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Abstract: In the realm of power systems, short-term electric load forecasting is pivotal for ensuring
supply–demand balance, optimizing generation planning, reducing operational costs, and maintain-
ing grid stability. Short-term load curves are characteristically coarse, revealing high-frequency data
upon decomposition that exhibit pronounced non-linearity and significant noise, complicating efforts
to enhance forecasting precision. To address these challenges, this study introduces an innovative
model. This model employs complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) to bifurcate the original load data into low- and high-frequency components. For the
smoother low-frequency data, a temporal convolutional network (TCN) is utilized, whereas the
high-frequency components, which encapsulate detailed load history information yet suffer from a
lower fitting accuracy, are processed using an enhanced soft thresholding TCN (SF-TCN) optimized
with the slime mould algorithm (SMA). Experimental tests of this methodology on load forecasts for
the forthcoming 24 h across all seasons have demonstrated its superior forecasting accuracy com-
pared to that of non-decomposed models, such as support vector regression (SVR), recurrent neural
network (RNN), gated recurrent unit (GRU), long short-term memory (LSTM), convolutional neural
network-LSTM (CNN-LSTM), TCN, Informer, and decomposed models, including CEEMDAN-TCN
and CEEMDAN-TCN-SMA.

Keywords: electric load forecasting; forecasting; complete ensemble empirical mode decomposition
with adaptive noise; temporal convolutional network; soft thresholding temporal convolutional
network; slime mould algorithm

1. Introduction

The escalating demand for electricity in contemporary society, along with the increas-
ing complexity of power load variations, has heightened requirements for the reliability,
economic efficiency, and sustainability of our electricity supply [1]. As a vital component of
the electric power industry, load forecasting is categorized into short-term, medium-term,
and long-term forecasts, depending on the forecast horizon [2]. Short-term electric load
forecasting enables the estimation of electricity demand for the forthcoming hours or days,
playing a crucial role in power system operations, generation scheduling, energy market
transactions, and strategic system planning.

Short-term electric load forecasting can be divided into two main types: those based
on statistical methods and those based on machine learning approaches [3]. Statistical
methods include techniques such as moving averages, exponential smoothing, and the
autoregressive integrated moving average (ARIMA) model. Lee et al. [4] conducted short-
term load forecasting by embedding a lifting scheme into ARIMA models, utilizing the
Coeflet 12 wavelet for decomposing and reconstructing power load series to enhance fore-
casting accuracy. Taylor [5] compared the performance of various univariate exponential
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smoothing methods in short-term electric load forecasting and discovered that the expo-
nential smoothing method based on singular value decomposition sometimes outperforms
weather-based approaches. However, statistical methods tend to perform poorly on nonlin-
ear and complex load variation patterns, struggle with seasonal and holiday effects, and
typically require data to be stationary. When the load changes rapidly, statistical methods
often remain conservative and fail to keep pace with swift load variations, prompting the
emergence of machine learning techniques.

Representative algorithms of traditional machine learning methods include support
vector machines (SVMs), decision trees, etc., which predict future load demands by training
models on historical load data and other relevant features. Xia et al. [6] proposed an
improved fuzzy support vector regression method for power load forecasting, enhanc-
ing prediction accuracy through a membership function design and model parameter
optimization. X Dong et al. [7] used an SVM method based on K-means clustering for
short-term power load forecasting, exploring the impact of temperature and holidays on
load, thereby enhancing the accuracy of predictions. Compared to statistical methods,
traditional machine learning approaches possess nonlinear modeling capabilities and adapt
better to non-stationary data. However, compared to deep learning algorithms, their capac-
ity to model complex nonlinear relationships remains limited, and they typically cannot
effectively capture temporal dependencies and sequential relationships in time series data.

In the field of electric load forecasting, widely utilized deep learning algorithms in-
clude recurrent neural networks (RNNs), gated recurrent units (GRUs), and long short-term
memory (LSTM) networks. Abumohsen et al. [8] employed LSTM, GRU, and RNN deep
learning models for electric load forecasting and concluded that the GRU model offered
the best performance. GRUs and LSTM networks, as variants of RNNs, have addressed the
issues of vanishing and exploding gradients in traditional RNNs by incorporating gating
mechanisms, allowing for the better capture and management of long-term dependencies
with high levels of representational power and adaptability [9]. However, their disad-
vantages include a lower computational efficiency, larger parameter sizes, higher level of
complexity, and limited modeling capacity for long-term dependencies. Consequently, Liu
et al. [10] introduced the temporal convolutional network (TCN), which overcomes these
shortcomings through parallel computing and an extended receptive field, offering an
efficient, lightweight solution for sequence modeling that is particularly adept at handling
long-term dependencies. To further enhance the precision of time series forecasting, Yao
et al. [11] proposed a CNN–LSTM hybrid model initially used for traffic flow forecast-
ing. Due to its superior performance, it was extensively applied in load forecasting, as
demonstrated by Guo et al. [12], who confirmed its superiority in electric load forecasting.
The introduction of numerous hybrid models has continuously improved the accuracy
of electric load forecasting. Geng et al. [13] proposed a new forecasting framework that
integrates particle swarm optimization (PSO) and variational mode decomposition (VMD)
with a TCN equipped with an attention mechanism. The forecasting after the VMD de-
composition is better at handling the high levels of randomness and uncertainty typically
present in electric loads, especially in capturing minor fluctuations that deep learning
algorithms alone may not effectively detect. However, VMD might perform poorly when
dealing with noise and non-stationary signals, and integrating algorithms can complicate
the deep learning network, making its hyperparameters challenging to adjust. Additionally,
Smyl et al. [14] employed a context-augmented, mixed, and hierarchical architecture that
integrates exponential smoothing (ES) and an RNN to achieve superior results in short-
term load forecasting. This innovative model for short-term load prediction introduces
additional information through a contextual track, which is dynamically modulated to
adapt to the individual sequences of the main track prediction. Yang [15] et al. introduced a
framework combining enhanced K-means and feature selection to tackle limited historical
electric load data. Using XGBoost and Bayesian optimization, it achieves precise short-term
load forecasting in data-scarce areas through model transfer and parameter adjustments.
Nguyen et al. [16] proposed a new model called online SARIMA, specifically designed
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for short-term load forecasting in power systems. It employs online machine learning
techniques to update forecasting parameters in real time, adapting to the seasonal changes
and real-time data flows of power loads. Therefore, the model demonstrates significant
advantages in enhancing the accuracy of power load forecasting. Liu et al. [17] initially
enhanced the nonlinear representation of load data using a feedforward network (FFN),
followed by iteratively extracting and exchanging load data information across multiple
time resolutions through SCINet to capture deep long-term dependencies. Finally, the
extraction of temporal dependencies is further strengthened using an LSTM network. Tar-
manini et al. [18] explored short-term electric power load forecasting methods based on
an autoregressive integrated moving average (ARIMA) and an artificial neural network
(ANN), indicating that ANNs, with their high accuracy in handling nonlinear data and
ability to conduct parallel processing for input data, serve as an effective tool in power load
forecasting and are superior to traditional statistical methods. In recent years, attention
mechanisms have also been widely applied to electric load forecasting. For example, Xu
et al. [19] proposed a multi-step power load forecasting method based on the Informer
model, which, through a comparative analysis, demonstrates a higher prediction accuracy
and efficiency in handling long sequence data than traditional recurrent neural network
approaches. However, these methods face multiple challenges when processing power load
data, including an insufficient ability to handle complex load variation patterns, limitations
in capturing long-term dependencies, low processing efficiency for data with high noise,
and high computational complexity and lack of robustness in models. While these meth-
ods excel at making overall predictions, they sometimes struggle to capture the nuanced
changes within historical data. This oversight can be critical, as the subtle details in histori-
cal information often contain key clues about future patterns and anomalies. Therefore,
predictive models need not only to absorb large-scale trends but also to be sensitive to the
subtleties within the data. By enhancing the model’s ability to recognize these fine details,
the accuracy of predictions can be significantly improved, especially in complex systems in
which even minor variations can have far-reaching effects.

Addressing issues such as the inability of conventional deep learning algorithms to
capture subtle changes, the impact of noise in signal decomposition, poor fitting accu-
racy for high-frequency components, and the difficulty of adjusting deep learning models’
hyperparameters, this paper introduces an electric load forecasting method utilizing com-
plete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), a soft
thresholding temporal convolutional network (SF-TCN), and the slime mould algorithm
(SMA). Initially, the load is decomposed into high- and low-frequency components using
CEEMDAN. Subsequently, a TCN is used to forecast both the high- and low-frequency com-
ponents separately. For the high-frequency components, predictions are obtained through
the SF-TCN model, and the SMA is utilized to optimize the network’s hyperparameters
for these components. For the low-frequency components, predictions are made using
the original TCN to obtain the low-frequency forecasting results. Finally, the forecasting
results for both the high- and low-frequency components are reconstructed to produce the
ultimate prediction outcome.

2. Methodology
2.1. CEEMDAN

CEEMDAN represents an advancement over empirical mode decomposition (EMD)
and ensemble empirical mode decomposition (EEMD) [20,21]. EMD is a method for ex-
tracting singular and symmetric components from nonlinear and non-stationary signals,
dividing the signal into a set of intrinsic mode functions (IMFs), each representing the
signal’s oscillation patterns at different frequencies [22]. Wu et al. [23] proposed the EEMD
decomposition method to address these issues. By adding different types of noise to the
original signal for multiple decompositions and then averaging the results, the impact of
mode mixing is reduced, enhancing the stability and reliability of the decomposition. How-
ever, EEMD may introduce additional noise components during decomposition, leading
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to less accurate reconstruction. Furthermore, EEMD requires parameters related to the
added noise to be set, necessitating some prior knowledge. Torres et al. [19] introduced
the CEEMDAN decomposition method, employing an adaptive noise technique that better
recovers the signal patterns. Its ability to automatically adjust the noise level also reduces
the need for parameter setting.

The CEEMDAN algorithm can be described through the following steps:

1. Add white noise to the original signal x(t) to obtain xi(t):

xi(t) = x(t) + β0ωi(t) (1)

where β0 is the amplitude coefficient of white noise, and ωi(t) is standard white noise.
2. Use EMD to decompose the first set of xi(t) and obtain the residual r1(t):

IMF1(t) =
1
I ∑

i=1
IMFi

1(t) (2)

r1(t) = x(t)− IMF1(t) (3)

where IMF1(t) is the first-order intrinsic mode component, and I is the number
of trials.

3. Use EMD on r1(t) after adding adaptive noise to obtain the second-order modal
component IMF2(t) and the residual r2(t):

r1(t) + β1M1(ωi(t)) = IMF2(t) + r2(t) (4)

where M1 is the operator of the first-order intrinsic mode component.
4. Repeat step (3), calculating the (k + 1)th order modal component and residual, until

the residual becomes a monotonic function and can no longer be further decomposed
into IMFs.

2.2. Principles of TCN and the Improved SF-TCN

Unlike typical recurrent neural networks (RNNs), such as GRUs and LSTM networks,
TCN is a model based on convolutional neural networks (CNNs) designed for processing
time series data. To ensure the output’s length mirrors that of the input and to adhere
to the principle of preventing future information leakage, TCN employs a 1D fully con-
volutional structure. This structure incorporates zero padding with a length that is one
less than the kernel size and utilizes both causal and dilated convolutions. For a one-
dimensional sequence input

→
X ∈ Rn and a convolution kernel f : {0, . . . , k − 1} → R , the

dilated convolution operation F for the sequence element s is defined as follows [24]:

F(s) = (
→
X ∗ d f )(s) =

k−1

∑
i=0

f (i)·Xs−d·i (5)

where ∗ indicates the convolution operation,
→
X represents the input sequence, f represents

the convolutional kernel, d represents the dilation rate, and s− d · i accounts for the direction
of the past.

In Formula (5), the output at each temporal step s, denoted by F(s), is computed

through a dilated convolution operation applied to the input sequence
→
X with the convo-

lution kernel f . This operation integrates information from the current time step and its
antecedents. Each element of the convolution kernel f (i) is multiplied by the corresponding
element in the input sequence at Xs−d·i, where d signifies the dilation rate. This rate adjusts
the intervals at which the convolution kernel spans the input sequence, thereby enabling the
model to capture dependencies across an extended range of data. Consequently, the output
F(s) represents the sum of these products, ensuring that each step of the model output
is influenced solely by the data preceding its own temporal position. This characteristic
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is fundamental to time series analysis, as it guarantees the integrity of the predictions by
precluding the undue influence of future data.

Causal convolution ensures that the output depends only on the current and previous
time points, avoiding leakage of future information. Dilated convolution allows TCN to
capture longer historical dependencies by expanding the convolutional operation with a
larger receptive field between hidden layers, as shown in Figure 1. In the provided figure,
blue circles signify the network’s input layer, capturing elements x(t) from sequential data;
and hollow circles illustrate the hidden layers, distinguished by depths d = 1 and d = 2,
which are interconnected by horizontal arrows that convey the cyclical propagation of
data through time and hierarchical processing stages. The red circles depict the output
layer, which yields the predicted outcomes ŷt at each discrete temporal juncture. Arrows
represent the vectors of informational flux and the schematic architecture of the network’s
connections. This structural design facilitates the maintenance of historical information
continuity without preemptive disclosure of future data points, integral to the model’s
predictive integrity.
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The temporal convolutional network’s residual block is ingeniously crafted, compris-
ing convolutional layers, weight normalization layers, ReLU activation functions, and
Dropout layers, all meticulously sequenced twice. At the heart of its architecture, a residual
connection ingeniously bridges the gap between the input of the first convolutional layer
and the output of the second Dropout layer. This innovative linkage not only safeguards
the essential information embedded within the input but also facilitates the seamless flow
of gradients, effectively circumventing the peril of gradient explosion.

Delving into the realm of high-frequency components, replete with abundant noise, the
TCN model exhibits a heightened sensitivity. This susceptibility to noise within the input
data can significantly muddle the model’s learning trajectory, precipitating inaccuracies in
its predictive prowess. The absence of a dedicated noise suppression mechanism within
the TCN framework renders it less adept at managing the intricacies of noisy input data,
thereby somewhat diminishing its robustness. Notably, the convolutional layers of the
TCN model are characterized by a substantial parameter count, particularly when tasked
with unraveling the complexities of elongated time series, which, in turn, increases the
model’s storage requisites and computational intricacy.

In response to the challenges posed by high-frequency components, this discourse
introduces an innovative adaptation—the SF-TCN. This refinement integrates threshold
filtering parameters designed to meticulously sift through features prior to their emergence
from the residual block. Specifically, the soft thresholding operation engages in a meticulous
comparison of each feature’s magnitude against a pre-established threshold, consequen-
tially nullifying features beneath this threshold while preserving those above. As depicted

in Figure 2, the SF-TCN model processes the input sequence Ẑ(i−1)
= (ẑ(i−1)

1 , . . . , ẑ(i−1)
T )

through a series of operations within the residual blocks, resulting in an output sequence

Ẑ(i)
= (ẑ(i)1 , . . . , ẑ(i)T ) that has been refined by the soft thresholding mechanism. This paper

applies soft thresholding after the passage through two residual blocks and immediately
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before engaging the residual connection. The incorporation of threshold filtering parame-
ters in the SF-TCN aims to refine network performance by diligently curating the noise and
superfluous information, thereby elevating its proficiency in modeling and processing time
series data. This strategic enhancement not only stabilizes the network but also amplifies its
generalization capabilities, proving particularly invaluable when navigating the turbulent
waters of high-frequency data. Without the mitigating influence of soft thresholding, the
TCN model may teeter on the brink of overfitting, a scenario accentuated in conditions of
scant training data or an overabundance of model parameters. Lacking a robust feature
selection and sparsity mechanism, the model risks becoming ensnared in the intricacies of
the training data, culminating in diminished performance on novel test datasets.
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Low-frequency component data typically manifest as relatively smooth trends, ex-
hibiting smaller fluctuations and slower changes compared to high-frequency components.
Therefore, for low-frequency components, there is no need to employ techniques such
as soft thresholding that emphasize noise filtering. Their inherent stability and gradual
change characteristics make them easier to handle during analysis and modeling processes,
eliminating the need for additional signal processing steps.

2.3. Principles of SMA

Slime mold can select foraging strategies based on the quality of food sources and
can utilize multiple food sources simultaneously. Applying this adaptive search behavior,
through which the mold dynamically adjusts its search patterns based on current informa-
tion, to optimization algorithms can achieve strong global search capabilities, adaptability,
flexibility, a balance between exploration and exploitation, and multi-objective optimiza-
tion capabilities. Compared to other commonly used optimization algorithms, such as
the marine predators algorithm (MPA) and the salp swarm algorithm (SSA), the SMA
algorithm exhibits superior levels of precision and stability, hence its selection for use in
this paper [25].
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The growth and behavior of slime molds can begin to be understood with the forma-
tion of plasmodia following mitosis, entering a mature phase in which slime molds start
their trophic growth stage, exhibiting a network-like morphology. This morphological
transformation is primarily aimed at maximizing the absorption of essential nutrients such
as food, water, and oxygen by adjusting their surface area to adapt to the distribution of
nutrients in the environment. In slime mold algorithms, the behavior of these organisms is
utilized to simulate an intelligent optimization process, in which the slime mold adjusts the
positional weight of each individual based on the environmental conditions (i.e., the quality
of the fitness function) at its location, thereby determining its new direction of movement.

As slime molds approach a food source, biological oscillators are activated, generating
waves through their venous system to increase the flow of substances within cells. The
intensity of these waves correlates positively with food concentration; that is, the higher
the concentration of food, the stronger the waves, leading to faster internal substance flow.
By this means, the slime mold algorithm mimics the predatory behavior of slime molds,
achieving an intelligent function for finding optimal solutions.

From the natural behavior of slime molds, three basic rules can be abstracted to
simulate their foraging process: firstly, slime molds can move towards a food source by
sensing odors in the air, forming circular or fan-shaped movement structures; secondly,
when the venous system of a slime mold contacts a high concentration of food, its internal
biological oscillator generates stronger waves, thereby accelerating the flow of cytoplasm to
quickly enclose the food; and lastly, slime molds adjust their movement speed according to
the concentration of food, approaching low-concentration food slowly, while accelerating
towards high-quality food sources. These rules together guide the behavioral patterns of
slime molds in nature and provide a theoretical basis for the slime mold algorithm.

The implementation process of the slime mold algorithm is as follows [26]:

1. Approaching food

−−−−−→
X(t + 1) =


−−→
Xb(t) +

−→
vb · (

→
W ·

−−→
XA(t)−

−−→
XB(t)), r < p

−→vc ·
−−→
X(t) , r ≥ p

(6)

where
−→
vb ∈ [−a, a], −→vc is a parameter that gradually decreases from 1 to 0; t repre-

sents the current iteration number;
−→
Xb indicates the position of the individual with

the highest odor concentration, i.e., the position of the individual with the optimal

fitness;
→
X represents the current position of the slime mold individual;

−→
XA and

−→
XB

represent the positions of two randomly chosen slime mold individuals; and
→
W is a

weight coefficient. The updated formula for p is as follows:

p = tanh|S(i)− DF| (7)

where i ∈ 1, 2, 3, · · · n represents the individual index in the slime mold population;

S(i) represents the fitness of individual
→
X; and DF indicates the best fitness obtained

across all iterations. The formula of
−→
vb is

−→
vb = [−a, a], and its updated formula is as

follows:
a = arctan h(−(

t
max_t

) + 1) (8)

The updated formula for
→
W is as follows:

−−−−−−−−−−−−→
W(Smell Index(i)) =

{
1 + r· log( bF−S(i)

bF−wF + 1), condition
1 − r· log( bF−S(i)

bF−wF + 1), others
(9)
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Smell Index = sort(S) (10)

where r ∈ [0, 1], bF represents the best fitness achieved during the current iteration
process; wF denotes the worst fitness achieved during the current iteration process;
condition indicates that S(i) ranks in the top half of the group; and Smell Index is
a sequence of fitness values arranged in ascending order, used when addressing
minimization problems.

2. Encircling Food Depending on the quality of the food, slime mold can adjust its search
patterns. When the food concentration is high, it places more emphasis on that area;
conversely, when the food concentration is low, it reduces the weight of that area and
turns to explore other regions. The mathematical formula for updating the position of
the slime mold is as follows:

−→
X∗ =


rand·(UB − LB) + LB, rand < z
−−→
Xb(t) +

−→
vb ·(W·

−−→
XA(t)−

−−→
XB(t)), r < p

−→vc ·
−−→
X(t) , r ≥ p

(11)

where UB and LB are the upper and lower bounds of the hyperparameter search,
respectively; rand, r ∈ [0, 1],z acts as a control factor, which adjusts the balance
between global search and local exploitation.

3. Capturing Food Slime mold employs biological oscillators to generate propagation
waves that alter the flow of its cytoplasm, enabling it to search for and select food
resources within its environment. By adjusting its oscillation frequency and engaging
in random exploratory behavior, the slime mold adapts to varying concentrations of
food, allowing the cells to more swiftly converge upon sources of high-quality food,
while allocating a portion of its resources to the exploration of additional areas. The
oscillation of parameters and their synergistic effect simulate the selective behavior
of slime mold, empowering it to discover superior food sources and circumvent
local optima. Despite facing numerous constraints during propagation, these very
limitations afford the slime mold opportunities, enhancing its likelihood of locating
high-quality food sources.

The optimization of hyperparameters represents a complex global optimization chal-
lenge, for which the slime mold algorithm offers an effective solution for the hyperpa-
rameter optimization of high-frequency models. It not only assists in identifying the
optimal combination of hyperparameters, enhancing model performance, but also boosts
the model’s robustness and generalization capabilities.

2.4. CEEMDAN-SF-TCN-SMA

The model proposed in this paper utilizes CEEMDAN to decompose the load signal
as shown in Figure 3, extracting and reconstructing the first two IMFs as high-frequency
signals and reconstructing the remaining IMFs as low-frequency signals, as depicted in
Figure 4. These figures only display the electric load data for the spring month of April.
Given the high complexity and low accuracy of high-frequency signal prediction, and
considering that low-frequency signal curves are relatively smooth, without the need to
address high noise and volatility, soft thresholding does not significantly impact them.
Therefore, the SF-TCN model will be applied solely to high-frequency signals, while the
SMA algorithm will be used for hyperparameter optimization of both high- and low-
frequency models. Figure 5 illustrates the specific process of the model method proposed
in this paper.
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By decomposing time series data into high-frequency and low-frequency signals for
reconstruction, this strategy offers multifaceted advantages in prediction, significantly en-
hancing our ability to handle complex data. Firstly, it markedly reduces the adverse impact
of noise on forecast accuracy by specifically addressing the noise and fluctuations in high-
frequency signals, while choosing the most suitable model for the unique characteristics
of different signals, thereby improving overall prediction precision. Moreover, processing
high-frequency and low-frequency signals separately reduces the risk of model overfitting,
enhancing the model’s generalization ability when faced with new, unseen data. In terms
of computational efficiency, this method allows for the allocation of different computational
resources and parallel processing strategies for different signals, effectively saving computa-
tion time and resources. Additionally, by clearly distinguishing between the high-frequency
and low-frequency components of the data, it becomes easier to understand and interpret
the model’s prediction results, facilitating adjustments and optimizations to the model as
necessary. Lastly, this approach offers a high degree of flexibility and adaptability, enabling
the model to adjust its focus on high-frequency or low-frequency signals based on the
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specific requirements of the application scenario, effectively coping with changes in data
characteristics over time and the predictive needs of different scenarios. In summary, the
method of dividing data into high-frequency and low-frequency signals for reconstruction
ensures prediction accuracy, enhances efficiency, improves interpretability, and provides a
high level of adaptability to complex data situations.
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For the load signal, CEEMDAN is utilized to decompose it into multiple IMFs. The
results of CEEMDAN decomposition automatically arrange the IMFs in descending order
of frequency. Hence, the first two IMFs are reconstructed into a high-frequency signal,
while the remaining IMFs are reconstructed into a low-frequency signal. The issues of
diminished precision in handling high-frequency components are primarily attributed
to the structural characteristics of TCNs and their sensitivity to noise. High-frequency
data features rapid changes along with higher levels of noise, which complicates the
TCN models’ ability to learn effective features from it. Without specialized noise filtering
or feature discrimination mechanisms, TCNs might struggle to differentiate valuable
information from noise effectively. This leads to the model mistaking noise for valuable
signals and learning from it, thereby affecting the predictive performance. This suggests
that TCNs are inherently more suited to processing low-frequency data with more stable
feature variations. In contrast, their ability to handle high-frequency components with
drastic feature changes is limited, as reflected in their modeling and predictive accuracy
for such data. For predicting high-frequency components, the SF-TCN-SMA model is
employed to obtain the high-frequency prediction results. In predicting the low-frequency
signal, TCN-SMA is directly used to achieve the low-frequency prediction results. Finally,
the high-frequency and low-frequency prediction results are reconstructed to obtain the
final prediction outcome.
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3. Data Sources and Preprocessing
3.1. Data Sources

This study utilizes the electric load data of the New England area in the United States
for the year 2021, which are available from the website ISO New England, an independent
organization responsible for managing the power system in the New England region. The
dataset has a time step of 5 min and is used for forecasting one day ahead. To verify the
model’s robustness and stability, data from the first 7 days of representative months for
each of the four seasons were selected for the New England area, with April representing
the spring, July representing the summer, October representing the autumn, and January
representing the winter. For each month, the first 5 days were used as the training set, the
6th day as the validation set, and the 7th day as the test set.

3.2. Data Preprocessing

To ensure the robustness and stability of the forecast results, missing values and
outliers exceeding a difference of 600 in the dataset were addressed using the random
forest algorithm [27]. The processed dataset and its segmentation are depicted in Figure 6,
with green representing the training set, blue representing the validation set, and red
representing the test set. To enhance the neural network’s performance, the data underwent
extreme value normalization, with the formula as follows:

x′ =
x − xmin

xmax − xmin
(12)

where x′ is the value after normalization, x are the current data to be normalized, and
xmax and xmin are the maximum and minimum values of all the data that need to be
normalized, respectively.
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4. Experiment and Results Analysis
4.1. Model Configuration and Evaluation Metrics

To validate the effectiveness and superiority of the proposed CEEMDAN-SF-TCN-
SMA model, comparative experiments and ablation studies were conducted. The compara-
tive experiments employed SVR, RNN, GRU, LSTM, and CNN-LSTM models, while the
ablation studies utilized TCN, CEEMDAN-TCN, and CEEMDAN-TCN-SMA models to
verify the effectiveness of CEEMDAN, SMA, and SF-TCN, respectively.

The proposed model’s high- and low-frequency components each comprise two
stacked TCN layers, followed by a Flatten layer and two Dense layers. For the low-
frequency component, the SMA optimization algorithm optimizes six hyperparameters:
the number of filters in the two TCN layers (nb_filters), the kernel size (kernel_size), the
number of neurons in the first Dense layer (dense_units), and the batch size (batch_size).
The high-frequency component additionally includes optimization for the soft threshold.
The dilations and epochs are not subject to optimization and are set at [1,2,4,8] and 100,
respectively. The population size (pop) of the SMA optimization algorithm is set to 15,
with a maximum iteration number (MaxIter) of 10. The hyperparameters and optimization
results for the high- and low-frequency components are presented in Table 1. The optimiza-
tion results for the low-frequency component are identical across all four seasons, with the
nb_filters and kernel_size for both of the TCN layers being 16 and three, respectively, and
the dense_units and batch_size being 16. The optimization results for the high-frequency
component vary across seasons, as shown in Table 2.
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Table 1. CEEMDAN-SF-TCN-SMA model parameters.

Network Layer Network Parameters Low Frequency High Frequency

First Layer TCN

nb_filters 16 Refer to Table 2
kernel_size 3 Refer to Table 2

dilations [1,2,4,8] [1,2,4,8]
activation ReLU ReLU
threshold No Parameter Refer to Table 2

Second Layer TCN

nb_filters 16 Refer to Table 2
kernel_size 3 Refer to Table 2

dilations [1,2,4,8] [1,2,4,8]
activation ReLU ReLU
threshold No Parameter Refer to Table 2

First Layer Dense dense_units 16 Refer to Table 2
activation ReLU ReLU

Second Layer Dense dense_units 1 1
activation Linear Linear

Training Parameters batch_size 16 Refer to Table 2
epochs 100 100

Table 2. High-frequency parameters.

Hyperparameters Spring Summer Autumn Winter

nb_filters_1 220 223 218 27
kernel_size_1 4 7 8 6
threshold_1 0.043 0.969 0.221 0.008
nb_filters_2 81 250 150 187

kernel_size_2 5 6 9 6
threshold_2 0.224 0.964 0.189 0.556

dense_units_1 44 21 40 33
batch_size 39 104 111 52

The parameter settings for each model in the comparative experiments are shown in
Table 3. The SVR model uses the radial basis function (RBF) kernel, with a regularization
coefficient (C) of 1.5, a kernel coefficient (gamma) of 0.45, and a tolerance coefficient
(epsilon) of 0.01. The RNN, GRU, and LSTM models each feature two stacked layers,
followed by a Flatten layer and two Dense layers. The CNN-LSTM model comprises both
CNN and LSTM components: the CNN part includes a Reshape layer, Conv2D layer,
MaxPooling2D layer, Dropout layer, and another Reshape layer, while the LSTM part
consists of two LSTM layers, a Flatten layer, and two Dense layers. For the Informer
model, which is tailored for enhanced long-sequence time series forecasting, the precise
configuration of its parameters plays a vital role. The model dimension is set to 512
(d_model), providing a substantial representation capacity. It utilizes eight heads (n_heads)
in its multi-head attention mechanism, facilitating the parallel processing of sequence
information. The architecture comprises two encoder layers (e_layers) and one decoder
layer (d_layers), establishing a balanced depth for processing and prediction. A dropout
rate of 0.05 (dropout) is chosen to mitigate overfitting by randomly omitting features during
training. The attention mechanism specified is the probabilistic sparse attention mechanism
(attn=‘prob’), which is optimized for handling long sequences, while the time features are
encoded using a time feature encoding method (embed=‘timeF’). These parameter settings
collectively define the Informer model’s structure, equipping it to process long time series
data efficiently and with a high level of predictive accuracy.
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Table 3. Comparison experiment’s model parameters.

Model Network Parameters

SVR kernel=‘rbf’, C=1, gamma=0.5, epsilon=0.01

RNN

hidden_units_1=16, hidden_activation_1=‘relu’
hidden_units_2=16, hidden_activation_2=‘relu’
dense_units_1=16, dense_activation_1=‘relu’,
dense_units_2=1, dense_activation_2=‘linear’,
batch_size=16, epochs=100

GRU

hidden_units_1=16, hidden_activation_1=‘relu’
hidden_units_2=16, hidden_activation_2=‘relu’
dense_units_1=16, dense_activation_1=‘relu’,
dense_units_2=1, dense_activation_2=‘linear’,
batch_size=16, epochs=100

LSTM

hidden_units_1=140, hidden_activation_1=‘relu’
hidden_units_2=60, hidden_activation_2=‘relu’
dense_units_1=16, dense_activation_1=‘relu’,
dense_units_2=1, dense_activation_2=‘linear’,
batch_size=64, epochs=100

CNN-LSTM

filters=64, kernel_size=3, strides=1,
pool_size=2,
dropout=0.3,
hidden_units_1=140, hidden_activation_1=‘relu’,
hidden_units_2=60, hidden_activation_2=‘relu’,
dense_units_1=16, dense_activation_1=‘relu’,
dense_units_2=1, dense_activation_2=‘linear’,
batch_size=64, epochs=100

Informer

seq_len=12, label_len=6, pred_len=1,
enc_in=1, dec_in=1, c_out=1, d_model=512,
n_heads=8, e_layers=2, d_layers=2, s_layers=‘3, 2, 1’,
d_ff=2048, fator=5, padding=0, distill=‘store_false’,
dropout=0.05, attn=‘prob’, embed=‘timeF’, activation=‘gelu’,
output_attention=‘store_true’, do_predict=‘store_true’,
mix=‘store_false’, cols=‘+’, num_workers=0, itr=‘2’,
train_epochs=6, batch_size=32, patience=3, learning_rate=0.001,
des=‘test’, loss=‘mse’, lradj=‘type1’, use_amp=‘store_true’, inverse=True

In the ablation experiments, the TCN model consists of two stacked TCN layers,
followed by a Flatten layer and two Dense layers. The network structure of the low-
frequency part and the hyperparameters optimized by the SMA for CEEMDAN-TCN and
CEEMDAN-TCN-SMA are consistent with those proposed in this paper. The parameters
for the high-frequency component, including the number of filters (nb_filters), kernel size
(kernel_size), number of neurons in the first Dense layer (dense_units), and batch size
(batch_size), are presented in Table 4. All experiments in this paper employ a sliding
window size of 12 to predict the next data point. In the tables of this paper, “_1” denotes
the network’s first layer, and “_2” indicates the second layer.

Model performance can be evaluated using the following metrics: the mean square
error (MSE), mean absolute percentage error (MAPE), and mean absolute deviation (Abs-
DEV), with their formulas as follows:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (13)

MAPE =
100%

n

n

∑
i=1

| ŷi − yi
yi

| (14)
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AbsDEV =
1

∑n
i=1 yi

·
n

∑
i=1

|ŷi − yi| (15)

where yi represents the actual value, ŷi represents the predicted value, and n is the number
of samples.

Table 4. Ablation experiment parameters.

Model Network Parameters

CEEMDAN-TCN High-frequency Component

nb_filters_1=32, kernel_size_1=3,
hidden_activation_1=‘relu’,
dilations_1=[1,2,4,8],
nb_filters_2=32, kernel_size2=3,
hidden_activation2=‘relu’,
dilations2=[1,2,4,8],
dense_units1=16, dense_activation1=‘relu’,
dense_units2=1, dense_activation2=‘linear’,
batch_size=16, epochs=100

CEEMDAN-TCN-SMA High-frequency Component

nb_filters_1=Optimization, kernel_size_1=Optimization,
hidden_activation_1=‘relu’,
dilations_1=[1,2,4,8],
nb_filters_2=Optimization, kernel_size_2=Optimization,
hidden_activation_2=‘relu’,
dilations_2=[1,2,4,8],
dense_units_1=Optimization, dense_activation_1=‘relu’,
dense_units_2=1, dense_activation_2=‘linear’,
batch_size=Optimization, epochs=100

TCN

nb_filters_1=64, kernel_size_1=3,
hidden_activation_1=‘relu’,
dilations_1=[1,2,4,8],
nb_filters_2=64, kernel_size_2=3,
hidden_activation_2=‘relu’,
dilations_2=[1,2,4,8],
dense_units_1=16, dense_activation_1=‘relu’,
dense_units_2=1, dense_activation_2=‘linear’,
batch_size=16, epochs=100

4.2. CEEMDAN-SF-TCN-SMA Forecasting Analysis

Using CEEMDAN-SF-TCN-SMA to predict short-term electric loads one day in ad-
vance resulted in a commendable level of accuracy. The overall evaluation metrics before
decomposition are shown in Table 5, while the overall, high-frequency, and low-frequency
evaluation metrics after decomposition are presented in Table 6, Table 7, and Table 8,
respectively. In all tables, dark blue indicates the best evaluation metrics, followed by
light blue.

In Table 6, experiments show that the CEEMDAN-SF-TCN-SMA model has a better
prediction accuracy in the spring and autumn than in the summer and winter. As depicted
in Figure 7, both the summer and winter exhibit a higher level of electricity consumption,
especially the summer. Higher electricity usage often accompanies more complex changing
trends, resulting in increased data noise and a decrease in prediction accuracy. Overall,
the model proposed in this study achieves a coefficient of determination (R2) greater than
0.999 across all seasons, as shown in Figure 7, indicating an excellent load curve fitting
accuracy and reflecting its good prediction accuracy and robustness.
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Table 5. Overall evaluation metrics before CEEMDAN.

Season Metric SVR RNN GRU LSTM CNN-
LSTM Informer TCN

Spring
MSE 1088.32 1770.20 3959.82 2138.16 1807.81 6264.42 1690.01

MAPE (%) 0.23 0.30 0.43 0.32 0.33 0.57 0.30
AbsDEV 25.59 33.51 48.67 35.82 34.97 62.91 32.53

Summer
MSE 8212.09 8194.42 8385.86 8278.83 7661.2 16,603.23 5412.53

MAPE (%) 0.45 0.38 0.39 0.41 0.49 0.65 0.32
AbsDEV 73.62 65.11 65.14 68.15 77.45 108.38 54.63

Autumn
MSE 1198.91 1336.82 1351.08 1659.37 1408.35 6762.06 1142.42

MAPE (%) 0.22 0.24 0.24 0.27 0.25 0.52 0.22
AbsDEV 26.17 28.33 28.24 32.16 29.51 62.20 25.97

Winter
MSE 2295.14 4623.00 3023.68 2910.03 2449.34 7700.20 2109.48

MAPE (%) 0.22 0.39 0.26 0.25 0.27 0.45 0.23
AbsDEV 31.87 55.90 37.25 34.84 37.59 63.60 33.88

Table 6. Overall evaluation metrics after CEEMDAN.

Season Metric CEEMDAN-TCN CEEMDAN-TCN-SMA CEEMDAN-SF-TCN-SMA

Spring
MSE 971.27 862.96 628.42

MAPE (%) 0.23 0.21 0.18
AbsDEV 25.51 23.81 19.67

Summer
MSE 3698.86 3609.73 3442.13

MAPE (%) 0.28 0.27 0.27
AbsDEV 46.03 45.36 44.39

Autumn
MSE 1003.2 745.43 555.45

MAPE (%) 0.20 0.17 0.15
AbsDEV 24.23 20.99 18.17

Winter
MSE 1167.29 1081.12 1014.45

MAPE (%) 0.18 0.17 0.16
AbsDEV 24.84 23.41 22.05

Table 7. Low-frequency component evaluation metrics.

Hyperparameters Metric Value

Spring
MSE 421.00

MAPE (%) 0.15
AbsDEV 16.47

Summer
MSE 371.47

MAPE (%) 0.26
AbsDEV 43.77

Autumn
MSE 343.39

MAPE (%) 0.11
AbsDEV 13.60

Winter
MSE 202.10

MAPE (%) 0.09
AbsDEV 11.43
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Table 8. High-frequency component evaluation metrics.

Season Metric CEEMDAN-TCN CEEMDAN-TCN-SMA CEEMDAN-SF-TCN-SMA

Spring
MSE 374.18 357.31 342.88

MAPE (%) 470.49 394.08 256.40
AbsDEV 15.06 14.73 14.49

Summer
MSE 477.5 454.64 331.19

MAPE (%) 337.54 282.115 250.49
AbsDEV 16.46 16.0916 13.87

Autumn
MSE 428.82 330.91 269.38

MAPE (%) 297.26 272.27 205.91
AbsDEV 16.16 14.29 12.89

Winter
MSE 1012.09 923.01 788.92

MAPE (%) 753.28 483.9 311.43
AbsDEV 22.84 20.15 18.30
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4.3. Comparative Analysis

Table 5 compares the prediction effects before the CEEMDAN model’s decomposition.
All models were evaluated using the MSE, MAPE, and AbsDEV. In Tables 5, 6 and 8.
Among them, the TCN model performed better in the summer, autumn, and winter
seasons, showing a superior overall performance. The prediction results of the CNN-LSTM
and SVR models also showed a good performance. The SVR model performed best in
spring, but its prediction accuracy in summer was significantly lower than that of the TCN
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and CNN-LSTM models. The Informer, based on the attention mechanism, performs the
worst in all seasons and across all parameters.

The performance differences among various time series models when dealing with
electricity load data characterized by volatility and cyclicality can be attributed to their
unique information processing methods and structural designs. The SVR, as a statistical-
based machine learning model, performs well with electricity load data that have certain
linear relationships. However, it may underperform when facing complex nonlinear
fluctuations and cyclic patterns. RNNs, along with its variants GRUs and LSTM networks,
are designed to capture time dependencies in data. RNNs are limited by the vanishing
and exploding gradient problems, making them less effective in capturing long-term
dependencies. GRUs and LSTM networks introduce gating mechanisms to address this
issue, enhancing efficiency in learning from long-sequence data. Despite this, they might
still struggle with particularly complex cyclic and volatile patterns due to constraints in
parameter configurations and network structures. The CNN-LSTM combines the spatial
feature extraction capabilities of CNNs with the long-term dependency handling ability
of the LSTM, adapting well to fluctuations and cyclicality. The Informer, utilizing the
self-attention mechanism based on the Transformer architecture, theoretically captures
dependencies across the entire sequence, making it suitable for long-term series prediction.
However, its performance may vary with the specificity of electricity load data and the scale
of training data. The TCN effectively captures long-distance dependencies in time series
through stacked convolutional layers and is especially adept at recognizing and leveraging
cyclic patterns for accurate predictions in data with significant fluctuations and cyclicality.

The experiments in Table 6 decomposed the original data using CEEMDAN. Table 7
uses the TCN model for low-frequency predictions. The hyperparameters of different
models in different seasons remain the same before and after the SMA optimization,
resulting in consistent outcomes. Separately predicting high- and low-frequency data
after decomposition and then reconstructing them significantly improved the prediction
accuracy. Compared to the best-performing undecomposed TCN model, the decomposed
CEEMDAN-TCN model saw average reductions in the MSE, MAPE, and AbsDEV of
878.455, 0.045, and 6.600, respectively, with particularly noticeable reductions in the summer,
when these three evaluation metrics decreased by 1713.670, 0.040, and 8.600, respectively.
Decomposition, prediction, and then reconstruction allow for layered modeling methods
to independently process features within different frequency ranges, more accurately
capturing rapid changes, stable trends, and periodicity. Predicting high- and low-frequency
parts separately allows for the selection of suitable prediction models and hyperparameters
according to their different characteristics, improving the prediction accuracy and stability
and effectively reducing the impact of noise on the prediction results.

In contrast, the results for the low-frequency component, in which the hyperparam-
eters of each model in different seasons remained the same before and after the SMA
optimization, differed for the high-frequency component after the SMA optimization,
changing the hyperparameters for different seasons to adapt to varying demands. After
optimizing the high-frequency hyperparameters using the SMA algorithm to simulate
the slime mold foraging process, the MSE, MAPE, and AbsDEV for the high-frequency
component had average reductions of 56.573, 106.550, and 1.313, respectively, and the
overall prediction values after reconstruction saw reductions of 135.345, 0.018, and 1.760,
respectively, in these three evaluation metrics.

The high non-linearity and strong noise of the high-frequency component made fitting
with the TCN less accurate, whereas the SF-TCN could suppress noise components in the
high-frequency part, retain important detail information, enhance model robustness, and
smooth data fluctuations. The application of the SF-TCN improved the fitting accuracy of
the high-frequency component, enabling the model to better capture the true patterns of
change in the original signal, thereby improving the overall prediction accuracy and stability.
Table 8 shows the prediction results for the high-frequency component, revealing that after
using the SF-TCN-SMA, the MSE, MAPE, and AbsDEV decreased on average by 76.603,
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101.338, and 1.270, respectively, compared to the TCN-SMA, and the overall prediction
values after reconstruction saw decreases of 164.698, 0.015, and 2.322, respectively, in these
three evaluation metrics, reflecting the effectiveness of the improved SF-TCN.

In conclusion, the methodologies proposed in this paper, encompassing decomposi-
tion, prediction followed by reconstruction, and the utilization of the enhanced SF-TCN
and the slime mold optimization algorithm, represent innovative and effective approaches.

The CEEMDAN-SF-TCN-SMA model proposed in this paper performed the best
among the compared models. Decomposing the original data and using the SF-TCN
for the high-frequency component were effective, as was the application of the SMA
optimization algorithm.

5. Conclusions

This study introduces a novel approach to short-term electric power load forecasting,
which integrates the CEEMDAN, an improved SF-TCN, and the SMA for hyperparameter
optimization. Compared to traditional models, this method demonstrates superior predic-
tive accuracy, marking progress in addressing the complexity of short-term electric power
load forecasting.

This paper’s primary contributions are as follows:

1. By utilizing the CEEMDAN, our study effectively decomposes electric power load data
into high-frequency and low-frequency components. This enables a more detailed
analysis, capturing subtle fluctuations in the load curve that traditional methods
may overlook.

2. The introduction of an improved SF-TCN addresses the challenges in predicting high-
frequency components. This model enhancement not only reduces the impact of noise
but also improves the accuracy of short-term forecasts.

3. The application of the shuffled memetic algorithm (SMA) for adjusting the neural
network’s hyperparameters and soft thresholding enhances the neural network’s
adaptability and forecasting ability.

4. Our experimental results demonstrate that, compared to un-decomposed SVR, RNN,
GRU, LSTM, CNN-LSTM, and TCN models as well as decomposed CEEMDAN-TCN
and CEEMDAN-SF-TCN models, our method possesses superior forecasting capabilities.

This study primarily focuses on the New England region, validating the exceptional
performance of the proposed electricity load forecasting model across the four seasons:
spring, summer, autumn, and winter. By observing the diversity of consumption patterns in
these seasons, the robustness and adaptability of the model are confirmed, and it is capable
of handling different electricity usage characteristics. Nevertheless, this research has not
yet thoroughly investigated the model’s effectiveness in regions with consumption patterns
significantly different from those of New England. It is necessary to explore further in this
area, and plans are underway to extend our research to various geographical locations to
validate the model’s universality and applicability.

The model introduced in this paper has demonstrated an outstanding performance
across the four quarters, with an R2 value exceeding 0.999, indicating that the model can
highly accurately fit the existing data. Theoretically, introducing more relevant variables,
such as weather conditions or socio-economic indicators, could potentially improve the
model’s forecasting accuracy since these factors might have a significant impact on the
electricity load. However, incorporating more variables would also increase the model’s
complexity, which could lead to more challenging data processing, a more cumbersome
model structure, and possibly overfitting, in which the model becomes overly sensitive to
the training data, reducing its generalization ability for unknown data. Therefore, while
adding additional variables might help enhance its forecasting accuracy, this also brings a
series of challenges that need further exploration and investigation in future research.

Typically, as the prediction horizon extends, its accuracy decreases due to insufficient
data; thus, this study mainly focuses on short-term electricity load forecasting within
a 24 h period. Hence, its predictive performance over longer time spans has not been
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further investigated, which requires continued exploration in future works. Additionally,
considering the model’s adaptable framework, it is not only applicable to electricity load
forecasting but may also be suitable for other time series forecasting applications, although
this necessitates further experimental validation.
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