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Abstract: Non-technical losses (NTL) have been a growing problem over the years, causing significant
financial losses for electric utilities. Among the methods for detecting this type of loss, those based on
Artificial Intelligence (AI) have been the most popular. Many works use the electricity consumption
profile as an input for AI models, which may not be sufficient to develop a model that achieves a
high detection rate for various types of energy fraud that may occur. In this paper, using actual
electricity consumption data, additional statistical and temporal features based on these data are
used to improve the detection rate of various types of NTL. Furthermore, a model that combines both
the electricity consumption data and these features is developed, achieving a better detection rate for
all types of fraud considered.

Keywords: non-technical loss; distribution systems; smart grids; artificial intelligence

1. Introduction

The electric power system is made up of generating facilities, high-voltage trans-
mission lines and medium- and low-voltage distribution networks. Not all the energy
produced is delivered completely to the end user, which means that electrical losses occur
during all stages of the process. These losses are divided into technical losses (TLs) and
non-technical losses (NTLs), and the distribution sector has the highest value of them in
the entire system [1].

NTLs, also known as commercial losses, are units of energy that are delivered and
consumed but are not billed by the electric power utility. There are four ways to account
for an NTL [2], namely:

1. Fraud: When a consumer attempts to deceive an electric power utility. This is usually
carried out by tampering with energy meters, making them register a lower electricity
energy consumption than actually consumed;

2. Bypass: The bypass is a clandestine connection made directly from the power grid to
the load, without passing through the energy meter;

3. Bribery: Bribing power utility employees is another common practice. Corruption
can come from both the consumer and the employee;

4. Non-payment: The consumer ignores the energy bill and does not pay. It can also
happen when a residential consumer no longer lives there, when a commercial con-
sumer’s company goes bankrupt, or even due to a malfunction of a meter that does
not record electricity consumption.

NTL is a global problem that affects underdeveloped, developing and even fully
developed countries. According to the Northeast Group LLC report [3], USD 96 billion is
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lost annually across the planet. In the United States of America, in 2009, the annual loss
of power utilities was estimated at approximately USD 6 billion [4]. BC Hydro, one of
Canada’s largest power utilities, reported that in 2011, the annual loss due to electricity
fraud was approximately CA$100 million [5]. In underdeveloped and developing countries,
the situation tends to worsen. The main emerging countries record annual losses of USD
58.7 billion [6]. In Brazil, in 2022, NTLs represented 14.6% of all losses in the low-voltage
power system. In relation to the entire Brazilian system (low, medium and high voltage),
NTLs represented 6.3% of the total loss [7]. In some Latin American countries, financial
losses caused by NTL are, to some extent, shared between electricity companies and users
(including those who have not committed any type of fraud) [8].

Power Quality (PQ) can be negatively affected by clandestine illegal connections, as
the amount of power that will flow through the system is different from what is expected.
In this case, disturbances such as voltage fluctuations, overvoltages, undervoltages and
harmonics, among other problems, may occur [9]. This can result in fire-risk hazards and
even cause widespread blackouts.

With the advent of smart grids (SG), advanced metering infrastructure (AMI) devices
were developed to facilitate communication between the energy meter and the power
company. However, this two-way flow of communication inevitably leads to problems
related to cyber security, such as data leakage and theft/alteration of consumer electricity
data [10–12]. In other words, the AMI can be hacked and reprogrammed with the intention
of committing fraud related to electricity theft [13].

In addition to the traditional tampering that was used to commit fraud, new methods
of energy theft have been developed to attack AMI, which can cause even more loss of
revenue for the power company.

Therefore, due to the large financial losses caused, reduction in PQ and also due to
new methods of electricity theft through AMI, it is necessary to develop new techniques
or systems to detect energy theft to further prevent the growth of NTL. One can take
advantage of the large amount of data that is transmitted and stored in the SG to create
Machine Learning (ML) and Deep Learning (DL) models that can efficiently detect when
and what type of energy fraud is being committed. The contributions of this work are
as follows:

1. Application of DL models to classify whether a consumer is honest or has committed
some type of fraud;

2. Use of statistical and temporal features as additional inputs to improve the model’s
classification performance;

3. Combination of two DL architectures to develop a more robust model to detect NTL.

The remainder of the paper is organized as follows. Section 2 contains work related to
NTL detection. Section 3 presents the detailed methodology regarding DL architectures,
the dataset preprocessing step, the equations used to generate different cases of energy
theft and the models developed to detect them. In Section 4, the results are presented.
Section 5 concludes the paper and presents some suggestions for future work to continue
the research.

2. Related Work

Initial attempts to detect NTL relied on field inspections by power company employees,
which were human-resource-intensive, required high operating costs [14] and were also
considered ineffective [15,16].

Based on that, new methods have been developed to improve NTL detection, and are
usually divided into three categories [17]:

1. Theoretical analysis: Demographic and socioeconomic factors can provide the energy
company with information about locations where an NTL may occur more frequently;

2. Hardware-based method: It is related to the infrastructure and design of specific
measurement devices. For example, integrated circuits (ICs) were installed to detect
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tampering in energy meters [18] and an additional current transformer (CT) was
added to achieve the same result [19]. The disadvantage of this approach is the high
costs related to the manufacture, installation and maintenance of these new devices;

3. Non-hardware based method: The most widely used method for detecting NTL [17].
Deviations in energy consumption and other electrical quantities, such as voltage
and current, occur in an NTL scenario. Using data collected from consumers, a data-
oriented/ML method (supervised or unsupervised learning) or a network-oriented
method (state estimation or load flow) can be developed to detect whether they are
committing any type of fraud.

A labeled dataset with historical energy consumption data from consumers from
different cities was used to train a Support Vector Machine (SVM) to classify abnormal or
fraudulent activity [15]. The trained SVM had a 60% hit rate, much higher than the 3% rate
that the energy company previously had using manual inspections.

In [20], data from commercial and industrial consumers were used to train an Optimum-
Path Forest classifier (OPF). Instead of using energy consumption (kWh), other electrical
quantities were used, such as reactive energy consumption (kVArh), power factor (PF),
installed power (Pinst), among others. The Harmony Search (HS) algorithm was used to
extract important features and reduce the dimensionality of the problem, improving the
accuracy of the classifier. HS also provided superior results when compared to another
traditional feature extraction technique, Principal Component Analysis (PCA).

It is not customary to have a labeled dataset that indicates whether a consumer has
committed fraud. Based on this and using AMI data, ref. [11] proposed six equations
that generate malicious samples based on data from honest users. For each consumer, a
multiclass SVM is trained using historical data and the data generated by these equations.
An energy theft detector is presented that compares the total energy consumption of a
neighborhood measured by a transformer meter with the total energy reported by smart
meters. If an NTL is detected, consumers in that area are flagged as suspicious, and based
on new samples from each of these costumers, the classifier decides whether any of them
are committing fraud or not.

Zanetti et al. [21] proposed two new equations to generate malicious samples in
addition to those proposed by [11] and used a similar approach that also requires data
from meters of the low-voltage grid (LVG) transformer. It uses a “detector” that compares
the reports from the LVG meter and the residential smart meters. Then, a state machine
approach that defines three states in the grid, normal (G1), suspicious (G2) or abnormal
(G3), is used to identify users with abnormal consumption patterns.

Using a real labeled dataset that contains time series with daily measurements,
Zheng et al. [22] developed a neural network made up of two distinct parts. The first is
called the wide network, which consists of fully connected layers that aim to capture global
features of 1-D data (time series of electrical energy consumption), and another Deep Con-
volutional Neural Network (CNN) that identifies the non-periodicity of energy theft and
the periodicity of a regular consumer based on 2-D data (the 1-D data are transformed into
weekly measurements). Finally, the output of both networks is combined into a sigmoid
activation function to classify whether a consumer has committed fraud or not. To improve
the model’s performance, some preprocessing steps were taken, such as linear interpolation
to impute missing values and the empirical rule, with two standard deviations of the mean
value to detect outliers in the dataset.

A new equation to model energy theft is proposed in [23]. It considers that an attack
increases linearly over time; that is, energy consumption decreases linearly rather than
decreasing abruptly. Then, based on some equations from [11] and this new proposed
equation, a hybrid model that uses voltage sensitivity analysis, power system optimization
and Support Vector Machines (SVM) is used to perform the detection of NTLs.

It is well known that labeled energy theft datasets have more samples of honest users
than fraudulent ones. Therefore, these datasets are considered unbalanced and can cause
potential learning problems for ML algorithms [24]. Using the same dataset as [22], the
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authors of [25] used a VGG-16 architecture (consisting of multiple convolution and pooling
layers) to extract features and employed an XGBoost (Decision Tree-based algorithm) to
carry out the final classification. The XGBoost hyperparameters were optimized using
a firefly optimization algorithm. To address the problem of an unbalanced dataset, the
Adasyn method was used to oversample the minority class.

An ensemble consisting of several boosting and bagging methods was built to detect
energy theft [26]. The idea behind the ensemble is to train several models and combine
each of the outputs into a single one that has better predictive performance than each of the
individual models. Using the same equations as [11], malicious samples were generated,
but instead of creating a multiclass problem, it was framed as a binary classification
problem. The performance of the models was tested with undersampling (near miss) and
oversampling (SMOTE) techniques, with the latter showing slightly better results.

All malicious samples generated by the equations from previous works [11,21,23]
and additional equations were used in [27] to create a more diverse case of energy theft.
A multiclass classification problem was framed and several ML algorithms were used
to solve it. These models were compared with each other to verify their global and
class classification performance. Other tests were carried out in which parameters of the
equations that generated the malicious samples (such as intensity and duration of attacks)
were modified to verify the models’ behavior. All these results can be used as a basis for
future work in the NTL detection field.

A comprehensive review study of non-hardware-based methods was carried out
in [28]. Data-oriented/ML methods are the most used approach to detect NTL, and they
generally use electrical quantities as features, such as voltage, demand and mainly electricity
consumption. These works employ traditional ML algorithms, like SVM, Artificial Neural
Networks (ANN), Decision Tree (DT) or Bayesian Classifiers.

Based on that, this work employs two DL architectures, Multi-Layer Perceptron (MLP)
and Long Short-Term Memory (LSTM) to solve the NTL detection problem. To improve
the model performance, in addition to the user energy consumption, statistical (mean
and variance) and temporal features (X and Y coordinates of the centroid of the energy
consumption time series) are used as additional inputs. Finally, a model consisting of
the two aforementioned networks is defined to work in parallel with the static features
(statistical and temporal) and the time series of energy consumption.

3. Materials and Methods
3.1. Deep Learning Architectures

DL models are widely used to solve problems in the most diverse areas of science.
They are mathematical models trained on data to solve basically two types of problems:
regression or classification. Since the MLP and the LSTM models are well-known models
used to solve these types of problems, they were chosen to solve the NTL detection problem.

3.1.1. MLP

MLP is a deep feedforward artificial neural network (without feedback connections)
consisting of input, hidden, and output layers that process data in a unidirectional flow
with the goal of approximating a function (learning a pattern) [29]. It defines a function
y = f(x; w) where x is the input vector and w is the weight vector that the network learns.
The backpropagation algorithm is used to train these types of networks [30].

3.1.2. LSTM

Unlike the MLP, the LSTM network is a bidirectional network (containing feedback
connections), where the output of some nodes influences the input of this same node in
future steps. Like any Recurrent Neural Network (RNN), LSTM specializes in sequential
data processing and solves the problem of vanishing or exploding gradients that the
former exhibits [29]. This is carried out by adding a gate mechanism to control the flow of
information and gradient updates. In Figure 1, an LSTM cell is presented with its respective
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gates, input value, hidden and cell states, x, h and C, respectively, and t is the timestep. The
sigmoid activation function in the green block represents the forget gate, which decides
which information is useful to the model (a value of 0 means that nothing is useful and
everything should be discarded, while a value of 1 means everything is useful). The two red
blocks represent the input gate that computes the values that will be updated and stored in
the LSTM cell through the combination of the sigmoid and hyperbolic tangent activation
functions. After this, the LSTM cell is updated from state Ct−1 to Ct. Finally, the yellow
blocks represent the output gate that uses the updated cell state Ct through a hyperbolic
tangent function to decide which information will be provided as output ht in the current
time step and will be used as the hidden state in the next time step.

σ σ Tanh σ

× +

× ×

Tanh

Ct−1

ht−1

xt

Ct

ht

ht

Figure 1. LSTM cell.

3.2. Dataset

The dataset used in this work was created by the Commission for Energy Regulation
(CER) in Ireland and is provided by the Irish Social Science Data Archive (ISSDA) on
request [31]. It contains data on electricity consumption of more than 6400 users at half-
hour intervals (48 reports per day), collected over 535 days between 2009 and 2010.

Data from 650 randomly chosen consumers were used. Some preprocessing steps
were required due to missing or incompatible data to ensure that consistent data are used
to train the developed models.

1. If a half-hourly measurement is not available, the entire day is discarded (missing
data case);

2. If there is incompatible data, for example, in a single day, a consumer has more than
48 half-hourly measurements, the entire day is also discarded (a possible case of an
error in data storage);

3. During certain days, some users reported 0 energy consumption. In these cases, if
a user has zero energy consumption for more than 1/4 of the day, that entire day is
ignored (in case of a possible meter failure).

After that, the half-hourly measurements are resampled to hourly, with the aim of
reducing the number of model inputs.

Consider t = 1, 2, . . . , T. Each univariate energy consumption time series has the
following format x = [x(1), x(2), . . . , x(T)], and a matrix of dimensions M can be created
with the time series of all consumers:

X = [xm | 1 ≤ m ≤ M] (1)

with T = 24 measurements per series.
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3.3. Energy Theft Attack Models

The data provided by ISSDA is assumed to be from honest consumers, as they have
agreed to participate in the smart meter installation process. Based on this, equations are
needed to model the consumption behavior of fraudulent users. In this work, the same
eleven equations used in [27] are used, with some modifications to generate more practical
cases of energy theft, as they cover a large number of possibilities for these types of NTL.
Let xj,m, j = 1, 2, . . . , 11, be the eleven possibilities of fraud/attack, as follows.

1. Attack 1: Each time series is multiplied by a random value αm, between 0.1 and 0.9
that reduces energy consumption:

x1,m = αm · xm (2)

2. Attack 2: Each smart meter reports 0 while the attack occurs (complete bypass). ts and
te represent the start and end times of the attack, respectively. In this work, unless
otherwise indicated, all attacks that occur during a period start randomly between
08:00:00 and 16:00:00 and the last 4 h, that is, te = ts + 4:

x2,m = βm · xm, βm =

{
0, ts < t < te
1, otherwise

(3)

3. Attack 3: This attack is similar to Attack 1, but instead of multiplying the whole time
series by a random value, the measurements in the time series at each time t are
multiplied by a different random value, γm, between 0.1 and 0.9:

x3,m = γm · xm (4)

4. Attack 4: Similar to Attack 2, but instead of completely bypassing the meter, a partial
bypass occurs:

x4,m = βm · xm, βm =

{
αm, ts < t < te
1, otherwise

(5)

5. Attack 5: Actual consumption is replaced by the product between average consump-
tion and different random values:

x5,m = γm · mean(xm) (6)

6. Attack 6: A cut-off point, co, is selected. A measurement in a time series is replaced
by the cut-off point if it is greater than it. The selected point is a random value
between 120% and 130% of the average energy consumption, i.e., com = rnd[1.2, 1.3] ∗
mean(xm):

x6,m =

{
xm, xm ≤ com
com, xm > com

(7)

7. Attack 7: A cut-off point, co, is selected. The maximum value between 0 and the
difference between energy consumption and the cut-off point is considered:

x7,m = max(xm − com, 0) (8)

8. Attack 8: Unlike other attacks, this one does not simulate a sudden drop in energy
consumption, but rather the drop occurs linearly over time until the maximum attack
intensity. This gradual decay is controlled by the rate of variation in the attack
intensity, that is, the slope s:

x8,m = (1 − im) · xm, im =


imax, t > tmax
s · (t − ts), ts < t < tmax
0, t < ts

(9)



Energies 2024, 17, 1729 7 of 16

where s = imax−imin
tmax−ts

, imin = 0 and imax = 0.9.
9. Attack 9: Each energy consumption time series is replaced by its average value:

x9,m = mean(xm) (10)

10. Attack 10: The energy consumption pattern reverses over time. Attacks of this type
occur in situations where the price of energy is different throughout the day. For
example, a user who consumes more electricity and has a higher energy tariff at the
end of the day, when reversing their pattern, will have a reduced energy bill:

x10,m = xm_reverse (11)

11. Attack 11: Another attack that aims to take advantage of different energy rates
throughout the day. Consumption is reduced only at a certain interval (peak hours,
when the tariff is high) and redistributed throughout the day (when the tariff is lower).
This way, the customer’s total consumption remains the same throughout the day:

x11,m =

{
r f · xm, ts ≤ t < te
xm + τ

(Nd−Na)
, otherwise (12)

Here r f = 0.3 is the reduction factor, and for this specific attack, the start time, ts,
happens randomly between 18:00:00 and 20:00:00 and ends randomly at any given
time after it has started. Therefore, Nd = 24 is the number of hours during the day
and Na is the number of hours during which the attack occurs. τ is amount of energy
that was reduced in the process.

The same number of samples are generated for each attack and all are equal to the
number of samples from honest users. Each attack is assigned an integer label to cre-
ate the output vector Y = [ym | 1 ≤ m ≤ M]. Finally, the dataset D = {(Xi, Yi)},
i = [0, 1, 2, . . . , 11], which consists of input/output pairs, can be created to train/test the
DL models, where i = 0 represents the samples of honest users, and i = 1, 2, . . . , 11 are the
samples of each type of attack.

3.4. Features for NTL Detection

Some attacks are more difficult to detect than others. This is because a consumer who
commits fraud in which they steal a small amount of electricity may be misclassified as an
inherently low-consumption consumer [21,27].

Based on this information, attacks that are difficult to detect are types 1, 3 and 4 when
fraud is committed using high values of αm, γm and βM, respectively. Therefore, additional
features can be used to improve the detection performance of a model, especially in the
case of these attacks.

In this work, for a single time series, x, the following features were used as additional
input to the models:

1. Mean: Most attacks reduce energy consumption, so it is reasonable to assume that the
energy consumption value of a fraudulent user is lower than that of an honest user.
Therefore, the average value can add valuable information for fraud detection and is
calculated as follows:

xmean =
x(1) + x(2) + · · ·+ x(T)

T
(13)

As shown in Figure 2, the mean value of a user who commits type 1 fraud is lower
than their real consumption, which could help improve the detection of this type
of attack.
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Figure 2. Honest and type 1 attack with average value.

However, for a type 10 attack, where fraud is committed by reversing the energy
consumption pattern, the average value does not change, as shown in Figure 3.
Therefore, additional features are needed to improve the classification process.

Figure 3. Honest and type 10 attack with average value.

2. Variance: Indicates how far the set of measurements is spread from the average value.
Similarly to the average value, the variance of a user who commits fraud will be
smaller than the variance of an honest user.

xvar =
[x(1)− xmean]2 + [x(2)− xmean]2 + · · ·+ [x(T)− xmean]2

T
(14)
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3. Centroid (center of mass): Contains information about the time and value of energy
consumption. It can potentially help detect an NTL because some attacks tend to
occur at specific times of the day, reducing energy consumption only during that
interval. The centroid coordinates x and y can be determined as follows [32]:

x =

T
∑

t=1
t · x

T
∑

t=1
x

(15)

y =

T
∑

t=1
0.5 · x2

T
∑

t=1
x

(16)

In Figure 4, the centroids for type 10 attacks are illustrated. The coordinate x is
essential in this case to help differentiate the honest user from the fraudulent one.

Figure 4. Honest and type 10 attack with centroid coordinates.

3.5. Developed Models

Several models have been developed to perform NTL detection. Some models use only
the time series itself as input, while others use combinations of time series, statistical (aver-
age value and variance of the time series) and/or temporal features (centroid coordinates
of the time series). The idea behind using these features is to aggregate information that
can help detect NTL. As LSTM networks have been widely used in all types of sequence
recognition problems, such as time series forecasting and classification [29,33], a final model
is proposed that contains two modules—one module that contains an MLP that processes
only statistical and temporal features and the other an LSTM that processes the time series
itself. Their outputs are concatenated and serve as input to another MLP that indicates
whether the user committed fraud or not.

In addition to different inputs, some models are trained with specific classes (easy
or hard-to-detect classes) to show that additional features are needed to achieve higher
classification performance. An honest user is labeled as class 0. MLP-M1 and MLP-M2
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models take energy consumption time series as input and are only easy (class 2, 5, 6, 7, 8,
9, 10 and 11) and hard-to-detect frauds (class 1, 3 and 4), respectively. Models M3 to M8
use the 12 classes (classes 0 to 11) as output. MLP-M3 takes time series as input. MLP-M4
uses the time series as input and its daily average value. MLP-M5 uses the same input
as MLP-M4 plus the daily variance of the time series. MLP-M6 uses the same input as
MLP-M5 plus centroid X and Y coordinates of the time series. LSTM-M7 only uses the
time series as input. M8 is the proposed parallel LSTM-MLP network. The MLP processes
and learns information related to statistical and temporal features (4 inputs related to the
average value, variance and both centroid coordinates), while the LSTM receives as input
the energy consumption time series (24 inputs). Their outputs are concatenated and passed
to another MLP to perform the final classification through a softmax activation function.
Figure 5 illustrates this proposed model.

...

...

...

...

...

...

...

...

...

Features
Input Layer

4 Units

Features
Dense Layer

64 Units

Features
Dense Layer

128 Units

LSTM
Input Layer

24 Units

LSTM
Layer

128 Units

Concatenate
Layer

256 Units

Dense
Layer

48 Units

Dense
Layer

24 Units

Output
Layer

12 Units

Figure 5. M8-Parallel LSTM-MLP network.

A summary of all 8 models developed in this work is given in Table 1 with their
respective number of input and output nodes.

All of these models were developed in Python using the Keras library. A train-
ing/validation/test split of 0.6/0.2/0.2 was defined. The number of training epochs was
set at 300. To avoid overfitting, the early stopping method was used with 50 epochs to
monitor the validation loss. The batch size was set to 512.

The MLP-M1 to MLP-M6 models feature MLP networks with 2 hidden layers, as
shown in Table 2 with the corresponding number of units. Adam optimizer, ReLU activation
for hidden layers, and Softmax activation for the output layer were employed.

The LSTM-M7 model contains a single LSTM layer with 128 units that is followed
by an MLP with 2 hidden layers with 48 and 24 units, respectively. The M8 model also
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uses 2 hidden layers for each MLP and a single layer for the LSTM. The hyperbolic tangent
and sigmoid activation functions are used in the LSTM layer. The number of units for each
layer is presented in Figure 5.

Table 1. Summary of developed models.

Model Number of Inputs Number of Outputs

MLP-M1 24 9
MLP-M2 24 4
MLP-M3 24 12
MLP-M4 25 12
MLP-M5 26 12
MLP-M6 28 12

LSTM-M7 24 12
M8 28 12

Table 2. MLP models hidden layers.

Model Number of Hidden Layers Units HL 1 Units HL 2

MLP-M1 2 48 18
MLP-M2 2 48 8
MLP-M3 2 48 24
MLP-M4 2 50 24
MLP-M5 2 52 24
MLP-M6 2 56 24

3.6. Classification Metrics

The NTL detection problem is multiclass; therefore, common metrics to evaluate the
performance of the model to solve this type of problem are Precision, Recall and F1-score.

Precision is the ratio between the True Positive (TP) and the sum of TP and the False
Positive (FP). It indicates, of all cases predicted as positive, how many were actually
positive. In other words, a high precision value indicates that the model has a low rate of
False Positives, meaning that when it predicts a positive class, it is likely to be correct.

Precision =
TP

TP + FP
(17)

Recall is the ratio between TP and the sum of TP and the False Negative (TN). It
indicates, of all actual positive cases, how many were correctly predicted by the model.
A high recall value indicates that the model effectively identifies most positive instances,
minimizing the number of False Negatives.

Recall =
TP

TP + FN
(18)

F1-score is the harmonic mean between Precision and Recall. It is useful when there is a
need to balance those two metrics in a classification task, such as the NTL detection problem,
where classifying an honest user as fraudulent or vice versa has different implications
and costs.

F1-score =
2 × Precision × Recall

Precision + Recall
(19)

4. Results and Discussion

Table 3 presents the average of the three classification metrics for all classes used
in the MLP-M1 and MLP-M2 models. When only the easy-to-detect classes are present
(MLP-M1), the energy consumption time series as input is sufficient to achieve an F1-score
value of 0.909. Also, when only the hard-to-detect classes are present (MLP-M2), the model
performance becomes significantly worse.
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Table 3. Classification metrics for MLP-M1 and MLP-M2 models.

Model Precision Recall F1-Score

MLP-M1 0.909 0.909 0.909
MLP-M2 0.633 0.635 0.631

But in practice, all types of fraud can occur and must be considered. The MLP-M3
model achieves 0.723 F1-score. To improve NTL detection, statistical and temporal features
were used, and the results for each of these models can be seen in Table 4. It can be seen that
there is a slight improvement for all metrics with each new feature added (MLP-M4, MLP-
M5 and MLP-M6), and that the centroid coordinates provide the best overall improvement
with an F1-score value of 0.779 (MLP-M6).

Table 4. Classification metrics for MLP models with all classes.

Model Precision Recall F1-Score

MLP-M3 0.721 0.728 0.723
MLP-M4 0.747 0.744 0.746
MLP-M5 0.759 0.766 0.761
MLP-M6 0.777 0.786 0.779

However, better classification results are necessary, as it is extremely important that a
dishonest consumer is not classified as honest, causing financial losses for the company.
Another more serious situation would be classifying an honest consumer as dishonest,
which creates legal, ethical, and reputational problems for the electric power company.

For this, two networks containing LSTM layers were trained. Their result can be
observed in Table 5, which shows a significant increase in relation to the MLP-M6 model.

Table 5. Classification metrics for LSTM-M7 and M8 models.

Model Precision Recall F1-Score

LSTM-M7 0.871 0.869 0.869
M8 0.885 0.885 0.885

M8 achieved an overall 13.61% improvement in detection performance over the MLP-
M6 model and demonstrated better performance compared to working exclusively with an
LSTM network in the M7 model, indicating the effectiveness of combining two networks
that work in parallel and can better learn the time series pattern and the features extracted
from them.

Figure 6 illustrates the classification metrics by class for the M8 model. It can be seen
that this model achieves an almost perfect F1-score for some classes.

Figure 7 shows the Receiver Operating Characteristic (ROC) curve, with the Area
Under the Curve (AUC) for each class. Only honest users and type 1, 3 and 4 attacks do not
achieve the perfect AUC score. This is because the patterns of this type of fraud are quite
similar to each other. All other attacks have an AUC equal to 1, showing how effective the
M8 model is in separating these classes.

For a more intuitive assessment of the performance of the proposed model, Figure 8
includes a confusion matrix for each class. The model effectively detects most types of
energy fraud, achieving a detection rate greater than 92.7% for all easily detectable frauds.
Furthermore, it has a high detection rate of 88.41% for a challenging fraud type (type 3).
However, for the remaining challenging classes (classes 1 and 4), the model presents an
overall detection rate of around 66%.
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Figure 6. Precision, Recall and F1-score for each class of M8 model.

Figure 7. ROC–AUC curve of the M8 model.

The M8 model showed better performance compared to previous works. In [23], the
proposed model achieved an AUC score of 0.99 similar to M8, but in that work, only four
types of attacks were simulated, and all were easy-to-detect frauds. The best developed
model in [27] achieved an average F1-score of 0.75, which is 17.3% lower than M8.

It is worth noting that all models developed in this work are scalable, as they can
process and test energy fraud from a single customer instantly or from thousands of
customers in a few minutes.
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Figure 8. Confusion matrix of M8 model.

Finally, from a business and social point of view, fraud detection, in addition to
improving the financial health of companies, is a factor of social justice due to the fact that
a high number of fraudulent users will represent an increase in tariffs for honest consumers
or cause financial difficulties for electricity companies.

5. Conclusions

The NTL problem is widespread and causes billions of dollars in losses annually
across the world. Because on-site inspections are an expensive and ineffective way to
detect this type of loss, data-oriented methods have recently been employed to improve
detection. In this work, statistical and temporal features extracted from energy consumption
time series were used as additional input for a parallel LSTM-MLP network that was
developed to detect NTL, improving the detection rate for all types of fraud that can
occur in smart metering devices. Based on the results, there is still room for improvement,
especially in increasing the detection of classes considered difficult to detect. For future
work, other types of DL methods can be used, such as a 1-D Convolutional Neural Network
(Conv1D) that works with one-dimensional data or the combination of this Conv1D and
an LSTM. Methods that were developed specifically for time series classification can also
be employed. More features, such as statistical, temporal or even domain frequency (like
Fourier coefficients), can be added to better classify whether a user has committed fraud or
not. Also, a feature importance algorithm could be used to provide more information on
the features that are really useful, increasing the interpretability of the developed models.
In addition, different hyperparameter optimization techniques can be employed to try to
further improve the performance of the proposed model.
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