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Abstract: Converting carbon dioxide (CO2) into valuable chemicals such as fossil resources via
photocatalysis requires the development of advanced materials. Herein, we coupled zirconium-
based metal–organic frameworks (MOFs) containing porphyrin and Cu-porphyrin with anatase
TiO2. The effect of the porphyrin metalation proportion was also investigated. Notably, while
the use of free-base porphyrin as the organic linker resulted in the development of PCN-224, the
presence of Cu-porphyrin provided mixed-phase MOF structures containing both PCN-224 and
PCN-222. MOF/TiO2 composites bearing partial (50%) metalated porphyrin were proven more active
and selective towards the production of CH4, at ambient conditions, in the gas phase and using
water vapors without the use of hole scavengers. The optimized composite bearing 15 wt.% of the
partial metalated MOF was three times more active than pure TiO2 towards CH4 production. This
study provides insights on the effect of precise materials engineering at a molecular level on the
development of advanced MOF-based photocatalysts for CO2 reduction.

Keywords: metal–organic frameworks; CO2; composites; TiO2; photocatalysis; PCN; metalated porphyrin

1. Introduction

Currently, there is a great need for alternatives to deal with the increasing global
energy requirements, the fossil resource depletion, but mostly the environmental crisis
originating from the rapid CO2 accumulation in the atmosphere due to fossil fuel usage.
To this end, photocatalysis has the potential to contribute both to clean energy production
and to the utilization of CO2 as a cheap and easily available carbon-source, converting
it into valuable feedstocks [1]. This process greatly depends on the properties of the
photocatalysts used. Therefore, many different types of materials have been developed and
applied in CO2 photocatalytic reduction. As in other photocatalytic reactions, TiO2 has been
intensively studied in CO2 reduction [2–4]. However, inherent drawbacks related to fast
charge carriers’ recombination and UV-light response prevent further application of TiO2.
Different strategies have been applied to develop improved TiO2-based photocatalysts
for CO2 reduction including modification via ion doping [5], surface engineering [6],
photosensitization [7] and formation of composites and heterojunctions [3,8]. The latter
approach synergizes materials, offering the possibility to develop advanced systems and
improve the properties of traditional catalysts such as TiO2 [9].

Over the last decade, the interest in metal–organic frameworks (MOFs) as heteroge-
neous photocatalysts has grown significantly, mostly due to their tunable properties and
high specific surface area that facilitates adsorption [10–12]. MOFs have been applied as
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photocatalysts either individually [10,12–14] or as part of a composite material [9–11,15]
for CO2 reduction. TiO2-based hybrid photocatalysts bearing MOF structures have been
developed and tested in CO2 reduction as a way to integrate increased light harvesting,
active catalytic sites and high surface areas [3,9,16–18], presenting superior activity in CO2
reduction but also in selectivity towards C-products. Improvements in several important
parameters have been reported that enhanced CO2 conversion in such composite mate-
rials [9,16,18]. Among the different MOFs studied, of particular importance are stable
structures that contain porphyrins as organic linkers. These structures offer the advantage
of visible light absorption capacity [19,20], the ability for efficient and fast exciton migration
and transportation from the photoexcited porphyrin moiety to suitable catalysts [21,22]
and the presence of a metalation center [23] that may affect the electronic properties and
control catalytic activity.

Porphyrinic zirconium MOFs have been studied in CO2 photocatalytic reduction [14,23–25].
The Zr ions in the metal clusters may have multiple redox states (i.e., 4+ or 3+) [23,25]
and act as semiconductors while the photoexcited porphyrin linker can activate these
clusters [25–27]. Heterojunctions have been developed via the coupling of such MOF
structures with other photocatalysts [18,27], improving charge recombination phenomena.
In addition, metalation of the porphyrin linker as well as the degree of metalation (partial
metalated porphyrins) may also affect the overall photocatalytic activity [19,23,28–30].

In view of the recent contributions and driven by the different possibilities to tune the
activity of porphyrin MOF/TiO2 photoactive materials, a series of porphyrinic-MOF/TiO2
composite materials were prepared by adjusting the degree of metalation using free-base or
copper-metalated porphyrin as the linker. It is shown that both photocatalytic activity and
selectivity towards H2, CO and CH4 may be controlled by varying the metalation degree of
the porphyrin linker.

2. Materials and Methods

Zirconium chloride, benzoic acid and N,N-Dimethylformamide (anhydrous, 99.8%),
Cu(NO3)2•3H2O and tetra(4-carboxylphenyl)porphyrin (H2TCPP) were supplied by Sigma
Aldrich, Burlington, MA, USA. TiO2 (Hombikat UV100) was purchased from Sachtleben
Chemie GmbH (Duisburg, Germany). The chemical reagents were used without
further purification.

2.1. H2TCPP Metalation

Metalation of the H2TCPP was performed using a reported protocol with small modifi-
cations [31]. Specifically, 0.3047 g of Cu(NO3)2•3H2O and 0.1970 g H2TCPP were dissolved
in 15 mL of DMF. The mixture was heated at 150 ◦C under reflux for 5 h. Then, the solution
was cooled down naturally, and the precipitate was collected by filtration and was rinsed
with DMF and EtOH. The complex formed was labeled CuTCPP.

2.2. MOF Synthesis

MOF structures were synthesized using a typical protocol already reported in the
literature for the development of PCN-224 [32]. Specifically, a mixture of 0.173 g H2TCPP,
0.288 g ZrCl4 and 9.73 g benzoic acid was dissolved in 29 mL DMF and put in sonication
till all the precursors were dissolved. Then, the solution was transferred to a 90 mL
teflon-lined stainless steel autoclave and heated at 120 ◦C for 48 h. After cooling down,
the resultant black powder was collected with filtration and washed several times with
fresh DMF and, finally, with acetone. Then, the powder was vacuum dried at 120 ◦C
overnight to remove any remaining solvent. For the development of the MOF structure
containing the metalated porphyrin, the same procedure was followed, but CuTCPP
was used. Two different approaches were used, where the organic ligand concentration
was identical to the synthesis using the free-base H2TCPP. In the first, a molar ratio of
H2TCPP:CuTCPP equal to 1:1 was used, while in the second, only CuTCPP was used.
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The resulted MOFs were denoted as MOF-a, MOF-b and MOF-c using only H2TCPP,
H2TCPP:CuTCPP at 1:1 molar ratio and only CuTCPP, respectively.

2.3. Synthesis of MOF/TiO2 Composite Materials

The development of the composites was performed by in situ synthesis of the MOF
structure in the presence of TiO2, using the same protocol as the one used for the pure MOF
synthesis. The precursors of the MOF structure were mixed with 1.663 g of TiO2 powder
and sonicated for 30 min. Three composite materials were developed by adding either
H2TCPP, a mixture of H2TCPP:CuTCPP at 1:1 molar ratio or only CuTCPP. The composites
were denoted as MOF-a/TiO2, MOF-b/TiO2 and MOF-c/TiO2 using H2TCPP, a mixture of
H2TCPP:CuTCPP or only CuTCPP as precursors, respectively. An illustration depicting
the steps used in the synthesis protocol is given in Scheme 1.
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Scheme 1. Schematic illustration of the synthesis protocol used to develop the MOFs and composite
materials.

2.4. Pt Deposition

The introduction of Pt (1 wt.%) was realized by a chemical reduction deposition
method, using H2PtCl6 and NaBH4 as the reducing agent following a process already
reported [4].

2.5. Materials Characterization

X-ray diffraction (XRD) patterns were recorded using a Bruker D8-Advance (Karlsruhe,
Germany) diffractometer equipped with a scintillation counter detector, with a Cu-Kα

radiation. Attenuated Total Reflectance IR spectra were measured with a Thermo Fisher
Nicolet iS10 spectrometer (Waltham, MA, USA). Nitrogen adsorption–desorption isotherms
were obtained using a Micromeritics Asap 2420 porosimeter (Norcross, GA, USA) at
77 K. Prior to the analysis, the samples were degassed at 150 ◦C under vacuum for 5 h.
Thermogravimetric analyses (TGA) were performed using a TA Instrument Q5000IR (New
Castle, DE, USA) under the air flow (flow rate of 25 mL·min−1) with the temperature
ranging from 50 to 600 ◦C, with a dynamic ramping rate depending on the weight loss.
Diffuse Reflectance UV-vis absorption spectra were recorded in the range of 200–800 nm
using a PerkinElmer Lambda 950 Scan spectrophotometer (Waltham, MA, USA) equipped
with integrating sphere using BaSO4 as a reference; the energy bandgap was calculated
by using the Tauc plot. A Zeiss Gemini SEM 500 (Munich, Germany) equipped with FEG
Schottky was used for Scanning Electron Microscopy. X-ray photoelectron spectroscopy
(XPS) measurements were performed on an ultrahigh vacuum (UHV) Thermo-VG scientific
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Spectrometer source, and the spectra were calibrated by the Adventitious Carbon peak at
284.6 eV. A Zeiss Gemini SEM 500 equipped with FEG Schottky was used for Scanning
Electron Microscopy.

2.6. Photocatalytic Reactions

The photocatalytic evaluation was performed under continuous flow conditions. Fifty
mg of the catalyst suspension was drop-casted on a glass disc and dried under vacuum
for 2 h at 100 ◦C. The disc was then placed in a stainless-steel reactor (6 mL) that was
irradiated from the top through a quartz glass window. A defined flow (0.3 mL·min−1)
of research-grade CO2 was passed through a thermo-controlled water saturator, feeding
the reactor. Prior to the test, the reactor was purged with CO2/H2O till all impurities
were eliminated. During the test, a Hg lamp (150 W, Ceramic-Metal-Halide, C-Topspot,
StrassElec SARL, Strasbourg, France) simulating solar light was used as an irradiation
source (irradiances in the 300–800 nm region: UV = 46 W·m−2, Visible = 4271 W·m−2, the
emission spectrum is given in Figure S1). The evolved gases were analyzed every 15 min
by a micro-GC (Agilent 3000 A SRA Instrument, Santa Clara, CA, USA).

3. Results and Discussion

Figure S2a presents the UV-Vis spectra of the H2TCPP before (free-base) and after
the metalation (CuTCPP). The H2TCPP presented an intense Soret band centered at ca.
415 nm and four Q bands (516, 555, 580 and 635 nm), typical of the free-base H2TCPP.
After metalation, a blue shift of the Soret band and the presence of only two Q-bands were
evidenced for the CuTCPP complex. This observation suggests the successful incorporation
of copper in the porphyrin core [33]. To further evidence the TCPP metalation, infrared
spectra were also recorded (Figure S2b). The peak centered at 966 cm−1 assigned to the N–H
in-plane bending vibration of pyrrolic nitrogen became undetectable after the treatment
with Cu2+, suggesting an interaction between the –NH groups inside the porphyrin ring
and copper ions [34–36]. In addition, a peak at ca. 1000 cm−1 was detected at the CuTCPP
complex that is assigned to the bond stretching/bending vibration between Cu2+ and
TCPP ligand [37]. The shift of the peak at 1685 cm−1 to 1654 cm−1 and the presence of a
strong peak at 1400 cm−1 suggest alteration of the –COOH groups of the porphyrin ring,
probably via the interaction with Cu2+ ions. As will be shown later, this did not affect
the development of the MOF structure. Therefore, both UV-Vis and ATR spectroscopies
verified the successful coordination of Cu2+ within the porphyrin core.

XRD analysis was then performed in order to get information on the structure of both
TiO2 and the MOF synthesized. The diffraction patterns are given in Figure 1. A typical
diffraction pattern of PCN-224 was acquired for the material synthesized using only the
free-base H2TCPP, i.e., MOF-a [38]. In the MOF-b and MOF-c, an increase in the diffraction
peak width was evidenced with increasing the CuTCPP content. In addition to this, the
intensity of the peak centered at ca 7.2◦ increased going from MOF-b to MOF-c, and a
peak centered at ca. 9.9◦ was clearly observed. These new peaks are fingerprints of the
PCN-222 structure [39] and suggest the presence of more than one porphyrinic MOFs when
CuTCPP is used. More particular, in addition to the PCN-224, PCN-222 was also formed
using the CuTCPP complex in the synthesis process [39,40]. As expected, the TiO2 was of
pure anatase phase. Close inspection of the anatase (101) main diffraction peak centered at
ca. 25.4◦ revealed that the synthesis employed for the development of the MOF did not
alter the characteristics of the TiO2 phase in terms of phase composition and crystallinity.
This is probably related to the mild conditions applied for the development of the MOF.
The XRD patterns of all nanocomposite materials contained the diffraction peaks of the
two individual counterparts, as displayed in Figure 1b. The low intensity of the diffraction
peaks corresponding to the MOF structure probably originates from the low MOF amount
in the final composite material.
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Figure 1. XRD patterns of (a) pure TiO2 and MOFs and (b) nanocomposite materials.

Further evidence for the presence of both phases in the composites was obtained from
ATR spectroscopy (Figure S3). Typical spectra of the pure TiO2 and porphyrin MOFs were
acquired. Interestingly, the peak centered at ca. 1683 cm−1 that corresponds to the C=O
stretching vibration from the carboxyl functional groups greatly weakened in the MOF
spectra when compared with the H2TCPP, suggesting the successful coordination of the
porphyrin’s –COOH groups with Zr to form the MOF crystal [41,42]. Most importantly,
the peak centered at ca. 1000 cm−1, assigned to the successful coordination of Cu2+ in
the porphyrin core was also detected in the MOFs prepared by using in part or only
CuTCPP as the organic linker [43]. This was accompanied by the disappearance of the
peak assigned to the N–H in-plane bending vibration of pyrrolic nitrogen (centered at
ca. 963 cm−1) [34–36] that was only observed in the MOF-a material developed using the
free-base H2TCPP. These data suggest that Cu2+ remained in the porphyrin core even after
the development of the MOF structure. TiO2 gave rise to a featureless broad peak at low
wavenumbers (400–920 cm−1) that was also evidenced in the composite materials [44]. As
in the case of XRD, the ATR spectra of the composite materials contained features from the
two individual counterparts.

Light absorption properties were studied by means of UV–vis diffuse reflectance
spectroscopy (DRS). The corresponding spectra are given in Figure S4. The light absorption
onset of the pure TiO2 was below 400 nm corresponding to a band gap energy (Eg) of ca.
3.20 eV, typical for pure anatase materials. On the contrary, light absorption extended to the
whole visible region for the pure MOF materials. This is due to the Soret and the Q bands of
the porphyrin linker that absorb light from 350 up to 800 nm [45]. Similar light absorption
properties were also evidenced for all composites. These findings clearly suggest that the
extension of light absorption to the visible region detected for the composite materials can
be solely attributed to the presence of the MOF structure.

Furthermore, differences were also detected in the absorption in the visible light
region when comparing the MOF structures developed using the free-base H2TCPP and
the CuTCPP complex. Specifically, the four Q bands detected on the MOF structure where
the free-base TCPP ligand was used were converted into two, both in the pure MOFs
and the composite materials. This is in line with results in the literature where metalated
porphyrins were used to develop porphyrinic MOF structures [43,45]. These findings
further suggest that the porphyrin core was metalated in the MOFs where CuTCPP was
used as the organic linker, in agreement with the ATR results.

Quantification of the two parts in the final composites was performed by thermogravi-
metric analysis (TGA). Representative TGA profiles are given in Figure S5. The small mass
drop up to 200 ◦C can be attributed to impurities on the surface of TiO2 and guest species
in the MOF structures. The temperature onset of the organic decomposition in the pure
MOFs is observed at ca. 425 ◦C. This is slightly shifted to lower values in the composites,
probably due to the presence of the oxide. The remaining weight at 600 ◦C was used to
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calculate the content of the MOF in the hybrid materials. This was practically constant
within the three composite samples ranging from (13 to 15 wt.%).

The composition of the prepared materials was further investigated using XPS. The
survey spectra revealed the presence of Ti, O, C, N, Zr and Cu in the corresponding samples
(Figure S6). Cu was only detected in the MOF structures where CuTCPP was used as the
organic ligand. High resolution XPS spectra are shown in Figure 2. The peak centered at
184.7 and 182.3 eV are ascribed to Zr 3d3/2 and Zr 3d5/2. The Zr peaks were shifted to lower
binding energies in the case of the composite materials compared to the signal recorded for
the bare MOFs. Similarly, the Ti 2p peak in the composite materials was shifted to higher
binding energies (ca. 0.2 eV), compared to the Ti 2p3/2 of the pure TiO2 (Figure 2b). This
observation indicates a strong interaction between the MOF and TiO2 and suggests the
presence of a pathway for charge transfer between the two parts of the composite [46].
High resolution XPS spectra in the 402–397 eV region revealed the presence of N-species
from the organic linker (Figure 2c). Two peaks were observed for MOF-a. More precisely,
the peak at ca. 397.8 eV originates from the iminic nitrogen (–C=N–), and the peak at 400 eV
is ascribed to pyridinic nitrogen (–NH–) of the free-base porphyrin [47]. The N 1s spectrum
of the MOF-c, developed using the metalated CuTCPP as the organic linker, presented
only one peak, attributed to N interacting with Cu [48], centered between the two peaks
of free-base porphyrin at 398.4 eV [49]. This further verifies that the porphyrin remained
metalated even after the synthesis of the MOF, in agreement with ATR and DRS-UV-Vis.
Finally, based on XPS surface composition analysis, the Cu content was estimated to be
0.47% in the pure MOF-c and 0.06% in the corresponding MOF-c/TiO2 composite. This is
expected, taking into account the ca. 15% of the MOF-c in the MOF-c/TiO2 composite, as
extracted from TGA.
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composite materials and the corresponding simulated spectra.

N2 sorption–desorption isotherms were contacted to evaluate the textural properties
(Figure S7). The MOF-a material developed using only H2TCPP as the organic linker
presented a type I isotherm indicating microporosity [35] and a Brunauer–Emmett–Teller
(BET) surface area of 1617 m2 g−1. On the contrary, MOF-c presented a type IV isotherm,
with two plateaus at ca. P/P0 = 0.3 and a slightly increased BET surface area (1739 m2 g−1).
The presence of mesoporosity is characteristic of the PCN-222 structure [39] and is in line
with the XRD results. Surface area significantly decreased in all composite materials, with
the isotherm resembling that of the pure TiO2, probably due to the low MOF content.
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To further establish the formation of composites and to elucidate morphological char-
acteristics that may have given rise to the different textural properties and crystal structures,
a microscopy analysis of the prepared materials was undertaken. Figure 3 presents SEM
images of the pure MOF structures. A cubic morphology in the range of micrometers
was evidenced for the MOF-a material developed using H2TCPP, typical of the PCN-224
structure (Figure 3a). In addition to the cubes that were clearly formed when CuTCPP
was used in the synthesis process, needle-shaped crystals were also observed (MOF-b and
MOF-c, Figure 3b–d). Their length varied from a few up to tenths of micrometers and their
width from hundreds of nanometers up to a few micrometers. Particles of this morphology
are ascribed to the formation of PCN-222 [39], revealing that MOF-b and MOF-c are mixed
phase materials containing both PCN-224 and PCN-222. These two MOFs have identical
building units but differ in topology [14]. The PCN-222 content as well as the size of the
needle-shaped particles increased by increasing the CuTCPP content during the synthesis.
In addition, more uniform-sized PCN-222 particles and less resolved cubic particles were
detected in the MOF-c material when compared with the MOF-b. This clearly suggests that
the use of CuTCPP as the organic linker precursor favors the formation of PCN-222 under
the conditions of our experiment. Formation of PCN-222 also explains the two plateaus in
the N2 isotherms and the mesoporosity observed for the MOF-b and MOF-c materials.

Energies 2024, 17, x FOR PEER REVIEW  7  of  13 
 

 

presented a type I isotherm indicating microporosity [35] and a Brunauer–Emmett–Teller 

(BET) surface area of 1617 m2 g−1. On the contrary, MOF‐c presented a type IV isotherm, 

with two plateaus at ca. P/P0 = 0.3 and a slightly increased BET surface area (1739 m2 g−1). 

The presence of mesoporosity is characteristic of the PCN‐222 structure [39] and is in line 

with the XRD results. Surface area significantly decreased in all composite materials, with 

the isotherm resembling that of the pure TiO2, probably due to the low MOF content. 

To further establish the formation of composites and to elucidate morphological char‐

acteristics that may have given rise to the different textural properties and crystal struc‐

tures, a microscopy analysis of the prepared materials was undertaken. Figure 3 presents 

SEM images of the pure MOF structures. A cubic morphology in the range of micrometers 

was evidenced for the MOF‐a material developed using H2TCPP, typical of the PCN‐224 

structure (Figure 3a). In addition to the cubes that were clearly formed when CuTCPP was 

used  in  the  synthesis process, needle‐shaped  crystals were also observed  (MOF‐b and 

MOF‐c, Figure 3b–d). Their length varied from a few up to tenths of micrometers and their 

width from hundreds of nanometers up to a few micrometers. Particles of this morphol‐

ogy are ascribed to the formation of PCN‐222 [39], revealing that MOF‐b and MOF‐c are 

mixed phase materials containing both PCN‐224 and PCN‐222. These  two MOFs have 

identical building units but differ in topology [14]. The PCN‐222 content as well as the 

size of the needle‐shaped particles  increased by increasing the CuTCPP content during 

the synthesis. In addition, more uniform‐sized PCN‐222 particles and less resolved cubic 

particles were detected  in  the MOF‐c material when  compared with  the MOF‐b. This 

clearly suggests  that  the use of CuTCPP as  the organic  linker precursor favors  the for‐

mation of PCN‐222 under the conditions of our experiment. Formation of PCN‐222 also 

explains  the  two plateaus  in  the N2  isotherms and  the mesoporosity observed  for  the 

MOF‐b and MOF‐c materials. 

 

Figure 3. SEM images of the MOF‐a (a), MOF‐b (b,c) and the MOF‐c (d) materials. 

These morphological  characteristics were maintained  in  the  composite materials 

(Figure 4). In addition to the MOF particles, large TiO2 agglomerates of few micrometers 

were observed in all three composites. Well dispersed TiO2 particles on the surface of the 

MOFs were also resolved, forming agglomerates of significantly smaller size. For exam‐

ple,  the  size of TiO2  agglomerates  in  the pure TiO2  ranged between  few hundreds of 

Figure 3. SEM images of the MOF-a (a), MOF-b (b,c) and the MOF-c (d) materials.

These morphological characteristics were maintained in the composite materials
(Figure 4). In addition to the MOF particles, large TiO2 agglomerates of few microme-
ters were observed in all three composites. Well dispersed TiO2 particles on the surface
of the MOFs were also resolved, forming agglomerates of significantly smaller size. For
example, the size of TiO2 agglomerates in the pure TiO2 ranged between few hundreds of
nanometers to micrometers, while agglomerates in the nanometer scale were detected on
the surface of the MOF particles in the composites (Figure 4f). This may affect catalytic
activity due to the increase in the exposed active sites due to the smaller TiO2 agglomerates
in the composites [50].
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Following the characterization, all materials were tested as photocatalysts for the
reduction of CO2 in gas phase using water vapor as the electron donor. Under these
conditions, H2, CO and CH4 were only detected in the gas phase. Figure 5 presents
the average production rates of the catalytic reactions performed over 10 h using the
pure TiO2 and the three composite materials. Under the same catalytic conditions, no
products were detected using the pure MOF structures. Only H2 and minimal amount
of CH4 were detected using the MOF-a/TiO2 and the pure TiO2. Photocatalytic activity
improved significantly when CuTCPP was used in the synthesis process. Specifically,
H2 and CH4 production increased five and three times in the MOF-b/TiO2 compared
with the TiO2 and MOF-a/TiO2 composite. In addition, CO was also detected in the gas
phase. Photocatalytic activity for H2 and CH4 production decreased in the MOF-c/TiO2
compared with the MOF-b/TiO2; however, it was higher compared with the pure TiO2 and
the MOF-a/TiO2 composite. The smaller PCN-222 crystals observed in MOF-b compared
with MOF-c (Figure 3) could play a role in the improved catalytic activity. Besides activity,
the selectivity among the C-products was also improved towards CH4 production using
the MOF-b/TiO2 compared with the MOF-c/TiO2. The increased catalytic activity of the
MOF-b/TiO2 and MOF-c/TiO2 is also evidenced in Figure S8, which presents the total e−

utilized by the catalysts taking into account all reaction products (H2, CH4 and CO). The use
of the metalated CuTCPP complex resulted in an impressive enhancement in activity. The
MOF-b/TiO2 composite presented the highest activity, an approximately 4-fold increase
compared to the reference pure TiO2 catalyst. These results are in accordance with recent
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contributions to the literature. PCN-222 has been previously reported more active in CO2
photocatalytic reduction compared with PCN-224 using a light sensitizer [14]. In addition,
partial metalated porphyrins have been also proven more active in photocatalytic CO2
reduction using a hydrogen-bonded organic framework [29].
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Of importance is to mention that no carbon-products were detected when CO2 was
replaced with argon. This clearly evidences that the C-products detected in the gas phase
using the composite materials as catalysts originate from CO2 and not from any carbons on
the surface of TiO2 or the MOF structure. Furthermore, to exclude the effect of the porphyrin
ligand acting simply as an antenna, a TiO2 material loaded with porphyrin was prepared
and tested, resulting in no production of any gaseous products. This reference reaction
provides clear evidence for the beneficial effect of the MOF in the observed increased
activity of the composite materials. Finally, since Pt nanoparticles have been widely applied
as co-catalyst in similar reactions, the best performing composite was loaded with 1 wt.%
Pt. It is generally accepted that Pt improves charge separation efficiency acting as an e−

sink. The presence of Pt increased H2 and CH4 production by ca. 50%, which could be
assigned to the improved charge availability.

Several parameters could contribute to improved catalytic efficiency. The integrated
MOF structure in the composite provided extension of the light harvesting to the visible
region [18]. Formation of a heterojunction in such a type of composites may improve charge
handling properties [9,32,50,51]. The conduction band (CB) and valence band of both PCN-
224 and PCN 222 have been reported to be less positive than that of anatase [18,23,32].
Therefore, taking into account that both TiO2 and MOF are excited under artificial solar light
irradiation and the tight interaction of the two parts in the composite as revealed by XPS,
efficient charge separation may take place due to their matched band structure [18,23,32].
In addition, the presence of CuTCPP complex as an organic ligand in the MOF structure
could also function as a catalytic site, improving CO2 reduction and H2 production [52].
Regarding the effect of the relative CuTCPP portion, it has been recently demonstrated
in similar structures that the CuTCPP/H2TCPP loading ratio affects greatly the charge
carrier separation efficiency where charge is transferred from the free-base H2TCPP to the
CuTCPP [29]. This could also improve charge formation and separation MOFs containing
both H2TCPP and CuTCPP. All these parameters could contribute in the observed improved
catalytic activity.

4. Conclusions

For the first time, porphyrinic zirconium MOF/TiO2 composites controlling the free-
base porphyrin/metalloporphyrin (CuTCPP) loading ratio were developed. Detailed



Energies 2024, 17, 1483 10 of 12

characterization of the prepared materials revealed that the use of CuTCPP as the organic
linker resulted in the development of mixed phase MOFs, allowing the development of
both PCN-224 and PCN-222. Photocatalytic activity evaluation revealed that the use of
metalated porphyrin as well as regulating the proportion significantly affects CO2 reduction
efficiency and selectivity, presenting a 5- and 3-fold increased H2 and CH4 production,
respectively, compared with the pure TiO2 or composites with MOF structures bearing only
the free-base porphyrin.
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composite materials; Figure S5: TGA profile of TiO2, synthesized MOFs and composite materials;
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