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Abstract: The article proposes to use machine learning as one of the areas of artificial intelligence to
forecast the volume of biogas production from household organic waste. The use of five regression
algorithms (Linear Regression, Ridge Regression, Lasso Regression, Random Forest Regression, and
Gradient Boosting Regression) to create an effective model for forecasting the volume of biogas
production from household organic waste is considered. Based on the comparison of these algo-
rithms by MSE and MAE indicators, the quality of training and their accuracy during forecasting are
evaluated. The proposed algorithm for creating a model for forecasting biogas production volumes
from household organic waste involves the implementation of 10 main and 3 auxiliary steps. Their
advantage is that they aid in the performance of component data analysis, which is carried out
based on the method of reducing the dimensionality of the data set, increasing interpretability, and
minimizing the risk of data loss. An analysis of 2433 data is was carried out, which characterizes
the formation of biogas from food (FW) and yard waste (YW) according to four features. Data
preparation is performed using the Jupyter Notebook environment in Python. We select five machine
learning algorithms to substantiate an effective model for forecasting volumes of biogas production
from household organic waste. On the basis of the conducted research, the main advantages and
disadvantages of the used algorithms for building forecasting models of biogas production volumes
from household organic waste are determined. It is found that two models, “Random Forest Re-
gressor” and “Gradient Boosting Regressor”, show the best accuracy indicators. The other three
models (Linear Regression, Ridge Regression, Lasso Regression) are inferior in accuracy and were
not considered further. To determine the accuracy of the “Random Forest Regressor” and “Gradient
Boosting Regressor” models, we choose the MSE and MAE indicators. The Random Forest Regressor
model is found to be a more accurate model compared to the Gradient Boosting Regressor. This is
confirmed by the fact that the MSE of the “Random Forest Regressor” model on the training data
set is 7.14 times smaller than that of the “Gradient Boosting Regressor” model. At the same time,
MAE is 2.67 times smaller in the “Random Forest Regressor” model than in the “Gradient Boosting
Regressor” model. The MSE and MAE of both models are worse on the test data set, which indicates
overtraining tendencies. The Gradient Boosting Regressor model has worse MSE and MAE than the
Random Forest Regressor model on both the training and test data sets. It is established that the
model based on the “Random Forest Regressor” algorithm is the most effective for forecasting the
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volume of biogas production from household organic waste. It provides MAE = 0.088 on test data
and the smallest absolute errors in predictions. Further systematic improvement of the “Random
Forest Regressor” model for forecasting biogas production volumes from household organic waste
based on new data will ensure its accuracy and maintain competitive advantages.

Keywords: machine learning; forecasting; biogas; organic waste; households

1. Analysis of the State of the Art in Science and Justification of the Feasibility
of Research
1.1. Introduction

Currently, processing waste into energy is an important step in the direction of creating
sustainable energy in various countries of the world. This process makes it possible to
reduce the volume of waste disposal, reduce dependence on fossil fuels, and create new
jobs [1–4]. At the same time, household organic waste is a significant source of energy that
can be used for biogas production. Anaerobic digestion of organic waste can potentially
cover up to 1% of primary energy needs in the EU-27. At the same time, there is a
significant potential for increasing the volume of organic waste for energy production
from 4.7% to 71.2% of the total energy demand [5]. The potential of organic household
waste as a source of energy depends on the region. More than 200 million tons of household
waste are generated in Ukraine [6]. Biogas is a renewable source of energy that can be used
for the production of electricity, thermal energy, and for activities in various industries. To
increase the economic efficiency of biogas use, it is necessary to solve separate scientific
and applied tasks. Ensuring the proper accuracy of solving such tasks requires the use of
modern information technologies. In energy supply projects for consumers, which involve
the use of organic waste for biogas production, one of the unresolved tasks is forecasting
the volume of biogas production [7,8]. Accurate and fast implementation of the specified
management process allows to assess the potential of biogas as an energy source and to
determine the infrastructure needs for its production and use.

Machine learning is a powerful tool that researchers use to solve forecasting problems
in various subject areas [9,10]. In our work, it is proposed to use machine learning as one of
the directions of the functioning of artificial intelligence to forecast the volume of biogas
production from organic household waste. The effectiveness of machine learning methods
for forecasting the volume of biogas production depends on many factors, important of
which are the quality of the collected and prepared data and the selected machine learning
methods for creating an effective forecasting model.

Scientists have achieved significant success in the development and use of machine
learning methods for forecasting in various areas of people’s lives and activities. However,
the task of forecasting volumes of biogas production from household organic waste has
been neglected. The novelty of the performed work is that, for the first time, a model
based on the machine learning algorithm “Random Forest Regressor” is substantiated for
forecasting the volume of biogas production from household organic waste. The obtained
results are of practical value, since based on the obtained model, it is possible to develop
a decision-making support system for forecasting the volume of biogas production from
household organic waste.

1.2. Analysis of Published Data and Problem Sets

Forecasting the volume of biogas production from household organic waste is an
important scientific and applied task, as it allows to assess the potential of biogas as an
energy source and further determines the need for infrastructure for its production and use.
In scientific works, individual authors conduct research on the justification of the toolkit
and its use for forecasting the volume of biogas production [11–14]. Some of these works
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use traditional statistical methods such as regression analysis, while others use machine
learning techniques.

The authors of well-known publications in the direction of creating forecasting models
for various subject areas use separate approaches and tools for their implementation [15–17].
At the same time, traditional statistical methods, such as regression analysis, can be effective
for forecasting biogas production volumes if the input data are well characterized [18,19].
However, these methods may not be accurate enough if the input data are complex
or non-linear.

The methods based on computational intelligence, which are proposed to be used in
works [20–23], are more accurate for forecasting the volumes of biogas production than
traditional statistical methods. This is due to the fact that they provide training of models
on historical data and offer detection of hidden patterns and their trends that cannot be
detected visually. Some of the machine learning methods that are used to solve forecasting
problems [24–27] deserve attention. They involve the use of machine learning methods
to forecast biogas production volumes. Despite the availability of a number of scientific
works devoted to forecasting the volume of biogas production, there are a number of
shortcomings that must be resolved in order to increase the accuracy of forecasts [28–30].
One such drawback is that the input data for forecasting biogas production volumes may
be incomplete or inaccurate. Also, the volume of biogas production is quite sensitive to
the quality of raw materials. These factors should be taken into account when building
predictive models based on machine learning.

Based on the analysis of scientific works, it was established that there is a need for the
development and application of an effective model for forecasting the volume of biogas
production from household organic waste. It should accurately and reliably forecast the
volume of biogas production based on the known characteristics of household organic
waste. The research results can be used to develop an intelligent information system for
planning energy supply projects for consumers using organic waste.

The purpose of this article is to substantiate an effective model for forecasting the
volume of biogas production from household organic waste based on the study of various
machine learning methods. For this purpose, a real data set is used, which includes
information about the state of organic waste that enters the biogas production, including
its type, volume of solid organic substances, content of volatile organic substances, and
biogas yield.

To achieve the goal, the following aims must be met:

– development of an algorithm for determining an effective model for forecasting volumes
of biogas production from household organic waste and to collect and prepare data;

– justification an effective model for forecasting the volume of biogas production from
organic household waste and to evaluate its accuracy.

Our article analyzes the state of science and practice in forecasting volumes of biogas
production from waste. We collect and prepare the data, as well as select five regression
algorithms for machine learning and substantiation of the model for forecasting the volume
of biogas production from household organic waste. Based on the comparison of the
obtained models by MSE and MAE indicators, the quality of training and model accuracies
during forecasting are evaluated. This ensures the creation of an effective model for
forecasting volumes of biogas production from household organic waste.

2. Development of an Algorithm for Determining an Effective Model for Forecasting
Volumes of Biogas Production from Household Organic Waste and Data Collection
and Preparation

The creation of an effective model for forecasting the volume of biogas production
from household organic waste is performed based on the algorithm presented in Figure 1.
It envisages the use of machine learning methods to substantiate an effective model for
forecasting the volume of biogas production from household organic waste based on the
collected data. The aim is to build a model that provides accurate prediction of biogas yield
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(SGP) based on input data: type of waste (food FW or yard YW), total organic solids (TS),
and volatile organics (TVS).
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Figure 1. Algorithm for creating a model for forecasting volumes of biogas production from household
organic waste.

At the initial stage, the collection and preparation of the necessary data is carried
out, which is the basis for the justification of an effective model for forecasting the volume
of biogas production from organic household waste. At the same time, there are specific
features that are reflected in the algorithm we develop (Figure 1). The target variable that
we forecast is the amount of biogas output (SGP, m3/kg TVS) from organic household
waste, which is determined by the following factors:

– type of waste (FW and YW)—a categorical variable that determines the type of organic
waste;

– volume of solid organic substances (TS, kg/m3)—the amount of solid organic sub-
stances in organic waste;

– by the content of volatile organic substances (TVS, % of TS)—the percentage of volatile
organic substances from the total amount of solid organic substances.

The data upload process is performed in a CSV (Comma-Separated Values) format,
which is quite standard and simple. Using CSV files is convenient for exchanging data
between programs and for storing and processing data tables.

If necessary, the next step is component data analysis, which is performed based on
the method of reducing the dimensionality of the data set, increasing interpretability, and
minimizing the risk of data loss [31–33]. Thanks to this, a smaller number of sets of variables
is created which belongs to the variables described above and, accordingly, contributes to
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the increase in variation in the data [34–36]. This analysis ensures the creation of linear
combinations of the original observed variables that explain the largest variance in the data
of a given component (Figure 2). Component analysis of the data is performed using the
PCA package of the Scikit-learn library in the Python 3.11 programming language.
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Figure 2. A fragment of the database on the production of biogas from household organic waste (a) and
its quantitative analysis (b).

At the next stage, a description of the data preparation process is carried out, with
the detection of gaps and the filling of missing values. Data preparation is an important
process of any machine learning method [37–42]. It includes a number of tasks such as
cleaning, standardizing, scaling, and sampling data. At the same time, one of the important
tasks of data preparation is the identification and filling of gaps. Data gaps can occur for
a variety of reasons, such as data entry errors, incomplete data sets, or failure to measure
some values.

Data preparation is a key step in the machine learning process and involves several
steps. Let us present a general overview of these steps. First of all, data collection is
performed, as a result of which the desired data set D is formed with the selection of input
features and the outline xi of answers (labels) yi:

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, (1)

where D—data set; xi—input characters, yi—answers (marks).
The next step is to perform a data cleanup:

Dclean = fclean(D), (2)

where Dclean—cleaned data set.
After that, processing and filling of missing values is performed:

Dimputed = fimpute(D), (3)

where Dimputed—a data set with recovered (filled) missing values.
The Jupyter Notebook environment is used to prepare data on biogas production

from household organic waste. This makes it possible to visualize the obtained results in a
convenient format, which increases the efficiency of working with data despite performing
separate data preparation operations. Based on the data analysis, we construct a histogram
for two categories of waste (FW and YW) (Figure 3). Using the Matplotlib and Seaborn
libraries, we plot the distributions of the volume of solid organic substances (TS, kg/m3),
the content of volatile organic substances (TVS, % of TS), and the volume of biogas output
(SGP, m3/kg TVS) (Figure 4).



Energies 2024, 17, 1786 6 of 20

Energies 2024, 17, x FOR PEER REVIEW 6 of 22 
 

 

kg/m3), the content of volatile organic substances (TVS, % of TS), and the volume of biogas 
output (SGP, m3/kg TVS) (Figure 4). 

 
Figure 3. Histogram of the amount of food (FW) and yard waste (YW) data received. 

The resulting histogram (Figure 3) indicates the distribution of categories in the 
“Waste” column. There are two unique data categories in our data set, which characterize 
food (FW) and yard waste (YW). At the same time, there are 1.818 instances of food (FW) 
and 615 of yard waste (YW) data. 

 
Figure 4. Distributions of the volume of solid organic substances (TS, kg/m3), the content of volatile 
organic substances (TVS, % of TS), and the volume of biogas output (SGP, m3/kg TVS) using food 
(FW) and yard waste (YW). 

It is established that the characteristics of food (FW) and yard waste (YW) change in 
different ways, which requires their separate analysis. For this purpose, we construct dia-
grams of changes in the volume of solid organic substances (TS, kg/m3), the content of 
volatile organic substances (TVS, % of TS), and the volume of biogas output (SGP, m3/kg 
TVS) (Figure 5). 

Figure 3. Histogram of the amount of food (FW) and yard waste (YW) data received.

The resulting histogram (Figure 3) indicates the distribution of categories in the “Waste”
column. There are two unique data categories in our data set, which characterize food (FW)
and yard waste (YW). At the same time, there are 1.818 instances of food (FW) and 615 of
yard waste (YW) data.
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Figure 4. Distributions of the volume of solid organic substances (TS, kg/m3), the content of volatile
organic substances (TVS, % of TS), and the volume of biogas output (SGP, m3/kg TVS) using food
(FW) and yard waste (YW).

It is established that the characteristics of food (FW) and yard waste (YW) change in dif-
ferent ways, which requires their separate analysis. For this purpose, we construct diagrams
of changes in the volume of solid organic substances (TS, kg/m3), the content of volatile
organic substances (TVS, % of TS), and the volume of biogas output (SGP, m3/kg TVS)
(Figure 5).

It is established that the amount of organic solids (TS) in FW food waste has an average
value of TS of 247.0 kg/m3 and a small standard deviation of 18.9 kg/m3. At the same time,
this indicator in YW yard waste has an average TS value of 738.6 kg/m3, and a much larger
standard deviation of 138.0 kg/m3. Yard waste (YW) is found to have significantly higher
mean and maximum TS compared to food waste (FW). This is due to a greater amount of
wood, branches, and leaves in the yard mass.

Regarding the content of volatile organic substances (TVS), in FW food waste, the
average value of TVS is 90.0%, the standard deviation is 2.2%. In YW yard waste, the
average TVS value is 89.7%, and the standard deviation is 1.4%. The TVS content of both
types of waste is found to be very similar. This indicates that they have a similar propensity
for biodegradation.
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Figure 5. Diagrams of changes in the volume of solid organic substances (TS, kg/m3), the content of
volatile organic substances (TVS, % of TS), and the volume of biogas output (SGP, m3/kg TVS) when
using food (FW) and yard waste (YW).

Regarding the volume of biogas output (SGP), in FW, the mean value of SGP is
0.848 m3/kg TVS, and the standard deviation is 0.108 m3/kg TVS. Meanwhile, in YW
yard waste, the mean value of SGP is 0.249 m3/kg TVS, and the standard deviation is
0.067 m3/kg TVS. It is found that FW has a significantly higher biogas generation potential
compared to YW. This may be due to the higher concentration of easily decomposable
organic substances in FW.

FW presents significantly higher biogas generation potential, making it more valu-
able. The obtained results indicate that the characteristics of FW and YW are significantly
different. YW has higher TS and greater TS variability for anaerobic processing.

In order to perform a detailed analysis, we present the statistical characteristics of
numerical variables regarding the volume of biogas production from household organic
waste in Table 1.

The amount of TS using FW has an average value (mean) of 247.0 kg/m3 and a standard
deviation (std) of 18.9 kg/m3. The range of changes in the volume of solid organic substances
(TS) ranges from 214.1 kg/m3 to 279.9 kg/m3. As for yard waste, the mean is 738.6 kg/m3,
and the standard deviation (std) is 138.0 kg/m3. The range of changes in the volume of solid
organic substances for this type of waste is from 505.4 kg/m3 to 971.8 kg/m3.
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Table 1. Statistical characteristics of numerical variables regarding the volume of biogas production
from household organic waste.

Type of Waste Variable Value Count Mean Std Min
Distribution Quantiles

Max
25% 50% 75%

FW TS_FW 1818 247.0 18.9 214.1 230.8 247.1 262.7 279.9
YW TS_YW 615 738.6 138.0 505.4 621.4 740.1 858.3 971.8
FW TVS_FW 1818 90.0 2.2 86.1 88.1 90.1 91.9 93.8
YW TVS_YW 615 89.7 1.4 87.3 88.4 89.8 90.8 91.9
FW SGP_FW 1818 0.848 0.108 0.657 0.757 0.850 0.941 1.035
YW SGP_YW 615 0.249 0.067 0.134 0.192 0.251 0.307 0.364

The content of volatile organic substances (TVS, % of TS) using FW has an average
value (mean) of 90.0% and a standard deviation (std) of 2.2%. The range of changes in the
content of volatile organic substances is from 86.1% to 93.8%. As for YW, the average value
(mean) of the content of volatile organic substances is 89.7%, and the standard deviation
(std) is 1.4%. The range of changes in the content of volatile organic substances for this type
of waste is from 87.3% to 91.9%.

The amount of biogas output (SGP, m3/kg TVS) using FW has an average value
(mean) of 0.848 m3/kg TVS and a standard deviation (std) of 0.108 m3/kg TVS. The
range of changes in the volume of biogas output (SGP) is from 0.657 m3/kg TVS to
1.035 m3/kg TVS. Regarding YW, the average value (mean) of the volume of biogas output
is 0.249 m3/kg TVS, and the standard deviation (std) is 0.067 m3/kg TVS. The amount of
biogas output for this type of waste ranges from 0.134 m3/kg TVS to 0.364 m3/kg TVS.

The obtained statistical characteristics make it possible to gain an understanding of
the distribution and features of each variable for both considered types of waste which
affect the projected amount of biogas production from organic household waste.

In the next step, normalization and standardization of individual data features is
performed, described by the following formulas [32]:

xnormalized =
x − min(x)

max(x)− min(x)
, (4)

where xnormalized—normalized value of the indicator; x—empirical value of the indica-
tor; min(x)—smallest value of the indicator in the sample; min(x)—largest value of the
indicator in the sample.

xstandardized =
x − mean(x)

std(x)
, (5)

where xstandardized—standardized value of the indicator; mean(x)—average value of the
indicator value in the sample; std(x)—standard deviation of the indicator in the sample.

After that, the coding of categorical features is performed [32]:

xencoded = fencode(x), (6)

where xencoded—coded value of categorical features.
In our research, data preprocessing is performed using the Scikit-learn library in the

Python programming language. This makes it possible to prepare data for forecasting the
volume of biogas production from household organic waste, a fragment of which is shown
in Table 2.

In the next step, features are selected:

Dselected = fselect(D), (7)

where Dselected—data set with selected features.
After that, the input parameters of the forecasting model of biogas production volumes

from household organic waste are determined. We select the attributes that have the highest
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correlation with the target attribute “SGP”. For this, a correlation matrix is used (Figure 6).
For each input parameter, their average value is determined (according to Table 2):

xi =
1
n

n

∑
i=1

xij, j = 1, m, (8)

where xi—average value of the input parameter; xij—current value of the parameter;
n—number of data instances; m—number of data attributes.

Table 2. A fragment of prepared data for forecasting the volume of biogas production from household
organic waste.

Observation Waste TS TVS SGP

– X1 X2 X3 Y1
0 0 256.61 93.46 0.891
1 0 240.47 92.83 0.690
2 0 273.86 89.21 0.900
3 1 653.66 91.08 0.216
4 1 795.21 91.74 0.345

. . . . . . . . . . . . . . .
2430 0 243.11 88.18 1.010
2431 0 227.85 92.71 0.777
2432 0 231.58 89.56 0.795
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Quantitative values of the components of correlation matrix kij are determined by
formula [27]

kij =
corr

(
xij, y1

)
σ
(
xij
)
, σ(y1)

, (9)

where corr
(

xij, y1
)
—correlation between the input data and target feature y1.

The correlation between the quantitative values of the input factors (x1, . . ., x3) and
the target characteristic “SGP” (y1) is determined by formula [27]
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corr
(
xij, y1

)
=

n
∑

l=1
(xli − xi)

(
xlj − xj

)
, i, j = 1, n

n − 1
. (10)

The correlation matrix (Figure 6) represents the relationships between the input at-
tributes and the target feature in the data set (D). For the target trait “SGP”, the correlation
with other traits is determined by Formula (10).

The obtained results of the calculations regarding the determination of the quantitative
values of the correlation coefficients are presented in Table 3.

Table 3. The results of determining the correlation coefficients between the input attributes and the
target feature “SGP”.

Attribute Correlation Coefficient

Waste −0.934
TS −0.887

TVS 0.078

Based on the obtained values of the correlation coefficients between the input attributes
and the target feature “SGP”, it should be noted that the attributes “Waste” and “TS” have a
strong correlation with the attribute “SGP”, and the attribute “TVS” has a correspondingly
weak correlation with the vector of target values (output variable).

In the future, the data are divided into training and test samples:

Dtrain, Dtest = fsplit(D). (11)

We suggest using 20% of the data for testing and the rest for training. That is, the ratio
between training and test samples is Dtrain : Dtest = 80 : 20.

This helps assess the ability of the model to generalize knowledge on new, previously
unseen data. We describe a general approach to preparing data for machine learning in
order to forecast volumes of biogas production from household organic waste.

3. Results of the Substantiation of an Effective Model for Forecasting Volumes of Biogas
Production from Household Organic Waste and to Evaluate Its Accuracy Indicators

In order to train the forecasting model of biogas production volumes from household
organic waste, we selected the following algorithms: (1) Linear Regression; (2) Ridge
Regression; (3) Lasso Regression; (4) Random Forest Regression; (5) Gradient Boosting
Regression. Let us briefly describe each of these algorithms and their basic concept.

Widely used in the practice of machine learning when solving forecasting problems is
Linear Regression, which is described by the following formula:

y = β0 + β1x1 + β2x2 + . . . + βnxn + ε (12)

where y—target variable (biogas production); x1, x2, . . . , xn—signs (properties of organic
waste); β0—intercept; β1, β2, . . . , βn—regression coefficients; ε—an error.

The following Ridge Regression is an adaptation of the popular and widely used
Linear Regression algorithm. It improves upon conventional Linear Regression by slightly
modifying its cost function, which is described by the following formula:

Loss =
n

∑
i=1

(yi − (β0 + β1xi1 + β2xi2 + . . . + βnxin))
2 + α

n

∑
j=1

β2
j , (13)

where α—parameter of regularization.
The specified Equation (13) adds a regularization term containing squared coefficients (β2

j ).
The Lasso Regression algorithm, widely used for solving forecasting problems, de-

serves attention:
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Loss =
n

∑
i=1

(yi − (β0 + β1xi1 + β2xi2 + . . . + βnxin))
2 + α

n

∑
j=1

∣∣β j
∣∣. (14)

Equation (14) adds a regularization term containing the absolute values of the coeffi-
cients (β j).

Random forest for regression is considered a very powerful and robust machine
learning algorithm because it handles multivariate data, missing values, and outliers well.
Random Forest Regression (Random Forest for regression) involves a combination of many
decision trees (Random Forest trees). We mark ŷi as a prediction from the ith tree; then,

ŷ =
1
N

N

∑
i=1

ŷi, (15)

where ŷ—as a prediction from i tree; N—the number of trees in the ensemble.
Each tree offers, from Expression (15), its prediction, and as a result, the Random

Forest averages or votes for these predictions. At the same time, the Random Forest reduces
overtraining and ensures the importance of features.

Gradient Boosting Regression involves using a combination of weak models (usually
decision trees). Each new model corrects the mistakes of the previous model. The forecast
is formed as a weighted sum of the forecasts of all with the number of models f1, f2, . . . , fM,
with the number of models (M):

ŷ = f1(x) + f2(x) + . . . + fM(x). (16)

Each model is added with a weight, depending on the learning rate:

ŷ =
M

∑
m=1

γm fm(x). (17)

where ŷ—prediction from i of the model; N—number of models in the ensemble; γm—the
weight m—the model has in gradient boosting.

We use the specified algorithms to train a model for forecasting the volume of biogas
production from household organic waste. As a result of our research, for each of the created
models, we built graphs for residual analysis (residual) on training data (Figures 7–11).
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volumes from household organic waste, built using the Ridge Regression algorithm.
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production from household organic waste, built using the Gradient Boosting Regression algorithm.

Based on the graphs of the residual values on the training data for the researched
models of forecasting the volumes of biogas production from organic household waste,
it can be noted that the models provide different results in terms of their accuracy. For a
more accurate assessment of the obtained models, we calculated the following indicators:
(1) coefficient of determination for the training data set, R2

train; (2) coefficient of determi-
nation for the test data set, R2

test; (3) mean cross-validation score for the training data set,
CV score meantrain.

The coefficient of determination (R2
train) for the training data set indicates the percent-

age of variation of the dependent variable:

R2
train = 1 −

n
∑

i=1
(yi − ŷ)2

n
∑

i=1
(yi − y)2

, (18)

where n—number of observations; yi—real values of the target variable “SGP”; ŷ—predicted
values of “SGP” are derived from the model; y—mean value of target variable “SGP”.

The coefficient of determination (R2
test) for the test data set indicates how effectively the

model matches the test data, i.e., evaluates the model’s fit with new, previously unseen data:

R2
test = 1 −

n
∑

i=1
(yi − ŷ)2

n
∑

i=1
(yi − y)2

. (19)

The average cross-validation score for the training data set CV score meantrain provides
an estimate of the model’s performance based on cross-validation, taking into account the
average value of the accuracy scores on different subsamples:

CV score meantrain =
1
K

K

∑
k=1

R2
train,k. (20)

where K—the number of convolutions in cross-validation; R2
train,k—coefficient of determi-

nation of the training data set R2
train for each convolution k.

This means that indicator CV score meantrain helps to evaluate the model’s resistance
to variability in the training set using cross-validation.
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The obtained results of the calculations regarding the model training accuracy indica-
tors are presented in Table 4.

Table 4. The results of determining the accuracy indicators of model training for forecasting the
volumes of biogas production from organic household waste.

No. Model R2 (Train) R2 (Test)
CV Score Mean

(Train)

1 Linear Regression 0.87 0.87 0.87
2 Ridge Regression 0.87 0.87 0.87
3 Lasso Regression 0.87 0.87 0.87
4 Random Forest Regressor 0.88 0.87 0.87
5 Gradient Boosting Regressor 0.95 0.85 0.85

Considering the obtained results, it should be noted that the “Gradient Boosting
Regressor” model provides the highest coefficient of determination, R2

train = 0.95, on the
training data, which indicates the good ability of the model to explain the variation in the
training data. However, on test data, this indicator is smaller and amounts to R2

test = 0.85,
which indicates retraining of the model on training data and incomplete generalization on
new data. At the same time, the “Random Forest Regressor” model provides the highest
coefficient of determination, R2

train = 0.88, on the training data, and on the test data this
indicator is somewhat smaller and is R2

test = 0.87, which indicates retraining of the model
on training data and incomplete generalization on new data. As for the root mean square
error, all the studied models have the same indicator, CV score meantrain = 0.87, on the
training data.

However, the assessment of which model is best for predicting biogas production
from household organic waste depending on the specific requirements and context of
the problem regarding its accuracy. At the same time, one should take into account the
interpretability of the model for forecasting volumes of biogas production from household
organic waste and the speed of its learning.

To determine the accuracy of “Random Forest Regressor” and “Gradient Boosting
Regressor” models, we chose MSE and MAE indicators. They provide an assessment of the
accuracy of the specified model during its training and testing. They provide an evaluation
of the model’s performance during different training epochs. The definition of MSE (mean
squared error) involves the calculation of the root mean square difference between the
predicted values of biogas production volumes from household organic waste using the
model and the real biogas production values:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2. (21)

where yi—value of biogas production volume from household organic waste, m3/kg TVS;
ŷi—forecast value of biogas production volume from household organic waste, m3/kg TVS;
n—number of examples in the initial data array, units.

The next indicator that characterizes the accuracy of the model is the MAE (mean ab-
solute error), which characterizes the average value of the difference between the predicted
values of the model and the real values of the volume of biogas production from household
organic waste:

MAE =
1
n

n

∑
i=1

|yi − ŷi|. (22)

On the basis of the conducted research, we constructed the dependence of the change
in the MSE indicator on the number of learning epochs using the “Random Forest Regressor”
and “Gradient Boosting Regressor” models to forecast the volume of biogas production
from household organic waste (Figure 12).



Energies 2024, 17, 1786 15 of 20Energies 2024, 17, x FOR PEER REVIEW 16 of 22 
 

 

  
(a) (b) 

Figure 12. Dependences of the change in the MSE indicator on the number of training epochs for 
the training and test data samples using the “Random Forest Regressor” (a) and “Gradient Boosting 
Regressor” (b) models for forecasting the volume of biogas production from household organic 
waste. 

The obtained dependences of the change in the MSE indicator on the number of train-
ing epochs for the training and test data samples using the “Random Forest Regressor” 
and “Gradient Boosting Regressor” models indicate slightly different trends in the change 
in the indicated indicator. In particular, in the “Random Forest Regressor” model, a higher 
and unstable value of the indicated indicator is observed. At the same time, in the “Gradi-
ent Boosting Regressor” model, after 40 training epochs, the MSE indicator on the test 
sample increases compared to the training sample, which indicates that the model is re-
trained. We perform an analysis of the quantitative values of MSE and MAE indicators 
when forecasting the volume of biogas production from household organic waste using 
the studied models according to the data in Table 5. 

Table 5. Quantitative values of MSE and MAE indicators when forecasting biogas production vol-
umes from household organic waste using the studied models. 

No. Model MSE (Train-
ing) 

MSE (Test-
ing) 

MAE (Train-
ing) 

MAE (Test-
ing) 

1 Random Forest Regressor 0.001637 0.011698 0.033248 0.088905 

2 Gradient Boosting Regres-
sor 0.008365 0.010619 0.077221 0.087593 

Based on the obtained data in Table 5, it was established that for the training sample, 
the “Random Forest Regressor” model has a smaller value of MSE = 0.001637, which indi-
cates a good fit for the training data. For the test sample, the “Random Forest Regressor” 
model also has the smallest value of MSE = 0.011698, which confirms the effectiveness of 
the model on new data. At the same time, both models show low MSE values, but the 
“Random Forest Regressor” model looks more efficient for the test sample. 

For the training sample, the “Random Forest Regressor” model also has the smallest 
value of MAE = 0.033248, which indicates accurate prediction on the training data. For the 
test sample, the “Random Forest Regressor” model has the smallest value of MAE = 
0.088905, which is low and shows the effectiveness of the model on new data. In both 
cases, the Random Forest Regressor model has a smaller MAE value, indicating better 
accuracy compared to the Gradient Boosting Regressor model. Overall, the Random For-
est Regressor model shows better performance for both metrics on the test sample com-
pared to the Gradient Boosting Regressor model. 

Figure 12. Dependences of the change in the MSE indicator on the number of training epochs for
the training and test data samples using the “Random Forest Regressor” (a) and “Gradient Boosting
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The obtained dependences of the change in the MSE indicator on the number of
training epochs for the training and test data samples using the “Random Forest Regressor”
and “Gradient Boosting Regressor” models indicate slightly different trends in the change
in the indicated indicator. In particular, in the “Random Forest Regressor” model, a higher
and unstable value of the indicated indicator is observed. At the same time, in the “Gradient
Boosting Regressor” model, after 40 training epochs, the MSE indicator on the test sample
increases compared to the training sample, which indicates that the model is retrained. We
perform an analysis of the quantitative values of MSE and MAE indicators when forecasting
the volume of biogas production from household organic waste using the studied models
according to the data in Table 5.

Table 5. Quantitative values of MSE and MAE indicators when forecasting biogas production volumes
from household organic waste using the studied models.

No. Model MSE
(Training)

MSE
(Testing)

MAE
(Training)

MAE
(Testing)

1 Random Forest Regressor 0.001637 0.011698 0.033248 0.088905
2 Gradient Boosting Regressor 0.008365 0.010619 0.077221 0.087593

Based on the obtained data in Table 5, it was established that for the training sample,
the “Random Forest Regressor” model has a smaller value of MSE = 0.001637, which
indicates a good fit for the training data. For the test sample, the “Random Forest Regressor”
model also has the smallest value of MSE = 0.011698, which confirms the effectiveness of
the model on new data. At the same time, both models show low MSE values, but the
“Random Forest Regressor” model looks more efficient for the test sample.

For the training sample, the “Random Forest Regressor” model also has the small-
est value of MAE = 0.033248, which indicates accurate prediction on the training data.
For the test sample, the “Random Forest Regressor” model has the smallest value of
MAE = 0.088905, which is low and shows the effectiveness of the model on new data. In
both cases, the Random Forest Regressor model has a smaller MAE value, indicating better
accuracy compared to the Gradient Boosting Regressor model. Overall, the Random Forest
Regressor model shows better performance for both metrics on the test sample compared
to the Gradient Boosting Regressor model.

On the basis of the developed models, a graph of the actual and predicted values of
biogas production from household organic waste was plotted using the “Random Forest
Regressor” and “Gradient Boosting Regressor” models (Figure 13).
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The resulting graph (Figure 13) shows how the developed models predict the actual
values of the volume of biogas production from household organic waste. The observed
actual values and the predicted values are close to each other, which means that the
proposed model does a good job of forecasting. Based on the conducted research, it can be
stated that the “Random Forest Regressor” model is the most effective for forecasting the
volume of biogas production from household organic waste. This is confirmed by the fact
that it has a smaller MAE value on the test data, which indicates smaller absolute errors in
the predictions.

4. Discussion of Research Results

The obtained research results made it possible to justify the “Random Forest Regres-
sor” model for forecasting the volume of biogas production from household organic waste
based on machine learning. It will be useful in practice for information technology pro-
fessionals and project managers who develop decision support systems for organic waste
management and justify energy production strategies from this waste. The proposed model
analyzes the input data which include the type of waste (FW and YW), the amount of
solid organic matter (TS, kg/m3), and the content of volatile organic matter (TVS, % of TS)
which affect the amount of biogas output (SGP, m3/kg TVS) from household organic waste.
Through a balanced analysis of these factors, the model provides forecasts of biogas yield
(SGP, m3/kg TVS) from household organic waste with high accuracy, helping to optimize
the use of resources and increase production efficiency.

We selected five machine learning algorithms to substantiate an effective model for
forecasting volumes of biogas production from household organic waste. On the basis of
the performed research, the main advantages and disadvantages of the used algorithms
were determined. The advantage of the “Linear Regression” algorithm is the ease of inter-
pretation. In particular, Linear Regression is easily interpreted, which allows understanding
of the effect of each characteristic on the target variable. Also, this algorithm provides
adequate learning speed, and it has wide application in various fields. Its main drawback
is that the resulting model assumes a linear relationship between the features and the target
variable, which may not be sufficient for complex data. Also, it has an increased tendency
to overtraining if there is a large number of correlational signs. The “Ridge Regression”
algorithm involves the introduction of an additional term to the model loss function in
order to limit the values of the model parameters. This helps to avoid overtraining. It
has stability as it works well with multi-collinearity. The main disadvantage of the spec-
ified algorithm is the need to adjust the parameters. That is, it requires selection of the
regularization parameter.
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The “Lasso Regression” algorithm has an advantage over the other mentioned al-
gorithms, as it provides automatic feature selection. At the same time, regularization
can automatically select important features, which helps to avoid retraining and makes
it possible to obtain a general model. Its main drawback is that there is a need to deter-
mine the optimal value of the regularization parameter, which will ensure better overall
model efficiency.

The “Random Forest Regressor” algorithm provides high accuracy and is well suited
for complex data with a large number of features. It is less prone to overtraining compared
to some other algorithms. Its main drawback is the difficulty of interpretation. That is, a
more complex process of interpretation is inherent compared to linear models.

The “Gradient Boosting Regressor” algorithm provides high accuracy, especially
on data sets with a large number of features. It is suitable for the automatic selection
of important features. The disadvantage is that this algorithm is prone to overtraining.
Overlearning may occur with insufficiently configured hyperparameters. In addition, it
requires fine-tuning of hyperparameters to achieve optimal performance.

Based on the conducted research, it was established that two models, “Random Forest
Regressor” and “Gradient Boosting Regressor”, show the best accuracy indicators. The
other three models (Linear Regression, Ridge Regression, Lasso Regression) are inferior in
accuracy and were not considered further. To determine the accuracy of “Random Forest
Regressor” and “Gradient Boosting Regressor” models, we chose MSE and MAE indicators.
The Random Forest Regressor model was found to be a more accurate model compared
to the Gradient Boosting Regressor. This is confirmed by the fact that the MSE of the
“Random Forest Regressor” model on the training data set is 7.14 times smaller than that of
the “Gradient Boosting Regressor” model. At the same time, MAE is 2.67 times smaller in
the “Random Forest Regressor” model than in the “Gradient Boosting Regressor” model.
MSE and MAE in both models are worse on the test data set, which indicates a tendency
to over-train. The Gradient Boosting Regressor model has worse MSE and MAE than the
Random Forest Regressor model on both the training and test data sets.

The proposed model can determine the optimal conditions for biogas production,
which allows to increase the production under appropriate conditions. Finding optimal
parameters can help maximize biogas yield and reduce costs. Also, the model can serve
as a tool for forecasting future volumes of biogas production based on various scenarios
and variables. Accurate forecasts allow planning production, allocating resources and
performing strategic planning based on expected demand.

The use of machine learning to predict the volume of biogas output from household
organic waste allows for more accurate regulation of biogas production while reducing
the impact on the environment. Optimum management of biogas production from these
wastes can contribute to reducing procurement costs and waste generation.

So, it can be claimed that the article fulfils the purpose of the research, which is
confirmed by the fact that, based on the comparison of models based on five machine
learning algorithms, it is established that the best is the “Random Forest Regressor” model.
It has the smallest MAE value on the training data, indicating smaller absolute errors
in predictions.

Further systematic improvement of the “Random Forest Regressor” model for fore-
casting biogas production volumes from household organic waste based on new data will
ensure its accuracy and maintain competitive advantages. Using a machine learning model
to predict biogas production volumes from household organic waste is the basis for creating
an efficient, sustainable, and dynamic biogas production system that maximizes benefits
for household residents and reduces the negative impact on the environment.

5. Conclusions

The proposed algorithm for creating a model for forecasting the volume of biogas
production from household organic waste involves the implementation of 10 main and
3 auxiliary steps including component data analysis which is performed on the basis of the
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method of reducing the size of the data set, increasing interpretability, and minimizing the
risk of data loss. It provides a systematic collection and preparation of data on the type of
waste (FW or YW), total organic solids (TSs), and content of volatile organic substances
(TVS) and the search for relationships with the volumes of biogas output (SGP) from
household organic waste, which ensures, on the basis of the use of machine learning
methods, the performance of the justification of an effective model for forecasting the
volume of biogas production from organic household waste based on the collected data.
Based on the analysis of 2433 data sets that characterize the formation of biogas from
food (FW) and yard waste (YW) by four features, data preparation was performed using
the Jupyter Notebook environment in Python, which is the basis of machine learning to
substantiate an effective volume forecasting model production of biogas from organic
household waste.

On the basis of the developed algorithm using the prepared data, an effective model
for forecasting the volume of biogas production from organic household waste was justified
and its accuracy indicators were evaluated. For machine learning, five regression algo-
rithms (Linear Regression, Ridge Regression, Lasso Regression, Random Forest Regression,
Gradient Boosting Regression) were selected, which were used to train forecasting models
of biogas production volumes from household organic waste. The obtained research results
indicate that the “Gradient Boosting Regressor” model provides the highest coefficient of
determination, R2

train = 0.95, on the training data, which indicates the good ability of the
model to explain the variation in the training data. However, on test data, this indicator is
smaller and amounts to R2

test = 0.85, which indicates retraining of the model on training
data and incomplete generalization on new data. At the same time, the “Random Forest
Regressor” model provides the highest coefficient of determination, R2

train = 0.88, which in-
dicates retraining of the model on training data and incomplete generalization on new data.
At the same time, the “Random Forest Regressor” model provides the highest coefficient
of determination which indicates retraining of the model on training data and incomplete
generalization on new data. At the same time, the “Random Forest Regressor” model pro-
vides the highest coefficient of determination, R2

test = 0.87, which indicates retraining of the
model on training data and incomplete generalization on new data. As for the root mean
square error, all the studied models have the same indicator, CV score meantrain = 0.87, on
the training data.

The results of the conducted research indicate that the model using the “Random
Forest Regressor” algorithm is the most effective for forecasting the amount of biogas
production from organic household waste. This is confirmed by the fact that it provides
MAE = 0.088 on test data, which indicates the smallest absolute errors in predictions.
Further systematic improvement of the “Random Forest Regressor” model for forecasting
biogas production volumes from household organic waste based on new data will ensure
its accuracy and maintain competitive advantages. Using a machine learning model to
predict biogas production volumes from household organic waste is the basis for creating
an efficient, sustainable, and dynamic biogas production system that maximizes benefits
for household residents and reduces the negative impact on the environment.
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