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Abstract: The prediction of building energy consumption is beneficial to utility companies, users,
and facility managers to reduce energy waste. However, due to various drawbacks of prediction
algorithms, such as, non-transparent output, ad hoc explanation by post hoc tools, low accuracy,
and the inability to deal with data uncertainties, such prediction has limited applicability in this
domain. As a result, domain knowledge-based explainability with high accuracy is critical for making
energy predictions trustworthy. Motivated by this, we propose an advanced explainable Belief
Rule-Based Expert System (eBRBES) with domain knowledge-based explanations for the accurate
prediction of energy consumption. We optimize BRBES’s parameters and structure to improve
prediction accuracy while dealing with data uncertainties using its inference engine. To predict
energy consumption, we take into account floor area, daylight, indoor occupancy, and building
heating method. We also describe how a counterfactual output on energy consumption could have
been achieved. Furthermore, we propose a novel Belief Rule-Based adaptive Balance Determination
(BRBaBD) algorithm for determining the optimal balance between explainability and accuracy. To
validate the proposed eBRBES framework, a case study based on Skellefteå, Sweden, is used. BRBaBD
results show that our proposed eBRBES framework outperforms state-of-the-art machine learning
algorithms in terms of optimal balance between explainability and accuracy by 85.08%.

Keywords: accuracy; building energy; explainability; trust; uncertainties

1. Introduction

The energy consumption of buildings plays a significant role in climate change [1].
The construction industry is responsible for around 40% of global energy consumption [2].
Moreover, rapid population growth has increased the energy demand for buildings [3].
Hence, buildings need to be energy efficient and one effective way to realize this goal is
predictive analytics of buildings’ energy consumption [4]. Such predictive consumption
is beneficial to utility companies, users, and facility managers to understand a building’s
energy performance, and improve its energy efficiency [5]. An efficient use of energy
increases monetary savings and improves energy security [6]. The energy prediction of
buildings also supports policymakers to implement urban greening policy [7].

Predictions can be computed with both a data-driven approach and knowledge-driven
approach [8]. A data-driven approach extracts actionable insight from data. Machine
learning, a data-driven approach, builds a statistical model of training data [9]. However, it
lacks feature vector to process natural raw data directly [10]. Deep learning based on neural
network architecture applies a representation-learning method to extract hidden features
from pre-processed raw data [11]. On the other hand, a knowledge-driven approach
represents human knowledge in the form of rules [12]. It is constituted by an expert system,
which has two components: a knowledge base and inference engine. Belief Rule-Based
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Expert System (BRBES), fuzzy logic, and MYCIN [13] are examples of knowledge-driven
approaches. However, wrong or blank input data, caused by human error or ignorance, can
make the predictive output inaccurate, leading to uncertainties [14]. A vagueness of human
knowledge and imprecision or incompleteness due to the limit of human knowledge cause
such uncertainties [15,16]. Therefore, these uncertainties have to be processed properly.
The rule base of BRBES is based on a belief structure, which is known as belief rule
base. This belief rule base can capture uncertainty and nonlinear causal relationships [17].
Moreover, BRBES updates belief degrees of the rule base if any or all of the input data
become unavailable [18]. The BRBES infers useful conclusions from the rules using the
Evidential Reasoning (ER) approach [19,20]. Thus, to deal with uncertainties, especially
those caused by ignorance due to input data unavailability, the BRBES outperforms other
knowledge-driven approaches [18].

Data-driven machine learning and deep learning models offer high predictive accuracy
in exchange for complex mathematical functions [21]. The decision-making process of such
models is opaque due to their complex structure. However, when the prediction of the
buildings’ energy consumption impacts the policymakers’ decisions, they must know the
prediction’s rationale [22]. Therefore, transparency in predicting energy consumption is
crucial [23]. A transparent prediction model explains the reasons of its output, resulting
in trust relationship between the model and the user. To build this trust, explainable
artificial intelligence (XAI) is useful. XAI models are divided into two groups: (a) post hoc
explainability and (b) transparent models [24]. The post hoc (after the event) technique
is a proxy explanation, which does not consider knowledge or facts of the concerned
application area. This explanation is dependent on training data. If the training dataset
is biased or erroneous, the post hoc explanation will become misleading. On the other
hand, predictive outputs of transparent models are explainable because they have a simple
structure. However, the transparent models have low accuracy. Explanation based on
knowledge or facts of the concerned application area, instead of training data, is more
trustworthy to a human user. Building owners are also more likely to trust a predictive
output, which is explained by knowledge or facts related to the energy consumption area.
Hence, this study employs a BRBES, an inherently transparent rule-based model, to predict
and explain the energy consumption of building based on relevant domain knowledge.
Here, ‘domain’ means the application area, which is the ‘energy consumption of building’
in this study. ‘Knowledge’ is represented by rules in the rule base of BRBES. Thus, the rule
base of the BRBES represents the knowledge of the energy consumption domain. Facts
of this domain are captured with the rule base [17]. As a transparent model, the BRBES
has higher explainability and lower accuracy compared with the opaque AI models, but
to address this trade-off, we jointly optimize both the parameters and structure of the
explainable BRBES using the Joint Optimization of Parameter and Structure (JOPS) [25]
to improve accuracy. We propose an explanation interface after the predictive output
of the optimized BRBES. We explain the prediction to the user in non-technical human
language through this interface. An optimal balance between explainability and accuracy
is critical for an XAI model to achieve accurate output and explain the rationale behind
it. Therefore, we propose Belief Rule-Based adaptive Balance Determination (BRBaBD) to
evaluate the balance of our proposed model between explainability and accuracy. Thus, our
proposed advanced explainable BRBES (eBRBES) framework aims to develop a prediction
model with optimal balance between explainability and accuracy. This eBRBES framework
outperforms the post hoc explanation of black-box machine learning models by dealing
with data uncertainties and producing human-understandable explanations based on
domain knowledge. To realize our objective, we address the following research questions
in this paper:

• What is the benefit of applying the BRBES? The key benefit is the domain knowledge-
based transparent prediction, while handling data uncertainties.

• How to explain the output of the BRBES? We consider the most important rule of the
rule base and building heating method to explain the output via explanation interface.



Energies 2024, 17, 1797 3 of 18

• How to improve the accuracy of the BRBES? We apply JOPS on the BRBES to improve
its accuracy.

• How to address the explainability versus accuracy trade-off? We propose BRBaBD for
this purpose.

Furthermore, we generate a counterfactual statement against the explanation to enable
the user to understand why another output did not occur. Thus, we make our proposed
model trustworthy to the building owner.

2. Related Work

Zhang et al. [26] proposed explanation modules for a Random Forest (RF)-based
building energy model. They used a Partial Dependence Plot to explain the feature impor-
tance. They interpreted local space with decision tree surrogates, which do not consider
domain knowledge. Moreover, RF is a data-driven approach, which does not address
data uncertainties. Tsoka et al. [27] employed an Artificial Neural Network (ANN) to
classify the Energy Performance Certificate of a building. They used XAI tools Local
Interpretable Model-agnostic Explanations (LIMEs) and Shapley Additive Explanations
(SHAP) to identify the most influential input features for the ANN. However, the ANN is a
black-box model without any domain knowledge. LIMEs’ local explanation and SHAP’s
feature importance are proxy. Moreover, an ANN does not address data uncertainties.
Miller [28] investigated what types of behaviors are the most important in the context of the
primary use-type of a building and its energy consumption level. A Highly Comparative
Time-Series Analysis (HCTSA) toolkit was used to analyze the most important temporal
features of energy meter data to classify building performance. HCTSA uses Support
Vector Machine (SVM), with linear kernel, to classify temporal features extracted from the
time-series data of the energy meter. However, SVM does not deal with data uncertainties.
Moreover, HCTSA does not consider domain knowledge. Fan et al. [29] proposed a new
LIME-based methodology to explain and evaluate five supervised building energy per-
formance models. They also developed a novel evaluation metric, trust, to quantitatively
evaluate each prediction based on evidence type. However, a LIME-based local explanation
is ad hoc. Such explanation is based on the training dataset only, without any consideration
of domain knowledge.

Zhang et al. [30] used Light Gradient Boosting Machine (LightGBM) integrated with
SHAP to predict energy consumption of buildings. However, LightGBM is not inherently
transparent. As a post hoc tool, SHAP gives a proxy explanation. Moreover, it does not
consider domain knowledge and data uncertainties. Li et al. [31] proposed a Prediction–
Explanation Network (PEN) to predict stock price movement with better explainability.
They employed a shared representation learning module to identify the correlation between
text and stock price with a vector of salience. However, this PEN framework is based on
a recurrent neural network, which does not use domain knowledge. Data uncertainties
are also not dealt with by this PEN framework. Yu et al. [32] showed how background
knowledge, extracted with rule induction techniques, can be applied to give succinct formal
explanations. However, this background knowledge is represented by traditional if–then
rules and a boosted tree, which cannot deal with uncertainties. Müller et al. [33] proposed a
combined approach of inductive logic programming and a Convolutional Neural Network
(CNN) to detect defects as part of industrial quality control. However, a CNN does not deal
with domain knowledge, and inductive logic programming does not address uncertainties.
Hence, this method does not have full-fledged domain knowledge-based explainability.
Chung et al. [34] employed a deep learning model to predict the energy demand of office
buildings. They used the XAI technique SHAP to identify essential input parameters
for this deep learning model. They demonstrated that these input parameters vary with
localized climate. However, deep learning, being a data-driven approach, does not consider
relevant energy domain knowledge and data uncertainties. SHAP’s feature importance is
also a proxy explanation. Akhlaghi et al. [35] employed a Deep Neural Network (DNN)
to predict the hourly performance of a Guideless Irregular Dew Point Cooler (GIDPC).
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They used SHAP to interpret the contribution of operating conditions on performance.
They employed Evolutionary Optimization (EO) algorithms to maximize cooling efficiency
and minimize construction cost. However, a DNN is a black-box model without domain
knowledge. Cooler-related data uncertainties are also not addressed in this research.

Biessmann et al. [36] employed an Automated Machine Learning (AutoML) approach
to predict the energy demand of large public buildings across various building categories.
They provided building features and climate features (yearly aggregates) as input to this
AutoML model. The building features are area, building category, energy efficiency mea-
sures, and consumption in past years. The climate features are temperature, sunshine hours,
cloud cover, wind, and humidity. Their proposed approach showed higher prediction
accuracy to model the energy demand pattern compared to the adapted and optimized Bun-
desinstitut für Bau-, Stadt- und Raumforschung (BBSR) approach. However, this AutoML
approach does not provide any explanation in support of the predictive output. Dinmo-
hammadi et al. [37] predicted heating energy consumption of residential buildings using
advanced machine learning algorithms. They identified the most important features con-
tributing to residential energy consumption by employing a Particle Swarm Optimization
(PSO)-optimized Random Forest classification algorithm. They applied a Self-Organizing
Map (SOM) approach to reduce feature dimensionality and then trained their proposed
stacking method-based ensemble classification model with the dimensionality-reduced
data to classify heating energy consumption. This stacking method included Extreme
Gradient Boosting (XGBoost), Random Forest, and Light Gradient-Boosting Machine (Light-
GBM), which showed superior performance to other traditional methods. Dinmohammadi
et al. [37] also proposed a causal inference graph, in addition to SHAP, to explain the factors
influencing energy consumption. However, none of the three machine learning models of
their stacking method incorporates domain knowledge. Hence, the feature importance,
explained by the causal inference graph, is also ad hoc. Spinnato et al. [38] proposed
LASTS (Local Agnostic Subsequence-based Time Series explainer) to disclose the logic of a
black-box model, which classifies time series data. This XAI method explains the reasons
of an opaque model’s decision through three different representations: saliency-based
explanation, instance-based explanation, and rule-based explanation. Saliency-based and
instance-based explanations are not based on domain knowledge. Moreover, rules of their
rule-based explanation were inferred from a decision-tree surrogate. Hence, these rules
cannot deal with data uncertainties. Guidotti et al. [39] employed stable and actionable Lo-
cal Rule-based Explanation (LOREsa) method to explain black-box models. They computed
such explanations from a decision tree, which imitated the behavior of the model locally
with respect to the instance to explain. They used a bagging-like approach to formulate this
decision tree, which had both stability and fidelity. They merged the ensemble decision
tree into a single one. A genetic algorithm was used to synthetically generate neighbor
instances to learn the ensemble of decision trees. But, unlike a BRBES, a decision tree cannot
address data uncertainties.

Table 1 illustrates the taxonomy of all of these energy consumption prediction methods,
in light of their strengths and limitations. To address the shortcomings mentioned in this
table, this research sheds light on an explainable BRBES to predict energy consumption
with high accuracy, while handling data uncertainties.

Table 1. Taxonomy of related works.

Article Specification Method Limitation

[26] Feature importance is used to explain the decision of a
Random Forest (RF)-based building energy model. Partial Dependence Plot Domain knowledge is not reflected in explanation.

RF does not handle data uncertainties.

[27]
Most influential input features are identified to explain

energy performance certificate classification
by an ANN.

LIME, SHAP LIME and SHAP’s explanations are proxies. An
ANN does not address data uncertainties.

[28] Temporal features from energy meter data are identified
to classify building performance with SVM.

Highly Comparative Time-Series
Analysis (HCTSA) toolkit

SVM does not deal with data uncertainties.
HCTSA does not consider domain knowledge.
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Table 1. Cont.

Article Specification Method Limitation

[29] The evaluation metric ‘trust’ is proposed to
quantitatively evaluate building energy prediction. LIME LIME’s explanations are ad hoc, with no reflection

of domain knowledge.

[30] Energy is predicted by LightGBM, which is explained
with feature importance. SHAP SHAP’s explanations are proxies, with no

reflection of domain knowledge.

[31] A Recurrent Neural Network (RNN) is employed to
predict stock price movement. Prediction–Explanation Network (PEN) Domain knowledge and uncertainties are not dealt

with by a RNN.

[32] Background knowledge is employed to
provide explanation. Rule induction techniques

Background knowledge is represented by
traditional if–then rules and a boosted tree, which

cannot handle uncertainties.

[33] Defect is detected to control industrial quality.
Combined approach of inductive logic

programming and a Convolutional
Neural Network (CNN)

A CNN has no domain knowledge. Inductive logic
programming does not handle uncertainties.

[34] Energy demand of an office building is predicted
with deep learning. SHAP Deep learning has no domain knowledge. SHAP’s

feature importance values are proxies.

[35] Hourly performance of a Guideless Irregular Dew Point
Cooler (GIDPC) is predicted with deep learning. SHAP

Domain knowledge and data uncertainties are not
handled by deep learning. SHAP’s explanation

is ad hoc.

[36] Energy demand of large public buildings is predicted
against building features and climate features. Automated Machine Learning (AutoML) AutoML does not explain its predictive output.

[37]
Heating energy consumption of residential buildings is

predicted using a stack of three machine
learning algorithms.

Causal inference graph and SHAP
Explanation is ad hoc because none of their

machine learning models contain
domain knowledge.

[38] Saliency-based, instance-based, and rule-based
explanations are used to explain time series data.

Local Agnostic Subsequence-based Time
Series explainer (LASTS)

Saliency-based and instance-based explanations do
not contain domain knowledge. Rules of

rule-based explanation are inferred from decision
trees, which do not handle data uncertainties.

[39] Explanations are computed from an ensemble
of decision trees.

stable and actionable Local Rule-based
Explanation (LOREsa) Decision tree does not address data uncertainties.

3. Method

Figure 1 shows the system architecture of our proposed eBRBES framework to predict
building energy consumption. In this framework, five input values are fed to BRBES:
floor area (square meter), month (January to December), day (Monday to Sunday), hour
(00:00 to 23:00), and heating method (district or electric). We now show how a BRBES
represents domain knowledge to enable knowledge-based transparent prediction.
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Domain Knowledge Representation: The realm of knowledge individuals have about
a specific field of study is called domain knowledge [40]. It is a specialized instance of prior
knowledge of an individual or domain expert [41]. The BRBES represents the knowledge
of the energy consumption domain with rules of its rule base. Here, energy consumption
is the specific field of study, and rule base is the knowledge about this field. A belief
rule consists of two parts: an antecedent part and a consequent part. Rule base has three
antecedent attributes: floor area, daylight, and indoor occupancy. We propose Table 2 to
calculate daylight value (between 0 and 1) from month and hour based on sunrise and
sunset time. We propose Table 3 to calculate indoor occupancy (between 0 and 1) based
on weekday/weekend, month, and hour. Each antecedent attribute has three referential
values: high (H), medium (M), and low (L). The consequent attribute ‘Energy Consumption’
also has the same three referential values. We demonstrate twenty-seven rules of our rule
base in Table 4. The rules of this table represent the domain knowledge of this study.
Numerical values in the consequent part of this rule base represent belief degrees of the
concerned referential values. With these belief degrees, BRBES addresses uncertainties [17].
The ‘Activation weight’ column of this table has been explained later in this subsection.

Table 2. Daylight calculation.

Input Output

Month Hour Daylight

January

9:00 to 14:00 1

(14:01 to 16:00) OR (7:00 to 8:59) 0.50

The rest of the hours 0

February

8:00 to 16:00 1

(16:01 to 18:00) OR (6:00 to 7:59) 0.50

The rest of the hours 0

March

6:00 to 17:00 1

(17:01 to 19:00) OR (4:00 to 5:59) 0.50

The rest of the hours 0

April

4:00 to 19:00 1

(19:01 to 21:00) OR (2:00 to 3:59) 0.50

The rest of the hours 0

May

2:00 to 21:00 1

(21:01 to 23:00) OR (00:00 to 1:59) 0.50

The rest of the hours 0

June
1:00 to 22:00 1

The rest of the hours 0.50

July
2:00 to 22:00 1

The rest of the hours 0.50

August

4:00 to 20:00 1

(20:01 to 22:00) OR (2:00 to 3:59) 0.50

The rest of the hours 0

September

5:00 to 18:00 1

(18:01 to 20:00) OR (3:00 to 4:59) 0.50

The rest of the hours 0

October

7:00 to 16:00 1

(16:01 to 18:00) OR (5:00 to 6:59) 0.50

The rest of the hours 0



Energies 2024, 17, 1797 7 of 18

Table 2. Cont.

Input Output

Month Hour Daylight

November

8:00 to 14:00 1

(14:01 to 16:00) OR (6:00 to 7:59) 0.50

The rest of the hours 0

December

10:00 to 13:00 1

(13:01 to 15:00) OR (8:00 to 9:59) 0.50

The rest of the hours 0

Table 3. Indoor occupancy calculation.

Input Output

Day Type Month Hour Indoor Occupancy Value

Weekday

September to May

8:00 to 19:00 0.50

19:01 to 22:00 (Friday) 0.50

19:01 to 22:00
(Monday to Thursday) 0.80

The rest of the hours 1

June to August

8:00 to 19:00 0.30

19:01 to 23:00 (Friday) 0.50

19:01 to 23:00
(Monday to Thursday) 0.70

The rest of the hours 0.80

Weekend

September to May

9:00 to 19:00 0.40

19:01 to 22:00 (Sunday) 0.80

19:01 to 22:00 (Saturday) 0.50

The rest of the hours 0.80

June to August

9:00 to 19:00 0.10

19:01 to 23:00 (Sunday) 0.50

19:01 to 23:00 (Saturday) 0.30

The rest of the hours 0.50

Symbolic AI: In Figure 1a, the BRBES, a symbolic AI model, performs its reasoning
over four steps: input transformation, a rule activation weight calculation, a belief degree
update, and rule aggregation [17].

Input Transformation. In this stage, input data of all the three antecedent attributes of
the rule base are distributed over their respective referential values. For floor area, we set
the utility values for L, M, and H as 10, 85, and 200, respectively. For daylight, the utility
values of L, M, and H are 0, 0.50, and 1, respectively. For occupancy, the utility values of L,
M, and H are 0.10, 0.55, and 1, respectively. The input transformation procedure is shown
in Equation (A1) of the Appendix A. As an example, we consider a Skellefteå apartment of
142 square meters running on an electric heating method. We predict the hourly energy
consumption of this apartment for 8:00 pm Wednesday in February. We transform this
input set into its referential values. For floor area, M = (200 − 142)/(200 − 85) = 0.51,
H = (1 − 0.51) = 0.49, and L = 0. For daylight, L = 1, M = (1 − 1) = 0, and H = 0. For
occupancy, M = (1 − 0.80)/(1 − 0.55) = 0.44, H = (1 − 0.44) = 0.56, and L = 0.

Rule Activation Weight Calculation. The next stage is to calculate the activation
weight of each of the twenty-seven rules of the rule base. We take into account each rule’s
matching degree, rule weight, total number of antecedent attributes, and the weight of each
antecedent attribute to calculate the activation weight (0 to 1) of each rule with respect to
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the input values [18]. The mathematical equation to calculate activation weight of each rule
is shown in Equation (A2) of Appendix A. We show the activation weights of all the rules
of rule base in the last column of Table 4, where rule 16 has the highest activation weight.

Table 4. Rule base (domain knowledge) of the BRBES.

ID

Antecedent Attributes Consequent Attribute

Activation
WeightFloor

Area
Daylight Indoor

Occupancy

Energy
Consumption

H M L

1 H H H 0.60 0.40 0 0

2 H H M 0.40 0.60 0 0

3 H H L 0 0.80 0.20 0

4 H M H 0.80 0.20 0 0

5 H M M 0.60 0.40 0 0

6 H M L 0.40 0.60 0 0

7 H L H 1 0 0 0.27

8 H L M 0.80 0.20 0 0.22

9 H L L 0.60 0.40 0 0

10 M H H 0.20 0.80 0 0

11 M H M 0 0.20 0.80 0

12 M H L 0 0.60 0.40 0

13 M M H 0.20 0.80 0 0

14 M M M 0 1 0 0

15 M M L 0 0.80 0.20 0

* 16 M L H 0.80 0.20 0 0.28

17 M L M 0.60 0.40 0 0.23

18 M L L 0.40 0.60 0 0

19 L H H 0 0.20 0.80 0

20 L H M 0 0.10 0.90 0

21 L H L 0 0 1 0

22 L M H 0 0.60 0.40 0

23 L M M 0 0.30 0.70 0

24 L M L 0 0.20 0.80 0

25 L L H 0 0.60 0.40 0

26 L L M 0 0.40 0.60 0

27 L L L 0 0.20 0.80 0
* Rule with the highest activation weight.

Belief Degree Update. If input data to any of the antecedent attributes becomes unavail-
able because of uncertainty due to ignorance, the initial belief degrees of the consequent
referential values are updated [17], which are shown in Equation (A3) of Appendix A. Thus,
the BRBES addresses uncertainty due to ignorance.

Inference with ER. We then employ an analytical ER approach to aggregate all the
rules of the BRBES [42,43]. We calculate the final aggregated belief degree of each of the
three referential values of the consequent attribute with the analytical ER equation, as
shown in Equation (A4) of Appendix A. The aggregated final belief degree for referential
values H, M, and L of the consequent attribute are 0.86, 0.14, and 0, respectively.

Thus, the BRBES applies the ER approach on the rule base to predict the value of
energy consumption. The following equation represents this symbolic AI component, α, of
the eBRBES framework:
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α = f (β, γ, δ, ε) (1)

In Equation (1), f is a BRBES function, β is transformed input, γ is a set of activation
weights of all rules, δ is a set of updated belief degrees of all rules, and ε is a set of final
aggregated belief degrees of all the referential values of the consequent attribute. However,
being a knowledge-driven approach, f has lower accuracy than machine learning and deep
learning algorithms [44]. Here, the role of learning AI becomes evident to improve the
accuracy of symbolic AI.

Learning AI. We show the learning of the AI component of the eBRBES framework
in Figure 1b, where we optimize both the parameters and structure of BRBES for higher
accuracy. In terms of learning parameters, we optimize the referential values’ utility values
of the antecedent attributes, rule weight, antecedent attribute weight, and consequent at-
tribute’s belief degrees with the enhanced Belief Rule-Based adaptive Differential Evolution
(eBRBaDE) algorithm [45]. The eBRBaDE’s balanced approach between exploration and
exploitation to set the proper values of control parameters (crossover and mutation factors)
is attributed to its better performance than Differential Evolution (DE). We optimize the
structure of the BRBES with Structure Optimization based on Heuristic Strategy (SOHS)
algorithm [25]. SOHS selects the optimum number of referential values of the antecedent
attributes. We, then, apply JOPS on the BRBES for joint optimization of its parameters and
structure, with a view to address its trade-off between high explainability and low accuracy.
We define this learning AI component as follows:

ζ = η (α, θ, κ) (2)

In Equation (2), η is the JOPS function. Three parameters of this function are α, θ, and
κ, which refer to the initial BRBES from Equation (1), eBRBaDE, and SOHS, respectively.
Thus, we employ learning AI (ζ) on symbolic AI (α) to overcome the accuracy shortage of
the BRBES. At this stage, both explainability (BRBES) and accuracy (JOPS) are integrated
with our eBRBES framework. Next, we calculate the crisp value of energy consumption
from a multi-value assessment of JOPS-optimized BRBES.

Energy Consumption Prediction. Figure 1c transforms the JOPS-optimized BRBES’s
multi-value assessment into one single numerical crisp value, which represents energy
consumption in kWh, calculated and shown in Table 5. The apartment heating method
is taken into account in this table to calculate the final crisp value. The electric heating
method consumes more energy than its district counterpart [46]. According to Table 5, the
final crisp value of energy consumption is 3.76 kWh, which is close to the actual value of
3.81 kWh. Equation (3) shows this crisp value calculation formula:

λ = µ (ν, ε) (3)

where, µ is a crisp value function, as shown in Table 5. Two parameters of this function are
ν, and ε, which are the heating method and the set of final aggregated belief degrees of all
the referential values of consequent attribute ‘energy consumption’, respectively.

Interface. In the explanation and counterfactual interface of Figure 1d, we explain
the rationale behind this predictive output. This explanation is based on the rule with
the highest activation weight, which in our present example is rule 16 of Table 4. Our
explanation pattern is as follows:

“Daylight is [e1] in a [e2] [e3], resulting in [e4] probability for people to stay indoor
on a [e5] [e3]. Hence, due to [e6] floor area, [e1] daylight, [e4] indoor occupancy,
and [e7] heating method, energy consumption level has been predicted to be
mostly [e8].”

Here, e1 = the referential value of daylight in line with the highest activation weight;
e2 = season of the year. June to August is the summer season, September to October is
fall, November to March is winter, and April to May is spring; e3 = daytime. From 4:00
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to 11:59 is morning, 12:00 is noon, 12:01 to 17:59 is afternoon, 18:00 to 20:00 is evening,
and 20:01 to 3:59 is night; e4 = the referential value of indoor occupancy in line with the
highest activation weight; e5 = day type. Monday to Thursday is termed as a “week-
day”, Saturday is termed as “weekend”, and Friday and Sunday are termed as they are;
e6 = the referential value of floor area in line with the highest activation weight; e7 = district
or electric heating method; e8 = consequent attribute’s referential value having the highest
aggregated final belief degree. In line with this pattern, the explanation of the predictive
output of our example case is as follows:

“Daylight is low in a winter evening, resulting in high probability for people
to stay indoor on a weekday evening. Hence, due to medium floor area, low
daylight, high indoor occupancy, and electric heating method, the energy con-
sumption level has been predicted to be mostly high.”

This explanation enables a user to understand the reason behind the output, how
our model works, and whether any bias exists. In addition to explanation, we provide a
counterfactual in this interface, as shown in Table 6, to communicate to the user how an al-
ternative outcome could have been achieved. A counterfactual of our example explanation
is as follows:

“However, energy consumption could have been lower if it were summer, when
people enjoy a lot of outdoor activities under daylight. Moreover, the apartment
could have consumed lesser energy if it used district heating method.”

Table 5. Energy consumption crisp value calculation.

Input Output

Heating Method Aggregated Values of ‘H’, ‘M’, and ‘L’ of
‘Energy Consumption’ Crisp Value of ‘Energy Consumption’

District

(H ≥ M) AND (H > L) (2.40 × H) + (0.80 × M)

(L > H) AND (L ≥ M) (0.65 × (1 − L)) + (0.15 × M)

(M > H) AND (M > L) AND (M == 1) 0.40 × M

(M > H) AND (M > L) AND (H > L) (0.40 × M) + (2.40 × H)/5

(M > H) AND (M > L) AND (L > H) (0.40 × M) − (0.20 × L)/5

Electric

(H ≥ M) AND (H > L) (4 × H) + (1 × M)/2

(L > H) AND (L ≥ M) (2 × (1 − L)) + (2 × M)/3

(M > H) AND (M > L) AND (M == 1) 3 × M

(M > H) AND (M > L) AND (H > L) (3 × M) + H

(M > H) AND (M > L) AND (L > H) (2 × M) − (1 × L)/5

Table 6. Counterfactuals.

Input Output

Aggregated Values of
‘H’, ‘M’, and ‘L’ of

‘Energy Consumption’
Season Heating Method Counterfactual Statement

H > M > L

Summer
Electric However, energy consumption could have been lower if there were less people indoors.

Moreover, the apartment could have consumed lesser energy if it used a district heating method.

District However, energy consumption could have been lower if there were less people indoors.
Moreover, the apartment would consume more energy if it used an electric heating method.

Any season other
than summer

Electric
However, energy consumption could have been lower if it were summer, when people enjoy a lot

of outdoor activities under daylight.
Moreover, the apartment could have consumed lesser energy if it used a district heating method.

District
However, energy consumption could have been lower if it were summer, when people enjoy a lot

of outdoor activities under daylight.
Moreover, the apartment would consume more energy if it used an electric heating method.
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Table 6. Cont.

Input Output

Aggregated Values of
‘H’, ‘M’, and ‘L’ of

‘Energy Consumption’
Season Heating Method Counterfactual Statement

L > H > M

Winter
Electric However, energy consumption could have been higher if there were more people indoors.

Moreover, the apartment could have consumed less energy if it used a district heating method.

District However, energy consumption could have been higher if there were more people indoors.
Moreover, the apartment would consume more energy if it used an electric heating method.

Any season other
than winter

Electric
However, energy consumption could have been higher if it were winter, when people mostly stay

indoors due to cold weather and limited daylight.
Moreover, the apartment could have consumed less energy if it used a district heating method.

District
However, energy consumption could have been higher if it were winter, when people mostly stay

indoors due to cold weather and limited daylight.
Moreover, the apartment would consume more energy if it used an electric heating method.

M > H > L

Winter

Electric
However, energy consumption could have been lower if it were summer, when people enjoy a lot

of outdoor activities under daylight.
Moreover, the apartment could have consumed less energy if it used a district heating method.

District
However, energy consumption could have been lower if it were summer, when people enjoy a lot

of outdoor activities under daylight.
Moreover, the apartment would consume more energy if it used an electric heating method.

Any season other
than winter

Electric
However, energy consumption could have been higher if it were winter, when people mostly stay

indoors due to cold weather and limited daylight.
Moreover, the apartment could have consumed less energy if it used a district heating method.

District
However, energy consumption could have been higher if it were winter, when people mostly stay

indoors due to cold weather and limited daylight.
Moreover, the apartment would consume more energy if it used an electric heating method.

Thus, an explanation and a counterfactual combinedly create a trust relationship
between our proposed model and the user, as shown in Equation (4):

τ = ρ + σ (4)

where ρ is the explanation text and σ is the counterfactual text. These two texts collectively
constitute the interface τ.

Balance Determination. In Figure 1e, we propose Belief Rule-Based (BRB) adaptive
Balance Determination (BRBaBD) to evaluate how much balanced our proposed eBRBES
framework is between explainability and accuracy. BRBaBD is a multi-level BRBES, where
the final consequent attribute is balance. Its two antecedent attributes are explainability
level and accuracy level. The value of this balance is from 0 to 1, where 0 is the least
optimal point and 1 is the most optimal point between explainability and accuracy. Each
of these two antecedent attributes is a consequent attribute of two separate BRBESs. For
explainability level (crisp value between 0 and 1), antecedent attributes have five ex-
plainability evaluation metrics: feature coverage, relevance [47], test–retest reliability [48],
coherence [49], and difference between explanation logic and model logic [50]. For accuracy
level (crisp value between 0 and 1), antecedent attributes have two accuracy metrics: Mean
Absolute Error (MAE), and the coefficient of determination (R2). BRBaBD is mathematically
represented in Equation (5):

υ = f (f (p1, p2,. . . pn), f (a1, a2,. . ., an)) (5)

where f is a BRBES function, (p1, p2,. . . pn) are explainability metrics, and (a1, a2,. . ., an) are
accuracy metrics. Thus, with BRBaBD, we assess the level of explainability and accuracy of
our proposed eBRBES framework with relevant evaluation metrics to identify the model’s
position between explainability and accuracy. Overall, Equation (6) shows our proposed
eBRBES framework:

Ω (x) = ζ (x) + λ (x) + τ + υ (τ, ζ) (6)

where, x is the set of input features, ζ is learned AI, λ is the crisp value, τ is the interface,
and υ is the BRBaBD function.
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4. Results
4.1. Experimental Setup

We use C++ (version 20) and python (version 3.10) to implement our proposed eBRBES
framework. We implement JOPS in the first cpp file, from which we take the optimal
values of the parameters and structure. We feed these optimal values into a second cpp
file containing the BRBES. The heating method-based crisp value calculation as well as
explanation and counterfactual text are also performed in the same cpp file.

Coherence, difference between explanation and model logic, MAE, R2, and counterfac-
tual evaluation metrics (pragmatism and connectedness) are calculated in this file. We write
a python script to apply python library ‘shap’ on our optimized BRBES. The SHAP value
(feature importance) of each of the three antecedent attributes of our rule base (Table 4)
is calculated in this python script to quantify three evaluation metrics: feature coverage,
relevance, and test–retest reliability. We calculate feature coverage by taking the average
percentage of the non-zero SHAP values. We quantify relevance by calculating the average
absolute SHAP value of each feature. We quantify test–retest reliability by calculating the
Intraclass Correlation Coefficient (ICC) between the SHAP values generated by different
runs of the model. Then, the mean value of ICCs across different runs are calculated to
determine the test–retest reliability of SHAP values. Next, we write a third cpp file to
implement BRBaBD, feed all the seven metrics’ values into it, and calculate the balance
between explainability and accuracy.

4.2. Dataset

We collect the hourly energy consumption dataset of 62 residential apartments of
Skellefteå from Skellefteå Kraft [51], with an average floor area of 58 square meters. The
height of each of these apartments are 2.40 m. This anonymous dataset contains energy
data measured in kWh from 1 January to 31 December 2022.

4.3. Results

We compare our proposed eBRBES framework with four state-of-the-art models: a Sup-
port Vector Regressor (SVR), a Linear Regressor (LR), a Multilayer Perceptron (MLP) regres-
sor, and a Deep Neural Network (DNN). To train and test these four models, we divide the
hourly energy consumption dataset of 62 apartments into two parts: 50 training apartments
and 12 testing apartments. Input features (independent variables) of this dataset are ‘floor
area’, ‘daylight’, and ‘indoor occupancy’. The output (dependent variable) of this dataset is
‘consumed energy’ (kWh). The training dataset contains (24 × 365 × 50) = 438,000 rows,
where 24, 365, and 50 are the number of hours per day, the number of days per year,
and the number of apartments, respectively. Similarly, the 12-apartment testing dataset
contains (24 × 365 × 12) = 105,120 rows. We apply 5-fold cross validation over the whole
62-apartment dataset. We reduce selection bias and prediction variance by applying this
cross validation. Both MLP and DNN use the backpropagation learning algorithm for only
one learning parameter: weight. Table 7 demonstrates the parameter configuration of all the
four state-of-the-art models. We show the comparative values of accuracy, explainability,
and counterfactual metrics of a non-optimized and JOPS-optimized BRBES with these four
models in Table 8. According to this table, a JOPS-optimized BRBES has higher accuracy,
explainability, and counterfactuality than state-of-the-art models. The number of learning
parameters of the BRBES, optimized by JOPS, is higher than SVR, LR, MLP, and DNN [52].
Hence, a JOPS-optimized BRBES offers higher accuracy than these four models. For all
models, feature coverage is 100% against each of the three antecedent attributes of the rule
base. In the ‘Relevance’ column of Table 8, we show the relevance (average value of SHAP)
of three antecedent attributes, ‘floor area’, ‘daylight’, and ‘indoor occupancy’, respectively,
for each model. For all models, ‘floor area’ turns out to be the most relevant attribute to
determine the energy consumption level, followed by ‘indoor occupancy’, and ‘daylight’.
A JOPS-optimized BRBES has a higher relevance for each antecedent attribute than all other
models. Moreover, a high test–retest reliability, a 98.67% coherence of our framework’s
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explanation with background knowledge, and 0 (zero) difference between explanation
and model logic are attributed to the proper formulation of the rule base of the BRBES.
Due to lack of explanation interface, these two metrics are not applicable for the four
models. We evaluate our framework’s counterfactual with two metrics: pragmatism [49]
and connectedness. The first part of our counterfactual is fully pragmatic as summer and
winter arrive with the course of time.

Table 7. Parameter configuration of four models.

Model Parameter Value

Support Vector Regressor (SVR)

kernel Radial Basis Function (RBF)

regularization parameter (c) 100

kernel coefficient (gamma) 0.10

epsilon 0.20

Linear Regressor (LR)
y intercept (b0) determined by

method of least squaresslope (b1)

Multilayer Perceptron (MLP)
regressor

number of hidden layers 2

neurons per hidden layer 6

activation function Rectified Linear Unit (ReLU)

optimization function Stochastic Gradient Descent (SGD)

dropout 0.40

loss Mean Squared Error (MSE)

number of epochs 50

batch size 1460

iterations per epoch (438,000/1460) = 300

Network (DNN)

number of hidden layers 8

neurons per hidden layer 24

activation function ReLU

optimization function SGD

dropout 0.50

loss MSE

number of epochs 100

batch size 1460

iterations per epoch (438,000/1460) = 300

Table 8. Comparative values of accuracy, explainability, and counterfactual metrics.

Model
Accuracy Metrics Explainability Metrics Counterfactual Metrics

MAE R2 Feature
Coverage Relevance Test–Retest

Reliability Coherence Difference Pragmatism Connectedness

BRBES
(Non-optimized) 0.24 0.58 1 12.01, 3.79, 5.87 146.68 87.04% 0% 87.50% 100%

BRBES
(JOPS-optimized) 0.04 0.91 1 18.56, 5.15, 8.04 202.73 98.67% 0% 87.50% 100%

Support Vector
Regressor (SVR) 0.11 0.71 1 16.23, 4.54, 7.03 4.63

Not applicable

Linear Regressor (LR) 0.19 0.63 1 15.14, 3.98, 6.03 3.93

Multilayer Perceptron
(MLP) regressor 0.08 0.80 1 16.17, 4.51, 6.95 11.76

Deep Neural
Network (DNN) 0.18 0.65 1 15.84, 4.08, 6.11 3.07

The second part is partially pragmatic due to the high conversion cost to shift from
electric to district heating. Connectedness is 100% as the counterfactual is fully consistent
with the rule base (ground-truth) of the BRBES. These two counterfactual metrics, as shown
in the last two columns of Table 8, are not relevant for four models as they do not produce
any counterfactual. We show the comparative values of explainability and accuracy (as
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predicted by the first layer of BRBaBD) of the JOPS-optimized BRBES and four models
in Figure 2. The balance between explainability and accuracy of the JOPS-optimized
BRBES and four models are demonstrated in Figure 3. The JOPS-optimized BRBES has
higher balance than the four models. Thus, our proposed eBRBES framework outperforms
state-of-the-art models in terms of both explainability and accuracy.
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5. Discussion

From the results demonstrated in Section 4.3, it is clearly evident that our proposed
eBRBES framework has both higher explainability and higher accuracy compared to state-
of-the-art machine learning and deep learning models. The symbolic AI part of our
proposed framework enables the explainability of our model, followed by an interface to
communicate the explanation and counterfactual to the end user in human language. An
explanation of black-box machine learning models, produced by post hoc tools, is not in
human language. Post hoc tools also do not produce any counterfactual. On the other
hand, learning AI contributes to the improved accuracy of our framework. Moreover, our
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proposed BRBaBD algorithm demonstrates how balanced a model is between explainability
and accuracy. Experimental results of BRBaBD show that our proposed eBRBES framework
has a higher optimal balance between explainability and accuracy than other machine
learning techniques. Thus, our proposed eBRBES framework, being an integration of
symbolic AI and learning AI, is an explainable and accurate AI. The number of antecedent
attributes and the size of the rule base in symbolic AI are chosen heuristically, which may
not be the best choice globally [53]. The same accuracy could be obtained even with a lower
number of antecedent attributes or rules. In the future, we plan to reduce the size of the
rule base, by incorporating a disjunctive assumption, to make our model more explainable
and computationally cost-effective, without sacrificing accuracy.

6. Conclusions

In this paper, we presented an advanced explainable Belief Rule-Based Expert System
(eBRBES) framework to predict and explain building energy consumption with domain
knowledge, while handling data uncertainties. We investigated various drawbacks of the
existing energy consumption prediction models of buildings and addressed these draw-
backs with our proposed framework. Symbolic AI, constituted by the BRBES, made our
model explainable. In learning AI, we jointly optimized both the parameters and structure
of this BRBES to make it more accurate. We considered rules with the highest activation
weight and heating method to generate explanation. We also produced a counterfactual
to enable the user to understand how a different outcome could have been achieved. We
proposed Belief Rule-Based adaptive Balance Determination (BRBaBD) to evaluate the
balance of our proposed approach between explainability and accuracy. Evaluation metrics’
results, validated on the Skellefteå dataset, confirmed that our proposed eBRBES frame-
work outperformed state-of-the-art models in terms of both explainability and accuracy.
Such an explainable and accurate AI model can create a trust relationship between building
owners and AI. This trust will motivate the managers to reduce energy wastage of their
buildings by taking informed decisions based on the predictive output of the AI model.
Building owners will also be able to plan their energy saving strategy by gaining insight
into the prediction pattern, resulting in a sustainable energy transition for buildings. Our
eBRBES framework has the flexibility to be applied to various other application areas
to infer a predictive output with due explanation and accuracy. Such areas include air
pollution prediction, disease prediction, predictive maintenance, data center energy con-
sumption prediction, and so on. In short, this study demonstrated the combined power of
explainability and accuracy to achieve predictive output.

Our future research direction includes dealing with unlabeled data, incorporating
self-supervised, semi-supervised, unsupervised, and life-long learning, as well as a human
feedback loop, etc. We also intend to predict the long-term energy consumption trend of a
certain building in the future.

Author Contributions: Conceptualization, S.K. and M.S.H.; data curation, S.K.; formal analysis,
M.S.H.; funding acquisition, K.A.; investigation, S.K. and M.S.H.; methodology, S.K. and M.S.H.;
project administration, K.A.; resources, K.A.; software, S.K.; supervision, M.S.H. and K.A.; validation,
S.K., M.S.H., and K.A.; visualization, S.K.; writing—original draft, S.K.; writing—review and editing,
M.S.H. and K.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by VINNOVA (Sweden’s Innovation Agency) through the Digital
Stadsutveckling Campus Skellefteå project, grant number 2022-01188.

Data Availability Statement: Code and data are publicly available at https://github.com/samikabir/
EnergyConsumption (accessed on 29 December 2023).

Acknowledgments: We thank Patrik Sundberg of Skellefteå Kraft for providing us the residential
energy consumption dataset of Skellefteå city.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

https://github.com/samikabir/EnergyConsumption
https://github.com/samikabir/EnergyConsumption


Energies 2024, 17, 1797 16 of 18

Appendix A

(A1)

Here, hi1, hi2, and hi3 are utility values of “Low”, “Medium”, and “High” referential
values, respectively.

(A2)

Here, αk and Tk are the kth rule’s matching degree and total number of antecedent attributes,
respectively, and δki is the ith antecedent attribute’s (Ii) weight. ωk is the activation weight
of the kth rule, and θk is the kth rule’s weight (0 to 1).

(A3)

Here, βik is the original belief degree, and βik is the updated belief degree.

βj =
µ×

[
∏L

k=1

(
ωkβjk + 1 −ωk∑N

j=1 βjk

)
− ∏L

k=1

(
1 −ωk∑N

j=1 βjk

)]
1 − µ×

[
∏L

k=1(1 −ωk)
] (A4)

Here, βj is the final aggregated belief degree of each of the three referential values of the
consequent attribute, L is the total number of rules in the rule base, and

µ =

[
N

∑
j=1

L

∏
k=1

(
ωkβjk + 1 −ωk

N

∑
j=1

βjk

)
− (N − 1)

L

∏
k=1

(
1 −ωk

N

∑
j=1

βjk

)]−1



Energies 2024, 17, 1797 17 of 18

References
1. Nichols, B.G.; Kockelman, K.M. Life-cycle energy implications of different residential settings: Recognizing buildings, travel, and

public infrastructure. Energy Policy 2014, 68, 232–242. [CrossRef]
2. Geng, Y.; Ji, W.; Wang, Z.; Lin, B.; Zhu, Y. A review of operating performance in green buildings: Energy use, indoor environmental

quality and occupant satisfaction. Energy Build. 2019, 183, 500–514. [CrossRef]
3. Aversa, P.; Donatelli, A.; Piccoli, G.; Luprano, V.A.M. Improved Thermal Transmittance Measurement with HFM Technique on

Building Envelopes in the Mediterranean Area. Sel. Sci. Pap. J. Civ. Eng. 2016, 11, 39–52. [CrossRef]
4. Cao, X.; Dai, X.; Liu, J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy

buildings during the past decade. Energy Build. 2016, 128, 198–213. [CrossRef]
5. Pham, A.-D.; Ngo, N.-T.; Truong, T.T.H.; Huynh, N.-T.; Truong, N.-S. Predicting energy consumption in multiple buildings using

machine learning for improving energy efficiency and sustainability. J. Clean. Prod. 2020, 260, 121082. [CrossRef]
6. McNeil, M.A.; Karali, N.; Letschert, V. Forecasting Indonesia’s electricity load through 2030 and peak demand reductions from

appliance and lighting efficiency. Energy Sustain. Dev. 2019, 49, 65–77. [CrossRef]
7. Qiao, R.; Liu, T. Impact of building greening on building energy consumption: A quantitative computational approach. J. Clean.

Prod. 2020, 246, 119020. [CrossRef]
8. Chen, L.; Nugent, C.D.; Wang, H. A Knowledge-Driven Approach to Activity Recognition in Smart Homes. IEEE Trans. Knowl.

Data Eng. 2011, 24, 961–974. [CrossRef]
9. Bhavsar, H.; Ganatra, A. A comparative study of training algorithms for supervised machine learning. Int. J. Soft Comput. Eng.

2012, 2, 74–81.
10. Torrisi, M.; Pollastri, G.; Le, Q. Deep learning methods in protein structure prediction. Comput. Struct. Biotechnol. J. 2020, 18,

1301–1310. [CrossRef]
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