
Pr−0.1

l

]
hlo = 0.023Re0.8

lo Pr0.4
l kl /D

15.5 (all data)
21.3

(R290)
– –

Shah (2017) [91]

R718
R744
R717

halocarbon Rs
cryogens

HC Rs

–
pr = 0.0046– 0.787

–
– G = 15–2437

htp = FhShah
F = htp/hShah = (2.1 − 0.008 WeGT − 110Bo) ≥ 1

For horizontal channels with
Frl < 0.01, F = 1

18.6 (all data)
21.6 (R717)
9.2 (R290)

11.4,40.1 (R600a)

– –

Shah (2017) [92]

R718, R744
cryogens, R12,

R113
R22, R134a
HC Rs (R50,

R290)

–
pr = 0.0046–0.99

–
– G = 3.7–5176

htp = q/(Tw − Tsat)
q = hvFdc(Tw − Tv){

For pr > 0.8, Fdc = 2.64pr − 1.11
For pr ≤ 0.8, Fdc = 1

19.4 (all data)
28.3

(R290)
– –

Shah (2021) [93]
R718, HC Rs,

R717,
halocarbon Rs

–
pr = 0.0083–0.8

x = 0–1
q = 2.5–93.5 G = 2.3–165

Based on Longo et al. [167],

hgrav = 1.32
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data) 

11.09 (R717) 
10.02 (R290) 

– – 

Cioncolini (2011) [26] 

R22, R32, R134a, R290 
R600a 

R718, R12 
R236fa 
R245fa 

– 
p = 0.1–7.2 MPa 

x = 0.19–0.94 
q = 3–736 G = 123–3925 

1 + 𝛼 = ℎ𝑡𝑘 Nu = 77.6 × 10 𝑡 . Pr .  10 ≤ 𝑡 ≤ 800;     0.86 ≤ Pr ≤ 6.1 𝑡 =  (1 − 𝑒)(1 − 𝑥) 𝐺𝑑4𝜇  

13.0 
(all data) 

– – 
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Tsat = 24 °C 
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7.96 
(AD) 

Da Silva Lima (2009) 
[28] 

R717 
Tsat = −14–14 °C 

– 
x = 0.05–0.6 

q =12–25 G = 50–160 – – Moreno Quibén and Thome [131] 9.5 

Dalkilic (2010) [29] R600a 
Tsat = 30–43 

psat = 4–5.73 bar 
x = 0.45–0.9  
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De Oliveira (2016) 
[31] 

R600a 
Tsat = 25 °C 
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x = 0–0.92 

q = 5–60 G = 240–480 Kim and Mudawar (2013) [135] 
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(AD) 
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De Oliveira (2017) 
[32] 

R290 Tsat = 25 °C 
– 
– 

q = 5–60 G = 240–480 – – 
Zhang et al. [136] 21.66 (AD) 

R600a Mishima and Hibiki [133] −5.54 (AD) 

De Oliveira (2018) 
[33] 

R290 
Tsat = 25 °C 

psat = 952.2 kPa 
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q = 5–60 G = 240–480 Li and Wu [125] 
−8.5  
(AD) 

– – 

De Oliveira (2020) 
[34] 

R1270 
Tsat = 25 °C 

psat = 1154.4 kPa 
x = 0.01–0.99 

q = 5–60 G = 240–480 Bertsch et al. [137] 
22.8 
(AD) 

– – 

De Oliveira (2023) 
[35] 

R1270 
Tsat = 25 °C 

psat = 1154.4 kPa 
q = 5–60 G = 240–480 – – Hwang and Kim [130] 

2.65 
(AD) 

Re−1/3
lo

[
ρl(ρl−ρg)gk3

l
µ2

l

]1/3

h f c = 1.875
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Re0.445
eq Pr1/3

l kl{
f or Reeq < 1600, htp = larger o f hgrav and h f c

f or Reeq ≥ 1600, htp = h f c

20.9 (all data)
16.6,23.6 (R717)
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Shah (2022) [94]

R718, R744
halocarbon Rs,
HC Rs, R717

cryogens,
chemicals

–
pr = 0.0046–0.787

–
– G = 15–2437

htp = Fst
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data) 
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q = 2.5–66.5 G = 2–150 Longo et al. [167] 
25.5 (all 

data) 

f= (4.207 − 2.673𝛽 . ) ×× (4200 − 5.41Bd . )Re . 𝑝𝑝 .
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14.6 

Turgut (2016) [98] R717 
Tsat = −14–14 °C 

x = 0.1–0.6 
– 

q = 12–25 G = 50–160 – – Gronnerud [168] 13.9 

Turgut (2021) [99] R290 
Tsat = −35–43 °C 

– 
x = 0.01–0.99 

q = 2.5–227.0 G = 50–600 
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19.1 – – 

Turgut (2022) [100] R600a 
Tsat = −34.4– 43 °C 

x = 0.01– 0.96 
q = 5–240 G = 16.3–500 

ℎ = (ℎ . + (Fℎ ) . ) .  ℎ= 7.4756p . −𝑙𝑛(p ) . 𝑀 . 𝑞 .  F = 1 + 4.9531X .  

17.3 – – 

hl
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(

G(1−x)d
µl

)0.8
Pr0.4

l

(
λl
d

)
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Table 2. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New

PD Correlation AAD (%)

Tao (2019) [95]

HFCs
HC Rs
HFOs
R744

Tsat = −34.4–72.1 ◦C
psat = 1.0–24.2

x = 0–1
q = 2.5–66.5 G = 2–150 Longo et al. [167] 25.5 (all data)

fTP =
(
4.207 − 2.673β−0.46

)
×

×
(

4200 − 5.41Bd1.2
)

Re−0.95
eq

(
psat
pcr

)0.3 31.2 (all data)

Tao (2020) [96] R717
–

psat = 630–930 kPa
x = 0.05–0.65

– G = 21–78 hgc = 0.36Co−0.28
[

gρl(ρl−ρg)∆hlg λ3
l

l ∆Tdh

]0.25

Pr0.333
l

7.4

∆PTP = ∆PL + 2
√

∆PL∆PG + x∆PG

∆PL = fL
G2

L
2ρl

Lp
dh

= fL
G2(1−x)2

2ρl

Lp
dh

∆PL = fG
G2

G
2ρg

Lp
dh

= fG
G2 x2
2ρg

Lp
dh

14.6

Turgut
(2016) [98] R717

Tsat = −14–14 ◦C
x = 0.1–0.6

–
q = 12–25 G = 50–160 – – Gronnerud [168] 13.9

Turgut
(2021) [99] R290

Tsat = −35–43 ◦C
–

x = 0.01–0.99
q = 2.5–227.0 G = 50–600

Based on Wattelet et al. [169],

Xtt =
( 1−x

x

)C1
(

ρv
ρl

)C2
(

µl
µv

)C3

F = 1 + C4Xc5
tt

hnb = C6pC7
r (−log(pr))

C8 MC9 QC10

hcb = C11ReC12
l PrC13

l (kl /Dh)

htp =
(

hC14
nb + (Fhcb)

C14
)1/C14

C1 to C14 reported in the article [99]

19.1 – –

Turgut
(2022) [100]

R600a Tsat = −34.4– 43 ◦C
x = 0.01– 0.96 q = 5–240 G = 16.3–500

htp =
(

h4.1684
nb + (Fhcb)

6.8901
) 1

4.3074

hnb = 7.4756p0.9797
r (−ln(pr))

1.9161 M0.2722q0.6351

F = 1 + 4.9531X−0.991
tt

Xtt =
( 1−x

x

)0.6171
(

ρv
ρl

)0.3111(
v
l

)0.2527

hcb = 0.0058Re0.5758
l Pr0.2523

l (kl /Dh)

17.3

– –

R717
Tsat = 6–40 ◦C

–
x = 0.01– 0.94

q = 5–140 G = =49–2200

htp =

0.6177M0.3111Bo0.2527Fr4.9531
l Bd−0.991

(
l
v

)7.4756
×
(

ρv
ρl

)0.9797

Y
(

kl
Dh

)
Y =

{
0.2722 i f pr < 1.9161
0.6351 − p0.0058

r otherwise

12.4

Umar
(2022) [101] R290

Tsat = 8.7–10.8 ◦C
–

x = 0.1–0.9
q = 5–20 G = 50–180 – – Li and Hibiki [170] 19.47

Wang, S.
(2014) [102] R290

Tsat = −35–(−1.9) ◦C
–
–

q = 11.7–87.1 G = 62–104 Liu and Winterton [117] 7.5 Müller-Steinhagen and Heck [129] 17.0

Wang, H.
(2016) [103] R717

–
psat = 0.19–1.6

x = 0.002–0.997
q = 2.0–240 G = 10–600 Kandlikar [171]

Stephan [172]
40.9
40.9 – –



Energies 2024, 17, 1478 22 of 50

Table 2. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New

PD Correlation AAD (%)

Wen (2018) [104] R290
Tsat = 40 ◦C

psat = 1.37 MPa
–

– G = 400–800 Thome et al. (2003) [146] 7.27 Friedel [142] 7.59

Yang
(2017) [105] R600a

–
psat =

0.215–0.415 MPa
–

q = 10.6–75.0 G = 67–194 Liu and Winterton [117] 11.5

Based on Müller-Steinhagen and
Heck [129],
∆p f rict ={

[a + 2(b − a)x](1 − x)1/3 + bx3
}
×

[0.2875 + 0.0534(1 − x)−0.1208We0.423
tp(

log10Frtp
)−0.5222

]

a = fl
G2

2dρl
, b = fv

G2
2dρv

I f Rel and Rev ≤ 1187,
fl =

64
Rel

, fv = 64
Rev

I f Rel and Rev > 1187,
fl =

0.3164
Re1/4

l
, fv = 0.3164

Re1/4
v

16.6

Yuan
(2017) [106]

R134a, R22,
R717, R744

R236fa, R245fa
R1234ze

–
pr = 0.01–0.77
x = 0.10–0.98

q = 3–240 G = 50–1290

htp =
[
h2

cv + h2
nb

]1/2

hcv = 7.0 × 10−3t+1.00Re0.14
v Pr0.80

l
kl
t

hnb = 0.69 hnb, Shekriladze
hnb, Shekriladze

= 0.0122 × kl
r0

(
[p(ρv−1−ρl

−1)]
0.5

σcl ρ2
l Tsat

l h2
lvρ2

v

)0.25(
r2
0ρv hlg q

σkl Tsat

)0.7

t+ = 1√
2

Rel f f or Rel f ≤ 162

t+ = 0.6246 Re0.5244
l f f or 162 ≤ Rel f ≤ 2785

t+ = 0.03221 Re0.8982
l f f or Rel f ≥ 2785

13.7 (all data)
12.9 (R717) – –

Zhang, Y.
(2019) [107]

R290
R600a

Tsat = −35–40 ◦C
–

x = 0–0.99
q = 5–135 G = 50–500

htp =
[
(fcbhcb)

2 + (fnbhnb)
2
]0.5

hcb = 0.023Re0.8
lo Pr0.4

l λl /D
hnb = 55p0.12−0.2logRa

r (−logpr)
−0.55 M−0.5q2/3

fnb =
a1Cna5

1+a22Re
a3
l f

a4
cb
(1 + a6Rtda7 Pra8

l Wea9
l,b

Rtd =

∣∣∣1−Pr−0.4
l

∣∣∣
CnRe0.5

l

fcb = b1

{
1 + b2Xb3

tt

[
1 + b4

(
1 − Pr−0.4

l

)b5 Prb6
l Web7

v Bob8
]}b9

a1 to a9 = 1.758, 0.596, 0.133, 0.1,−0.137,
2.455 × 10−3,−0.15, 2.0, 0.677

b1 to b9 = 0.5, 1.0,−1.0, 1.044 × 10−2, 6.0, 5.5, 1.2,−0.2, 0.3

−3.6
(AD all data) – –
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Table 2. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New

PD Correlation AAD (%)

Zhang, J.
(2021) [108]

R134a
R236fa, R245fa,

R1233zd (E)
R1234ze(E)

R290
R600a

Tsat = 30–90 ◦C
–

xout = 0.01–0.05
– G = 12–93

h = 0.4703Re0.5221
eq Pr1/3

l Bd0.1674ρ∗0.2126
(

kl
Dh

)
Dh = 2b/φ γ = πb/λ

φ =
(

1 +
√

1 + γ2 + 4
√

1 + γ2/2
)

/6

8.9 (all data)
11.0 (R1270,

external
data [173])

f = 11557.62Re−1.0041
eq Bd0.3002ρ∗−0.426

10.3 (all data)
19.8 (R1270,

external
data [173])

Zhang, J.
(2021) [109]

R134a
R236fa, R245fa,

R1233zd (E)
R1234ze(E)

R290
R600a

Tsat = 55–141 ◦C
–

x = 0.06–1
q = 12.3–37.5 G = 52–137

h = hnb + hcb = Shpool + Fhl
F, S by Chen [174]

hcooper = 35Pr0.12(−log10Pr)−0.55 M−0.5q0.67

hl = 0.023Re0.8
l Pr0.4

l
kl
Dh

F = 2.35
(
X−1

tt + 0.213
)0.736

S =
[
1 + 2.53 × 10−6

(
RelF1.25)1.17

]−1

12.8 (all data)
10.9 (R290)
8.4 (R600a)

Zhang et al. [175]
11.1 (all data)

13.3 (R290)
9.9 (R600a)

Zhang, R.
(2021) [110] R717

Tsat = −10–10 ◦C
–

x = 0.1–1
q = 10–30 G = 40–200

Based on Kew and Conwell [176],
Pre-dry out:

htp = 6.56Re0.536
lo Bo0.274( 1

1−x

)0.350 λl
D

10.4
Based on Müller-Steinhagen and

Heck [177](
dp
dz

)
f
= G (1 − x)1.28 +

(
dp
dz

)
vo

x3.11

G =(
dp
dz

)
lo
+ 1.68x

((
dp
dz

)
vo
−
(

dp
dz

)
lo

) 19.6
Post-dry out:

htp = 34.12Re0.371
lo Bo0.10( 1

1−x

)−0.557 λl
D

11.4

Zhang, R.
(2022) [111] R717

Tsat = −10–10 ◦C
–

x = 0.1–1
q = 10–30 G = 40–200 Kew and Conwell [143] 20.84 Müller-Steinhagen and Heck [129] 23.71

R = refrigerant, ST, Tsat = saturation temperature, SP, psat = saturation pressure, pr = reduced pressure, pavg = average pressure, VQ = vapour quality, HC Rs = hydrocarbon refrigerants,
cHT = condensation heat transfer, bHT = boiling heat transfer, aPD = adiabatic pressure drop, AAD = average absolute deviation, AD = average deviation; “*” refers to different ways to
express the error with respect to AAD; “**” refers to the error in outlet pressure (po).
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Table 3. Summary of the types of data, geometries and research highlights of the articles included in
this review in cases of unusual configurations.

First Author/Year R Data Geometry/Material/Orientation Research Highlights

Abbas (2017) [178] R717 Experimental study
Flooded triangular pitch plain tube

bundle,
do = 19.1 mm

Outside boiling HT

Abbas (2017) [179] R717 Experimental study Triangular pitch plain tube bundle,
do = 19.1 mm

Effects of inlet vapor
quality and exit degree of
super heat on HT, outside

boiling

Ahmadpour (2020)
[180] R600a Experimental study Horizontal copper MF tube,

di = 14.18 mm

Condensation HT, effect of
lubricating oil and
nanoparticles on
condensation HT

Aprin (2011) [181]
R290

R600a
R601a

Experimental study Staggered smooth tube bundle,
do = 19.05 mm

Flow patterns, TP flow
void fraction and

convective boiling outside
tube bundle

Ayub (2017) [182] R717 Experimental study Triangular pitch plain tube bundle,
do = 19.1 mm

Effect of exit degree of
super heat on HT, outside

boiling

Ding (2017) [183] R290 Experimental study Shell side of LNG SWHE,
di = 6 mm, θ = 4◦

Flow patterns, TP
downward flow boiling

HT and PD

Ding (2018) [184] R290 Experimental study Shell side of LNG SWHE,
do = 12 mm, θ = 4◦

TP flow boiling HT and
PD

Fernández-Seara
(2016) [185] R717 Experimental study

A plain and an integral-fin
(1260 f.p.m.) titanium tube,

do = 19.05 mm
Pool boiling HT

Gil (2019) [186] RE170, R600a
R601 Experimental study Horizontal flat plate of a vessel,

d = 72 mm Nucleate boiling HT

Gong (2013) [187] R600a Experimental study
Vertical stainless-steel cylinder

boiling vessel,
di = 75 mm

Visualization study,
nucleate pool boiling HT

Huang (2020) [188] R717 Experimental study Microchannel heat sink,
dh = 280 µm Saturated flow boiling HT

Jin (2019) [189] R134a, R290, R600a,
R32, R1234ze(E)

Experimental study and
data from [190,191]

Horizontal smooth copper tube,
do = 19.05 mm

Falling film evaporation
HT

Koyama (2014) [192] R717 Experimental study Titanium MF plate evaporator,
channel height = 1, 2, 5 mm Flow boiling HT

Li (2018) [193] R290 Numerical simulation
(ANSYS CFX 12.1)

SWHE, dh = 14 mm,
tilt angle 10◦

Numerical study on forced
convective condensation

HT and frictional PD

Lin (2023) [194]

R134a, R32
R245fa, R1234ze(E)
R410a, R123, R290

R600a

External experimental
database (see [194])

Horizontal smooth tube,
do = 16–25.35 mm

Falling film evaporation
HT

Ma (2017) [195] R600a Experimental study Smooth copper TPCT,
di = 40 mm

Evaporation and
condensation HT

Moon (2022) [196] R600a Experimental study Horizontal MF tube,
di = 6.36 mm

Evaporation HT and
frictional PD

Pham (2022) [197] R290 Experimental study Horizontal MF copper tube,
di = 6.3 mm

Flow patterns and flow
condensation HT

Qiu (2015) [198] R290
Numerical simulation
CFD software ANSYS

Fluent

Upright spiral tube,
tilt angle = 10◦, di = 14 mm

Forced convective
condensation HT and

frictional PD

Salman (2023) [199] R290 Experimental study Brazed PHE with OSF Saturation flow boiling HT
and frictional PD
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Table 3. Cont.

First Author/Year R Data Geometry/Material/Orientation Research Highlights

Sathyabhama
(2010) [200] R717

External experimental
database [201–203]

Horizontal platinum wire,
d = 0.3 mm

Nucleate pool boiling HTHorizontal flat circular sur face of
silver, d = 10 mm

Horizontal, plain stainless-steel
tube, d = 19.05 mm

Shah (2017) [204]
R718, R717

halocarbon Rs
HC Rs

External experimental
database (see [204])

Copper/brass/steel, stainless steel
single tubes and plain/enhanced

tube bundles, di = 3 mm

Flow patterns, TP void
fraction and flow boiling

HT

Shah (2021) [205]
R718, R717,

halocarbon Rs, HC Rs
(R290, R600a)

External experimental
database (see [205])

Horizontal
copper/brass/aluminium-

brass/stainless steel/copper-nickel
single tube, top tube of a column

of tubes, do = 12.7–50.8 mm

Falling film evaporation
HT in full wetting and
partial dryout regimes

Shete (2023) [206] R134a, R32, R600a Experimental study
A plain and five different

re-entrant cavity (REC) copper
tubes, di = 16.5 mm

Nucleated pool boiling HT

Tian (2022) [207] R290 Experimental study
A smooth, a fin-enhanced

horizontal U-shaped titanium tube,
di1,2 = 16.65 mm

Enhanced pool boiling

Touhami (2014) [208]

R718, R717
halocarbon Rs

HC Rs
HFC

External experimental
database (see [208])

Horizontal copper/carbon
steel/stainless steel tubes,

do = 4–51 mm
Pool boiling HT

Wen (2014) [209] R600a Experimental study Circular copper tube with porous
inserts, di = 7.5 mm

Flow boiling HT and PD,
effect of the sizes of inserts

on HT and PD

Wu (2021) [210] R290 Experimental study Horizontal copper MF tube,
di = 6.3 mm Condensation HT

Yan (2021) [211] R1270 Experimental study LHP, 2.5 mm × 2.5 mm channel Flow patterns and
condensation HT

Yang (2018) [212] R290 Experimental study
Shell side of horizontal stainless

steel HBHX,
do = 14 mm, baffle angle 40◦

Flow patterns and TP
condensation HT

Yang (2019) [213] R290 Experimental study
Shell side of vertical stainless steel

HBHX,
do = 14 mm, baffle angle 40◦

Flow patterns and TP
condensation HT

Yoo (2022) [214] R290 Experimental study Semicircular channel PCHE,
dh = 1.22 mm Condensation HT and PD

Yu (2018) [215] R290 Experimental study Helical tube,
helix angle = 10◦, dh = 10 mm

Forced convective
condensation HT and

frictional PD

Zhao (2023) [216] R290 Experimental study Horizontal copper MF tube,
do = 7 mm

Flow patterns, boiling HT
and frictional PD

R = refrigerant, TP = two phase, HT = heat transfer, PD = pressure drop, PHE = plate heat exchanger,
MF = microfin, di, dh, do = inner, hydraulic, outer diameter, HC Rs = hydrocarbon refrigerants, LNG = liq-
uefied natural gas, SWHE = spiral wound heat exchanger, HBHX = helically baffled shell-and-tube heat ex-
changer, TPCT = two-phase closed thermosyphon, PCHE = printed circuit heat exchanger, LHP = loop heat pipe,
OSF = offset strip fin, θ = winding angle, f.p.m. = fins per meter.
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Table 4. Summary of the operating conditions, HTC and PD correlations of the papers included in this review, in cases of unusual configurations.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New PD

Correlation AAD (%)

Abbas
(2017) [178] R717

Tsat =
−20–(−1.7) ◦C

–
–

q = 5–45 – htp = 70q0.9−0.4p0.1
r p0.55

r (−logpr)
−0.6 * ±15% – –

Abbas
(2017) [179] R717

Tsat =
−20–(−1.7) ◦C

–
xin = 0–0.30

q = 5–45 – htp = 70q0.9−0.4p0.1
r p0.55

r (−logpr)
−0.6e−0.075Tsup e−0.5xin * 93% ± 20%

Ahmadpour
(2020) [180] R600a

Tsat = 41.4–52.3 ◦C
psat = 550–700
x = 0.03–0.76

– G = 54–90
Yu and Koyama [217]
Cavallini et al. [218]

Kedzierski and Goncalves [219]
* ±20 – –

Aprin (2011) [181] R290R600aR601a
–

p = 0.2–12 bar
–

q = 3–53 G = 8–15


JG < 0.15 ms−1; h1 = 55p0.12−0.2log(Ra/0.4)

r [−log(pr)]
−0.55 M−0.5q0.67

JG > 0.35 ms−1; Nu =
h2do
λG

= 387p0.17
r Re0.34

v Pr0.33
v

0.15 ms−1 < JG < 0.35 ms−1; h = max(h1, h2)

* 92% ± 20%
(all data) – –

Ayub
(2017) [182] R717

Tsat =
−20–(−1.7) ◦C

–
–

q = 5–45 – htp = 70q0.9−0.4p0.1
r p0.55

r (−logpr)
−0.6e−0.075Tsup * ±15%

Ding (2017) [183] R290
–

psat = 0.25 MPa
x = 0.2–1

q = 4–10 G = 40–80

htp = Ehcv + Shnb

hcv = 0.039λl

(
v2
g

)−1/3
Re0.09Pr0.99

hnb = 55p0.12−0.4343lnRa
r (−0.4343lnpr)

−0.55 M−0.5q0.67

E = 1 +
(
9.42 × 10−6

)(
ϕ2)0.92

Re0.81

S =
(
4.76 × 10−5

)
We−0.0047Bo0.061p0.094

r

* 98% ± 20% – –

Ding (2018) [184] R290
Tsat = −19.4 ◦C
psat = 0.25 Mpa

x = 0.2–0.9
q = 4–10 G = 40–80

htp = Ehcv + Shnb

hcv = 0.039λl

(
v2
g

)−1/3
Re0.04

f ilmPr0.65

hnb = 55p0.12−0.4343lnRa
r (−0.4343lnpr)

−0.55 M−0.5q0.67

E = 1 + 3.25 × 10−4
(
ϕl

2)−0.47Ptradi+1.03
Re

0.040Ptlong+0.79
f ilm

S = −0.3 + 1.19We0.25Bo0.068Ptlong+0.70Ptradi−0.69

Ptlong =
plong+D

D ; Ptradi =
pradi+D

D

* 95% ± 20%

∆Pf rict,tp = ϕ2
l ∆Pf rict,l

ϕ2
l = 1 + C

Xtt
+ 1

X2
tt

∆Pf rict,l =
2fl N[G(1−x)]2

ρl
C =

1416.31Re−0.53
l U0.0041

v Pt−2.41
long Pt−5.40

radi − 2

* 95% ± 25%

Fernández Seara
(2016) [185] R717

Tsat = 4–10 ◦C
–
–

– NA
ho = C(q/Ao)

0.77p1.31
r

q = heat f low[W]; Ao = πdo

L
{

C = 87.35 f or plain tube
C = 110.46 f or integral − f in tube

* ±5.5 – –
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Table 4. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New PD

Correlation AAD (%)

Gil (2019) [186] RE170, R600a
R601

Tsat = 10 ◦C
–
–

q = 5–70 NA

hnb = 42 λl
d0

[
qd0

λl Tsat

]C1
(−log10pr)

−1

C1 = 0.4p0.78
r

(
ρv
ρl

)−0.59

d0 = 0.0208β

[
σ

g(ρl−ρv)

]
β = contactangle = 35◦

3.5 (all data) – –

Gong
(2013) [187] R600a

–
psat = 0.1–0.5 MPa

–
q = 20–150 NA Jung et al. [220] 6.9 – –

Huang
(2020) [188] R717

Tsat = 25, 35 ◦C
–
–

q = 60.2–
134.3 W/cm2 G = 165–883

h = 0.00061(S + F)RelPr0.4
l Fa0.11 λl

dh
/ln
(

bµl f
µlw

)
F = 1250Bo0.95Re0.22

lo
( x

1−x

)1.06

S = 2000Bo1.02Re0.22
lo ; b = 1.02

5.2 – –

Jin (2019) [189]
R134a, R290,
R600a, R32
R1234ze(E)

Tsat = 6–10 ◦C
–
–

q = 10–60 –

Full wetting regime:
Nu = 23.3Re0.8174

Γ Bo0.6331Pr−0.0864

ReΓ = 3.92 × 102 − 3.5 × 103

Bo = 5.16 × 10−3 − 3.30 × 10−1

Pr = 1.77 − 4.46

* 96.7% ± 30%

– –
Partial dryout regime:

Nu = 11.7Re0.8931
Γ Bo0.5278Pr−0.0287

ReΓ = 1.95 × 102 − 8.33 × 102

Bo = 2.2 × 10−2 − 3.56×10−1

Pr = 1.77 − 4.46

* 97.5% ± 30%

Koyama
(2014) [192] R717

–
psat = 0.7, 0.9 MPa

–
q = 10, 15,

20 G = 5–7.5

For δ = 1 mm,
h
hl

= 48.0
(

1
Xvv

)0.95

hl = 0.023
(

λl
dh

)[
G(1−x)dh

µl

]0.8
Pr0.4

l

* 92% ± 30%

– –
For δ = 2 and 5 mm,

h
hl

= 41.8
(

1
Xvv

)0.96
(1/Xvv ≥ 1)

h
hl

= 47.1
(

1
Xvv

)0.51
(1/Xvv ≤ 1)

* 87% ± 30%
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Table 4. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New PD

Correlation AAD (%)

Li (2018) [193] R290
–

psat = 1.2–2.0 MPa
x = 0.15–0.95

q = 5–20 G = 150–350

htp = 0.021 λl
dh

Re0.8
lo Pr0.43

l

(
1 + 3.5 dh

D

)
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17.3 – – 

lo =

[
1 +

(
2
∑

i=1
ai xbi

)(
ρv
ρl

)c
Frd

lo

]
××[Bo(1 − x) + 1]e

a1 = 0.0830, a2 = −0.076, b1 = 0.8161, b2 = 16.29
c = −1.364, d = 0.047, e = −543.1

4.00

(
dp
dl

)
tp
=(

dp
dl

)
lo
+ φlv

[(
dp
dl

)
vo
−
(

dp
dl

)
lo

]
(

dp
dl

)
lo
=

[
0.3164
Re0.25

lo
+ 0.03

(
dh
D

)0.5
]

G2
2ρl dh(

dp
dl

)
vo

=

[
0.3164
Re0.25

lo
+ 0.03

(
dh
D

)0.5
]

G2
2ρv dh

φlv =

(
3
∑

i=1
ai xi

)(
ρl
ρv

)b
(

3
∑

i=1
ciFri

lo

)
a1 = 0.5311, a2 = 1.794,

a3 = −1.270, b = −0.1703
c1 = 8.613, c2 = −4.975, c3 = 0.7734

3.37

Lin (2023) [194]

R134a, R32
R245fa

R1234ze(E)
R410a, R123,
R290, R600a

Tsat = 4.85–26.7 ◦C
–
–

q = 2.5–168 –

Nuwetting = max(Nucv , Nucomb)

Nucv =
(
Nu5

lam + Nu5
tur
)1/5

Nulam = 2.65Re−0.158
f f Ka0.0563

f f

Nutur = 0.03Re0.2
f f Pr0.7

Nucomb = NunbS + NucvE
Nunb =

hnbλl
d

hnb = 10 kl
dbubble

[
qdbubble
λl Tsat

]a
p0.1

r (1 − Tr)
−1.4(Prl)

−0.25

a = 0.855
(

ρv
ρl

)0.309
p−0.437

r

dbubble = 0.511
[

2σ

g(ρl−ρv)

]0.5

S = Pr0.474
l Re0.968

f f Bo1
f f Ka0.565

f f Ga1
bubblep−0.037

r ×

×π−0.883
0

(
ρl
ρv

)−1( q
qcri

)0.99

E = Pr−0.465
l Re0.642

f f Bo0.46
f f Ka−0.242

f f Ga−1
bubble ×

×p−0.253
r π0.418

0

(
ρl
ρv

)1( q
qcri

)−1

Re f f = 4Γ/µ
Bo f f = q(πd)/Γilv

Gabubble = gd3
bubbleν−2

l
π0 = q2d(ρl − ρv)/i5/2

lv µl

qcri=

(
π2
60

)(
30.25

)[
2g
(

ρl−ρv
ρl+ρv

)
+ σ

(ρl+ρv)R2

]0.5

×

×
[

g(ρl−ρv)
σ + 1

2R2

]−0.75

10 (all data)

– –

Simplified correlation
S = Re0.043

f f Bo−0.182
f f

E = Re−0.496
f f Bo−0.377

f f

14 (all data)
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Table 4. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New PD

Correlation AAD (%)

Ma (2017) [195] R600a
Tsat = 54.6 ◦C

psat = 0.77 MPa
–

– NA Rohsenow [221] 10.3 – –

Moon
(2022) [196] R600a

Tsat =
−25–(−10) ◦C

–
x = 0.2–0.9

q = 9–15 G = 20–40

h = hnb + hcv
hnb = 0.9664hCooperS

hCooper = 55p0.12
r [−log(pr)]

0.55 M0.5q0.67

S = 1.36
X0.36

tt hcv = 1.0274hlo [1 + 1.128x0.8170
(

ρl
ρv

)0.3685( µl
µv

)0.2363

×
(

1 − µl
µv

)2.144
Pr0.1

l ]Rx2.14(BdFr)−0.2531
(

G0
G

)0.0677

hlo = 0.023 λl
d Re0.8

lo Pr0.333
l

8.26

(
dp
dz

)
f
= ϕ2

lo

(
dp
dz

)
f ,lo

= ϕ2
lo2flo

G2
dρl

A

A = 2.358
(

G
G40

)1.2464
; flo =

64
Relo

;
G40 = 40

ϕ2
lo = Z + 1.3529FH(1 − E)W

Z = (1 + x)2 + x2 ρl
ρv

(
µv
µl

)0.2

F = x0.9525(1 + x)0.414

H =
(

ρl
ρv

)1.132(
µv
µl

)0.44(
1 − µv

µl

)3.542

1 − E = −0.331ln
[

µl Gx
ρvσ

]
− 0.0919{

E = 0.95 i f E > 0.96
E = 0 i f E < 0
W = 1.398pr

4.82

Pham
(2022) [197] R290

Tsat = 48 ◦C
–
–

q = 3–9 G = 100–300
h =

λl
di

0.007079Re0.1112Ja−0.232xPr−0.68 ×

×p−0.578x2
r (−log(Pr))−0.474x2

Sv2.531x
8.54 – –

Qiu (2015) [198] R290
–
–

x = 0.1–0.9
– G = 150–250 Boyko [222] 8.8 Fuchs [223] 4.05

Salman
(2023) [199] R290

Tsat = 5–20 ◦C
–

x = 0.14–0.89
q = 7.5–15 G = 20–60 Nu = Z1

(
Reeq

)Z2 (Rel)
Z3 (Pr)Z4

Z1 to Z4 = 2.251, 0.549, 0.043, 0.333
10

ftp = Z1
(
Reeq

)Z2 (Rel)
Z3
(

ρl
ρv

)Z4

Reeq < 2500; Z1 to Z4
= 0.061, 1.251,−0.501,−0.951

Reeq > 2500; Z1 to Z4
= 0.091, 1.101,−0.551,−1.021

14

Sathyabhama
(2010) [200] R717

–
p [201] = 0.7 MPa
p [202] = 0.7 MPa
p [203] = 0.4 MPa

–

q [201] =
72–1000
q [202] =
72–2800
q [203] =

8–60

NA
Kruzhilin [224]
Mostinski [225]
Mostinski [225]

7.54 (AD)
−3.16 (AD)
29.8 (AD)

– –
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Table 4. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New PD

Correlation AAD (%)

Shah (2017) [204]
R718, R717

halocarbon Rs
HC Rs

–
pr = 0.005–0.2866

x = 0–0.98
q = 1–1000 G = 0.17–1391

Regime I— Intense Boiling Regime (YIB > 0.0008) :
YIB = FpbBoFr0.3

Fpb = hpb,actual /hCooper
Fpb = 1 unless test data or an alternative correlation is used

htp = FpbhCooper
hCooper=55.1q0.67p0.12

r (−logpr )
−0.55 M−0.55

Regime II—Convective Boiling Regime (0.00021 < YIB ≤ 0.0008) :
φ = φ0

Regime III—Convection Regime (YIB ≤ 0.00021) :
φ = 2.3

Z0.08Fr0.22

Z =
( 1−x

x

)0.8
p0.4

r

5.2 (all data)
24.25 (R717)
14.3 (R600a)

– –

Shah (2021) [205]

R718, R717,
halocarbon Rs,
HC Rs (R290,

R600a)

–
pr =

0.00059–0.19144
–

q = 1–208 –

htp is the larger o f hc,lam and
(
hpb + hc,turb

)
hc,lam = 0.821

(
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17.4 (all 
data) 

16.9 (HC Rs) 
– – 2

gλ3

)−1/3
Re−0.22

l

hc,turb = 0.0038
(
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gλ3

)−1/3
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17.4 (all 
data) 

16.9 (HC Rs) 
– – 

α

)0.65

hpb from Mostinski for HC Rs:
hpb = 0.00417q0.7 p0.69

c
(
1.8p0.17

r + 4p1.2
r + 10p10

r

)
hpb from Cooper for all other fluids:

hpb = 55p0.12
r (−0.4343lnpr)

−0.55 M−0.5q0.67

17.4 (all data)
16.9 (HC Rs)
13.0 (R717)

– –

Shete
(2023) [206]

R134a, R32
R600a

Tsat = 7–10 ◦C
–
–

q =
6.92–51.71 NA

Plain: Stephan and Abdesalam [226] * ±30%

– –
For REC tubes:

Nu = Re0.773Pr0.036
l

(
psat
pc

)2.721( ρl
ρv

)2.765
β−0.1617

β = mouth size to fin height ratio
* ±20%

Tian (2022) [207] R290
Tsat = 20–40 ◦C

–
–

q = 2.5–10.5 NA Smooth tube: R-J [227]
Enhanced tube: Copper [153]

10.93
11.48 – –

Touhami
(2014) [208]

R718, R717
halocarbon Rs
HC Rs, HFC

–
p = 0.2–106.87 bar

–
q = 0–670 – h = 0.5p0.10

c l−0.20
c c0.40

p H−0.67
lv µ−0.27λ0.60 p−010Ra0.07

q d−0.20q0.67 32% (all data) – –

Wen (2014) [209] R600a
Tsat = 10 ◦C

–
x = 0.076–0.87

q = 12–65 G = 120–1100 Nu = 8.332Bo0.35Re0.48Pr0.74ε0.47 * 95% ± 20% f = 21.093Re−0.731ε−6.558 * 95% ± 20%

Wu (2021) [210] R290

Tsat = 40–55 ◦C
psat = 1.37–1.91

MPa
x = 0–1

q = 3–8 G = 100–250 Yu et al. [217] 15.52 – –

Yan (2021) [211] R1270
Tsat = 283 K

–
–

q = 5–70 G = 2.2–26.5 Cavallini et al. [228] * ±20 – –
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Table 4. Cont.

First
Author/Year R ST/SP/VQ Heat Flux

(kW/m2)
Mass Flux
(kg/m2s) Best Reported HTC Correlation/New HTC Correlation AAD (%) Best Reported PD Correlation/New PD

Correlation AAD (%)

Yang (2018) [212] R290
–
–

x = 0.1–0.9
q = 3–7 G = 20–40

hs
λl

[
µ2

l
ρl(ρl−ρv)g

]1/3

=

=

[(
1.11Re−0.3

f ilm

)4
+
(

0.068Re0.2
f ilm

)4
]1/4

Re f ilm = 4Γ
xl

= 4πdq
xl i f v

* 86% ± 10% – –

Yang (2019) [213] R290
–
–

x = 0.2–0.9
q = 3–7 G = 20–40

h = λl

[
ρl(ρl−ρv)g

µ2
l

]1/3
[

aReb
f ilm(1+Rec

v)

1.08Re1.22
f ilm−5.2

]
(
48.5 < Re f ilm < 684.6, 6150 < Rev < 61153

)
a = 0.00063, b = 1.4, c = 0.5

* 93% ± 20% – –

Yoo (2022) [214] R290
Tsat = −5.47–7.92
psat = 400–600 kPa

x = 0–1
– G = 40–90 Nu = 1.18Re1/3

eq,tes,hPr1/3
l,test,h * ±15 Lockhart and Martinelli [229] –

Yu (2018) [215] R290
Tsat = −40–27 ◦C

–
x = 0.1–0.9

q = 1.4–9.6 G = 200–400 Shah [113] * ±20 Müller-Steinhagen and Heck [129] * ±20

Zhao
(2023) [216] R290

Tsat =
−23.55–(−4.35) ◦C
psat = 0.215–0.415

MPa
x = 0–0.96

q =
10.6–73.0 G = 70–190 Cavallini [230] 29.39 Rollmann and Spindler [118] 16.24

R = refrigerant, ST, Tsat = saturation temperature, SP, psat = saturation pressure, pr = reduced pressure, pavg = average pressure, VQ = vapour quality, HC Rs = hydrocarbon refrigerants,
AAD = average absolute deviation, AD = average deviation; “*” refers to different ways to express the error with respect to AAD.
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3.1. Distribution of Articles over Time

As mentioned above, this research focused on the last fifteen years. Figure 2 shows
a sharp increase in the number of studies between 2015 and 2016. This may be due to a
growing interest in natural refrigerants, perhaps as a result of technological developments,
regulatory changes or increased environmental awareness. Of particular note is Regulation
(EU) No 517/2014 [231], which came into force on 1 January 2015 and aims to reduce F-gas
emissions in the EU by limiting gases with a high global warming potential (GWP).
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3.2. Research Approach
3.2.1. Data

When analysing the authors’ approach to the experimental data on heat transfer
coefficient and pressure drop, it can be seen that N = 71 were carried out by the authors
using their own experimental data, while N = 28 used external experimental databases
from other studies. As shown in Figure 3, only N = 2 articles used numerical simulations.

Focusing on each refrigerant (Figure 4), the use of own experimental data is predomi-
nant for R290, R600a and R1270. For R717, both approaches are used equally.
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3.2.2. HTC and PD Correlations

Figure 5 shows the authors’ different approaches to the correlations. In particular, a
new correlation was developed in N = 47 of the HTC evaluations, while in N = 38, the
authors reported the correlation from the literature that best predicted the data.

For pressure drop, the number of best correlations already published (N = 30) out-
weighed the development of a new model (N = 21).
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3.2.3. Test Conditions

Of the 101 selected papers, N = 50 deal only with HTC, N = 16 deal only with pressure
drop and the rest (N = 35) analyse both HTC and pressure drop.

A closer analysis of the 85 HTC papers shows in Figure 6 that most of them (N = 53)
deal with the evaporating condition, N = 30 with condensation and only N = 2 with the
heat transfer correlations under both conditions (Figure 6).
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3.3. Operating Conditions
3.3.1. Hydraulic Diameters

An analysis of the geometries used, reported in Figure 7, shows that the most com-
monly studied diameters range from 0.5 to 9 mm, with the largest number of evaluations
in the (1, 2] mm range. The (0, 0.5] and (9, 50] mm ranges are of less interest to the authors.
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3.3.2. Saturation Temperatures

From the analysis of saturation temperatures in the evaporating condition shown in
Figure 8, most of the authors’ evaluations cover the range from −40 to 40 ◦C. Less studied
are the conditions from 50 to 150 ◦C. On the other hand, for the condensing condition,
the low temperatures (from −40 to 20 ◦C) are the least studied, followed by the range
(50, 100] ◦C. The most evaluated range is 30–40 ◦C, followed by 40–50 ◦C and 20–30 ◦C.

3.3.3. Vapour Quality

From the vapour quality data summarised in Table 2 and shown in Figure 9, it can be
seen that all ranges were investigated.
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3.3.4. Specific Heat Flux

The analysis of the specific heat flux data shows a higher interest in the heat flux values
from 0 to 30 kW/m2, with a peak in the range from 10 to 20 kW/m2, as shown in Figure 10.
For the range from 30 to 740 kW/m2, a decreasing trend in the number of evaluations is
observed as the heat flux increases.

Focusing on the specific heat fluxes studied for each refrigerant, a similar trend is
found for all of them.

3.3.5. Specific Mass Flux

As shown in Figure 11, the most studied specific mass fluxes range from 0 to 600 kg/m2s;
the intervals from 600 to 5600 kg/m2s are less adopted.

Focusing on the specific mass fluxes adopted for each refrigerant, a similar trend is
found for all of them.
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3.4. Refrigerants

Among the selected articles, most concern propane and isobutane, as shown in
Figure 12.
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Hydraulic Diameters and Saturation Temperatures

An analysis of the diameters used in ammonia studies shows that diameters from 0.5
to 15 mm are all widely studied, with a greater focus on those from 1 to 3 mm. Less used
are the (0, 0.5] mm range and diameters from 15 to 50 mm.

Based on the R600a geometry data, the most studied diameter range is that from 0.5 to
12 mm, with the highest number of evaluations relating to the (7, 9] and (1, 2] mm ranges.
Of less interest to authors are the (0, 0.5] mm range and diameters from 12 to 50 mm.

For propane, most of the authors’ evaluations cover the range from 0.5 to 15 mm, with
a focus on the (0.5, 3] mm range. As with ammonia, the (0, 0.5] mm range and diameters
from 15 to 50 mm are less commonly used. The few evaluations on R1270 take into account
all the diameter ranges.

Looking more closely at the saturation temperature ranges for each refrigerant, the
evaluations for ammonia cover the range from 20 ◦C to 60 ◦C in the condensing conditions.

For R1270, R600a and R290, the range of condensing saturation temperatures consid-
ered is wider, from −40 ◦C to 80 ◦C, and the most evaluated range is from 30 to 40 ◦C.

When analysing the evaporation temperatures, it can be seen that for ammonia, most
of the authors’ evaluations cover the range −40 ◦C to 50 ◦C, whereas for R1270, the studies
focus on saturated temperatures from 0 ◦C to 30 ◦C.

For R600a and R290, the most commonly used temperatures are from 0 ◦C to 40 ◦C
and from −40 ◦C to 40 ◦C, respectively.

For evaporating temperatures above 50 ◦C, there are no evaluations for R717 and
R1270, while there are a few for R600a and R290.

4. Correlations

Correlations for HTC and pressure drop for each refrigerant are considered below,
focusing on error ranges and best correlations. Only articles where the error was evaluated
in terms of absolute average deviation are considered, and an AAD threshold of 12% is
used to identify the best models.

4.1. R717

Out of a total of 28 studies on ammonia, only 20 that expressed the error in terms of
AAD were included in this analysis. In particular, for the condensation HTC, the Tao [96]
correlation predicts the experimental data well, with an AAD of 7.4%. The maximum error
in terms of AAD is 41% for the Shah correlation, as reported in [77]. For the evaporation
HTC the proposed correlations show errors ranging from 4.7% to 40.9%, the best being
those of Fang [144], Choi [25] and Zhang [110] with AADs of 4.7%, 11.09% and 11.4%,
respectively. For PD, the AAD ranges from 9.5% to 23.7%; the correlation by Moreno,
Quiben and Thome [131] shows a good prediction of the data with an AAD of 9.5%.

4.2. R1270

Of the 16 studies on R1270, the 9 that reported the error in terms of AAD were
considered. For the condensation HTC, the errors range from 11.0% to 32.6% and the most
reliable correlations are those of Dorao and Fernandino [122] and Zhang [108] with an AAD
of 11.0%. For the evaporating condition, the best predictions of the data are the Longo [157],
Liu and Winterton [117] and Sun and Mishima [141] models, with AADs of 6.9%, 8.5% and
8.6%, respectively. The maximum error is 27.1% for the Gorenflo correlation, as reported
in [154].

For PD, the average absolute deviation ranges from 4.4% to 19.8%; the correlations
by Xu and Fang [119], Macdonald and Garimella [69] and Friedel [142] show the best
predictions of the data with AADs of 4.4%, 6.4% and 7.3%, respectively.

4.3. R600a

Of the 45 studies on R600a, only 23 report the AAD error. In particular, for the
condensation HTC, the correlations by Dorao and Fernandino [122], Haraguchi et al. [149],
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Cao [23] and Shah [89] predict the experimental data well, with AADs of 5.8%, 6.57%, 9.8%
and 11.2%, respectively. The maximum error in terms of AAD is 17.4%, as reported in [93].

Regarding the evaporation HTC, the proposed correlations show errors ranging from
6.2% to 40.1%, and the best ones are those of Fang et al. [144], Shah [121], Shah [91] and Liu
and Winterton [117], with AADs of 6.2% and 10.2% (for [65] and [39], respectively), 6.4%,
11.4% and 11.5%, respectively.

For PD, the AAD ranges from 6.6% to 32.52%; the correlations by Xu and Fang [119],
Xu and Fang [124], Cao [23], Sempértegui-Tapia [87], Zhang [175] and Nualboonrueng [145]
show good predictions of the data with AADs of 6.6%, 11.0%, 7.3%, 9.3%, 9.9% and 10.18%.

4.4. R290

Out of a total of 54 studies on propane, only 38 that reported the error in terms of
AAD were included in this analysis. For the condensation HTC, the errors range from
4.9% to 25.8% and the most reliable correlations are those by Dorao and Fernandino [122],
Macdonald [70], Shah [93], Moser [138], Thome [146], Akers [155], Shah [89] and Mac-
donald [69] with AADs of 4.9%, 5.4%, 6.5% and 11%, 7.22%, 7.27%, 9.0%, 10.5% and 11%,
respectively. For the evaporating condition, the best predictions of the data are by the mod-
els by Liu and Winterton [117], Fang et al. [144], Longo et al. [157], Lillo [60], Pamitran [81],
Shah [91], Choi [25], Zhang [109] and Aizuddin et al. [115] with AADs of 6.2% and 7.5%
(for [10] and [102], respectively), 6.5%, 7.7%, 8.2%, 8.27%, 9.2%, 10.02%, 10.9% and 11.6%,
respectively. The maximum error is 33.16%, as reported in [75].

For PD, the average absolute deviation ranges from 6.88% to 20.8%; the correla-
tion by Sun and Mishima [159], Sempértegui-Tapia [87], Friedel [142], Macdonald and
Garimella [69], Del Col et al. [140], Patel [83], Choi [24] and Xu and Fang [119] show the
best predictions of the data with AADs of 6.88%, 7.2%, 7.59%, 7.9%, 9.1%, 10.08%, 10.84%
and 11.7%, respectively.

5. Discussion

Of the four refrigerants considered in this review, R600a has the most reliable correla-
tion for condensing HTC, with a maximum AAD error of 17.4%. For evaporating HTC, the
smallest maximum error is found for R1270 and is equal to 27.1%.

For pressure drop, for both R1270 and R290, the correlations proposed by the au-
thors show good reliability in predicting the data, with maximum AADs of 19.8% and
20.8%, respectively.

Considering the intervals studied by the authors, the widest diameter range of validity
of the correlations is 2–49 mm in [89]; the widest saturation temperature range of validity is
from −34.4 ◦C to 72.1 ◦C for condensation in [95] and from 55 ◦C to 141 ◦C for evaporation
in [109]. For specific mass flux and specific heat flux, the widest ranges of validity are
3.7–5176 kg/m2s in [92] and 3–736 kW/m2 in [26], respectively.

Among the articles reported in Tables 1 and 2, propane and isobutane are the most
studied refrigerants.

The use of the authors’ own experimental data predominates over the use of external
experimental databases. For HTC, most of the studies deal with the development of a new
correlation, whereas for pressure drop, the number of best correlations that are already
published prevails.

Of the 101 papers selected, 50 deal only with HTC, 16 deal only with pressure drop
and the remaining 35 analyse both HTC and pressure drop; most of the HTC papers deal
with the evaporating condition.

With regard to the geometries, the most commonly studied diameters range from 0.5
to 9 mm, with the largest number of evaluations concerning the (1, 2] mm range.

Among the unusual configurations, 12 papers refer to various geometrical config-
urations (e.g., helicoidal tubes or heat pipes, etc.), 6 papers refer to heat transfer in the
case of microfin tubes, 6 papers analyse the pool boiling heat transfer, 6 papers deal with
external HTC, and 3 papers study falling film evaporation. One paper deals with a ther-
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mosyphon configuration. It could be noted that limited attention has been directed in the
available literature to providing experimental correlations for configurations widely used
in practice (such as shell-and-tube heat exchangers, different types of fins, falling film heat
transfer, etc.).

Regarding the analysis of saturation temperatures in the evaporating conditions, most
of the authors’ evaluations cover the range from −40 to 40 ◦C; for the condensing condition,
most of the authors studied the temperature range from 20 to 50 ◦C.

It should be noted that a small number of evaluations (and, therefore, correlations)
focus on high-temperature condensation (50–80 ◦C). These temperature ranges could be
studied in view of the high-temperature applications of heat pumps. In fact, in the near
future, high-temperature heat pumps could be installed in buildings that have not yet been
subject to energy-saving measures. Many studies are dedicated to propane, as efforts are
also focused on it for domestic applications (small machines). For centralised applications
in residential or public buildings, the use of high-capacity and high-temperature machines
could be considered; in this case, propane or ammonia could be interesting and should be
reconsidered and further investigated.

6. Conclusions

In this work, available data on the existing correlations of heat transfer coefficient and
pressure drop for natural refrigerants have been collected through a systematic search.

For the articles considered in this review, the operating conditions are reported in terms
of diameter, saturation temperatures, vapour quality, specific heat flux and specific mass
flux. The results show that more attention is paid to the evaporation behaviour with respect
to condensation and that two refrigerants (propane and isobutane) are diffusely studied.

The available literature has limited focus on providing experimental correlations for
natural refrigerants in configurations that are widely used in practice.

In the studies reported in this review, the correlation in the case of high condensa-
tion temperature is reported in a few cases. This lack of information requires further
investigation in view of the applications of heat pumps in heating systems, without
modification to the distribution systems in buildings that have not yet been subject to
energy-saving measures.
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Nomenclature

Roman
cp Specific heat capacity [J/kgK]
d Diameter [m]
g Acceleration of gravity [m/s2]
G Specific Mass flux [kg/m2s]
h Heat transfer coefficient [W/m2K]
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hlv Latent heat of vaporization [J/kg]
i Specific enthalpy [J/kg]
Jv Vapour superficial velocity [m/s]
Lh Heated length [m]
M Molecular mass [kg/kmol]
N Number of tube rows per meter
p Pressure [Pa]
pr Reduced pressure, pr = psat/pc
q Specific Heat flux [W/m2]
Ra Mean roughness height [µm]
Rx Area enhancement [–]
SV Specific volume, SV = (Vv−Vl)

V = Vv−Vl
xVv+(1−x)Vl

T Temperature [◦C]
x Vapour quality [–]
Greek letters
β Chevron angle [◦]
β* Reduced chevron angle [–]
δ Channel height [m]
∆p Pressure drop [Pa]
θ Winding angle [◦]
λ Thermal conductivity [W/mK]
µ Dynamic viscosity [Pa·s]
ν Kinematic viscosity [m2/s]
ρ Density [kg/m3]
ρ* Density ratio, ρ∗ = ρl/ρv

ρtp Two phase density, ρtp =
(

x
ρv

+ 1−x
ρl

)−1

σ Surface tension [N/m]
Subscripts
avg Average
c Critical
cb Convective boiling
eq Equivalent
exp Experimental
flat Flattened tubes
frict Frictional
h Hydraulic
i Inner
l Liquid
lf Liquid film
lo Liquid only
loc Local
nb Nucleate Boiling
o Outer
pb Pool boiling
pred Predicted
sat Saturation
v Vapour
vo Vapour only
w Wall
Abbreviations
AD Average deviation
aPD Adiabatic flow pressure drop
AAD Absolute average deviation
CFCs Chlorofluorocarbons
f.p.m. Fins per meter
GWP Global warming potential



Energies 2024, 17, 1478 41 of 50

HBHX Helically baffled shell-and-tube heat exchanger
HCFCs Hydrochlorofluorocarbons
HC Rs Hydrocarbon refrigerants
HFCs Hydrofluorocarbons
HFO Hydrofluoroolefin
HT Heat transfer
bHT Boiling heat transfer
cHT Condensation heat transfer
HTC Heat transfer coefficient
LHP Loop heat pipe
LNG Liquefied natural gas
MF Microfin
ODF Offset strip fin
ODP Ozone depletion potential
PCHE Printed circuit heat exchanger
PD Pressure drop
PHE Plate heat exchanger
R Refrigerant
ST Smooth tube
SWHE Spiral wound heat exchanger
TP Two phase
TPCT Two-phase closed thermosyphon
VQ Vapour quality
Dimensionless numbers
Bo Boiling number, Bo =

q
Ghlv

Bd Bond number, Bd =
g(ρl−ρv)d2

σ

Cn Confinement number, Cn = (σ/g(ρl−ρv))
0.5

d
Co Convection number,Co =

(
1−x

x

)0.8( ρv
ρl

)0.5

Fa Fang number, Fa = (ρl−ρv)σ
G2d

ϕ2
f Two-phase frictional multiplier (Chisholm), ϕ2

f = 1 + C
Xtt

+ 1
X2

tt

Frl Liquid Froude number, Frl =
[G(1−x)]2

gdρ2
l

f Friction factor ≡ Darcy factor, f = 2∆p
ρv2

d
L

fFann Fanning friction factor, fFann =
∆p

2ρv2
d
L

Ja Jacob’s number, Ja = hlv
cpl ∆Ts

Ka Kapitza number, Ka = µ4g/ρσ3

Nu Nusselt number, Nu = hL
λ

Pr Prandtl number, Pr = cpµ

λ

Reeq Equivalent Raynolds number, Reeq = Gdh
µl

[
(1 + x) + x

(
ρl
ρv

)0.5
]

Rel Liquid Reynolds number, Rel =
(1−x)Gd

µl

Rev Vapour Reynolds number, Rev = xGd
µv

Reko Liquid only (k = l) or vapor only (k = v) Re, Reko = Gd
µk

We Weber number, We = G2d
ρσ

Xtt Lockhart–Martinelli parameter, Xtt =
(

ρv
ρl

)0.5( µl
µv

)0.1( 1−x
x

)0.9

(Turbulent–Turbulent flow)

Xvv Lockhart–Martinelli parameter, Xvv =
(

ρv
ρl

)0.5( µl
µv

)0.5( 1−x
x

)0.5

(Laminar–Laminar flow)
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