
Citation: Liu, X.; Zio, E.; Borgonovo,

E.; Plischke, E. A Systematic

Approach of Global Sensitivity

Analysis and Its Application to a

Model for the Quantification of

Resilience of Interconnected Critical

Infrastructures. Energies 2024, 17, 1823.

https://doi.org/10.3390/en17081823

Academic Editor: Dimitrios

Katsaprakakis

Received: 2 February 2024

Revised: 27 March 2024

Accepted: 28 March 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Systematic Approach of Global Sensitivity Analysis and Its
Application to a Model for the Quantification of Resilience of
Interconnected Critical Infrastructures
Xing Liu 1, Enrico Zio 2,3,* , Emanuele Borgonovo 4 and Elmar Plischke 5

1 Chair on Systems Science and the Energetic Challenge, Foundation Electricité de France (EDF),
Centrale Supélec, 91190 Gif-sur-Yvette, France; xing.liu@ecp.fr

2 Centre de Recherche sur les Risques et les Crises (CRC), MINES Paris-PSL Université Paris,
06904 Sophia Antipolis, France

3 Department of Energy, Politecnico di Milano, 20133 Milan, Italy
4 Department of Decision Sciences, Bocconi Institute for Data Science and Analytics, Bocconi University,

20136 Milan, Italy; emanuele.borgonovo@unibocconi.it
5 Institute of Disposal Research, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany;

elmar.plischke@tu-clausthal.de
* Correspondence: enrico.zio@polimi.it

Abstract: We consider a model for the resilience analysis of interconnected critical infrastructures (ICIs) that
describes the dependencies among the subsystems within the ICIs and their time-varying behavior. The
model response is a function of uncertain inputs comprising ICIs design parameters and failure magnitudes
of vulnerable elements in the system, etc. In this methodological paper, we present a systematic approach
based on an innovative blend of methods to perform a sensitivity analysis for identifying the most
relevant variables affecting the system resilience at different stages, during a disruptive event. The
methods considered include the following: the use of the graphical representation of Cusunoro curves
for a visualization of the impact of an input on the resilience metric and an understanding of whether
the associated dependence is monotonic, increasing, or decreasing; the introduction of an ensemble of
indicators related to different properties of the resilience metric to allow the prioritization of variable
importance and avoid false negatives, meaning to regard a variable as non-influential when, instead, it
plays a relevant role in the determination of the model response; the calculation of first-order variance-based
sensitivity indices to have an appreciation on the relevance of interactions when inputs are independent;
and a data approach to visually identify relevant second-order interactions. All the sensitivity methods
considered are performed on a provided sample, and do not require additional model evaluations. They
allow the analyst to post-process the data to extract, simultaneously, several desirable insights. The
systematic approach proposed to apply these methods allows us to identify the model input variables
and parameters that are not very relevant, while it enables the identification of the relevant ones which
allows prioritizing interventions on the vulnerable elements of the system for its resilience at different
stages during a disruptive event. Given the methodological nature of the work, a simplified infrastructure
model describing an interconnected gas network and electric power grid is taken as case study: this allows
us to show that the approach is straightforward to understand and implement, and the results obtained
show the usefulness of the approach in providing meaningful insights that can be used by stakeholders
and decision makers to inform strategies for the improvement of system resilience. By the application
of the simplified ICIs model to the case study, it is shown that the approach can be straightforwardly
implemented to identify the most relevant variables on system resilience and obtain the most important
subsystems. The key factors which affect system resilience in multiple initial failures scenarios are found;
this allows us to identify the key resilience improvement measurements, and their priorities.
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1. Introduction

Critical infrastructures (CIs) are networked systems that provide essential commodities
and services and support socioeconomic developments. Examples are represented by
electrical power grids, natural gas and water supply networks, transportation systems, and
so on [1–3].

The CIs are also called lifeline systems [4,5], as their inoperability may cause catas-
trophic social and economic consequences [6,7]. Therefore, the resilience of these systems,
i.e., the capacity to resist undesirable situations and to recover from disruptive events, has
become important in risk management and the protection of CIs [8,9].

In different sectors, several efforts have been made to investigate the resilience of
single- [10,11] and multiple-infrastructure systems [12,13]. To improve modeling accuracy,
it becomes an important task [14,15] to consider physical connections and functional
interdependencies among different CIs. These couplings make the operations of individual
CIs more efficient in nominal conditions, but also increase their vulnerabilities, due to
cascading effects in case of failure; e.g., a minor fault in one infrastructure can lead to
failures in dependent infrastructures, cascading to other systems, recursively [16].

In [17], the authors have proposed a resilience analysis framework aiming at evaluating
the performance of interconnected critical infrastructures (ICIs) and assisting in decision
making for their risk management and protection. In the framework, a state-space dynamic
model is combined with a model predictive control algorithm, to forecast the system
behavior under normal and accident conditions. The system performance is evaluated
through modeling and simulation.

The framework of resilience analysis developed in [17], however, leaves out the
question of the uncertainty quantification and sensitivity analysis. Such analysis is needed
to complete the framework for two main reasons. On the one hand, there are a large number
of input variables in the model for resilience analysis. These model inputs range from
system design parameters, system initial operation conditions, and variables related to the
failure and recovery processes of vulnerable subsystems. The uncertainty of these model
inputs emerges due to the insufficient or imprecise observations and judgement of experts,
etc. On the other hand, a systematic application of global sensitivity analysis methods
allows us to obtain insights on the system resilience, which can, then, be used to inform
strategies of resilience improvement. Therefore, it is important to identify the variables
most relevant to the system resilience, in order to identify the most important elements in
the system, which are more worthy of investment for the improvement of system resilience
when the budget is limited.

In this respect, the use of global sensitivity analysis methods is recommended as part
of the best practices for risk assessment studies in influential works such as [18–21]. Over
the years, global sensitivity methods have been applied for the sensitivity of models in,
among others, food risk assessment [22,23], the prediction of hurricane losses [24], climate
change modeling [25], flood risk modeling [26], and life cycle assessment [27]. As far as we
are concerned, this is the first study to put forward and apply global sensitivity analysis in
the context of resilience analysis.

The core of the present methodological paper is the innovative application to a system
resilience model of a blend of methods of sensitivity analysis. In the paper, we proceed as
follows. First, we introduce the dynamic modeling approach for ICIs resilience analysis
through a case study. Given the methodological nature of the paper, we consider a simpli-
fied ICIs model describing a gas network and an electric power grid. We chose to proceed
this way purposely in order to handle a test case as complete as possible in its characteristics
of interest but whose dimensionality still allows us to present the methodology compactly,
which is the main aim of the paper. We, then, consider uncertainty in the input parameters
and propose a systematic approach to global sensitivity analysis based on an innovative
blend of methods. The core of our analysis is a one-sample (given data) design that allows
one to keep computational complexity under control. We obtain the sample from an uncer-
tainty quantification of the ICIs resilience analysis model with 5000 model runs. From the
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sample generated, we gather sensitivity information on the contribution of the parameters
to the expected value and the variance of the model outputs. In so doing, we are able to
extract insights concerning the directions of change and the regional contribution to the
output variance. The identification of the key drivers of uncertainty is then performed using
variance-based and moment-independent methods. This process yields solid insights on
the key parameters affecting system resilience. The insights coming from the contribution
to the mean and to the variance provide the risk analysis with an increased understanding
of the mechanisms generating system resilience. The parameter ranking provides insights
into what factors can be fixed to reduce the computational burden in further numerical
investigations. The study of interactions allows one to appreciate whether the model re-
sponse is additive to parameter changes and to identify the parameters whose interactions
impact system resilience the most.

The remainder of the paper is organized as follows. Section 2 introduces the system
modeling approach, defines the uncertain variables in the model, and introduces the system
resilience metric. The modeling and sensitivity analysis are implemented in the case study
as an example of application. Section 3 describes the sensitivity analysis methods at the
basis of our approach. Section 4 presents the case study. Section 5 analyzes the results for
the resilience model. Sections 6 and 7 offer discussions and conclusions.

2. Modeling for Resilience Analysis
2.1. Modeling Approach

In the resilience analysis framework proposed in [17], the ICIs are considered as
an entire system that can be represented as a networked graph of nodes and links. The
nodes represent the subsystems, which are components or functional sets of components.
Resources, which can be tangible products or intangible services, are produced, exchanged,
transformed, and consumed within or between these subsystems. The directed links
represent the physical and functional dependences, which correspond to resources flows
among the various subsystems.

For illustration purposes, Figure 1 shows three interconnected CIs, CI1, CI2, and CI3
(rectangular shape), and their corresponding subsystems (circular shape). To model the
behavior of infrastructures, the subsystems are classified into different types according to
their specific roles and numbered as follows: (1) suppliers, which provide resources to other
subsystems in the system; (2) buffers, which are adjustable storage devices (e.g., batteries in
power grids and gas reservoirs in gas distribution systems); (3) transporters, which transfer
the resources among different subsystems (e.g., distribution stations, compressors, and
joints); (4) converters, which produce one type of resource by consuming another (e.g.,
fossil-fuel power stations that burn fossil fuel to produce electricity); and (5) users that
consume resources [28–30]. Different types of links, i.e., solid, dotted, and dash-dotted
lines, represent functional relationships within ICIs, where one major type of resource flow
dominates in each infrastructure.
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We apply a state-space modeling approach as in [17]. A linear time-invariant model is
used to forecast the dynamic response of the system. The discretized state-space represen-
tation is written as follows:

x(k + 1) = Ax(k) + Bu(k) + d(k)
y(k) = Cx(k)

, (1)

where x = [x1 . . . xN ]
′ ∈ RN is the vector of system states and interconnections, and k is an

integer. The vector of inputs controls u = [u1 . . . uM]′ ∈ RM determines resource allocation
according to the user demand. The quantity y = [y1 . . . yNy ]

′ ∈ RNy is the vector of system
outputs, which include the states of users, i.e., the amount of resources reaching the users.
The vector d = [d1 . . . dNd ]

′ ∈ RNd is a noise term. In Equation (1), A ∈ RN×N , B ∈ RN×M

and C ∈ RNy×N are state transition matrices which reflect the topological structure of
the interconnected systems and subsystems, and are determined by the structure of the
system and its functional process. The model also takes into account constraints that affect
the system operability. Polyhedral constraints of system states and control inputs can be
reformulated in such a way that, for all k ∈ N:

Minx ≤ x(k) ≤ Maxx (2)

Minu ≤ u(k) ≤ Maxu (3)

We apply the model predictive control (MPC) approach to distribute the resources
throughout the network, from the suppliers to the users [31]. Typically, in MPC, the
objective (or cost) function to be optimized penalizes deviations of the states and inputs
from their reference values, while explicitly enforcing the constraints. Due to its versatility,
MPC has had a successful record in industrial applications, including refrigeration systems,
power production plants, transportation networks, and microgrid networks.

We formulate an optimization problem, where the objective function is the minimiza-
tion of the differences between the actual states of the users; i.e., the system outputs yiy(k),
with iy = 1, . . . , Ny, and their demands Miy(k) at each time step, within the predictive
horizon Nq of interest:

min
Nq−1

∑
q=0

∑
iy

ωiy(k)

∣∣∣yiy(k + q|k)− Miy(k + q|k)
∣∣∣

Miy(k + q|k)

, (4)

where ωiy ∈ [0, 1] is the weight assigned to the iyth user at time k, with iy = 1, . . . , Ny, and
k + q|k denotes the prediction at time step k + q given the state at time k.

The optimal control actions at time k, u(k|k) are obtained from the control sequence

u ≜
{

u(k|k), u(k + 1|k), . . . , u
(
k + Nq − 1

∣∣k)}, (5)

resulting from the solution of the optimization problem that activates the resource
allocation process.

2.2. System Parameters

Input parameters include the system’s initial conditions, the system’s design parame-
ters and failure levels of vulnerable elements. We suppose that an undesired event occurs
at t f , which results in the failure of one or multiple vulnerable elements in the system. The
magnitude of the ith initial failure, Fi, is introduced to quantify the impact of the disruption
on the capacity of the failed subsystems. The initial failures propagate throughout the
network and the overall performance of the system is affected. Once the cascading failures
are detected, restoration actions start at time tr. In the post-disruption recovery phase, the
failed elements are restored with recovery rates µi. The recovery process continues until th,
when the system performance is expected to be restored. Two critical time durations can be
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defined in a scenario: the response time Hr = tr − t f , which is the duration of the failure
process, and the time horizon, Hh = th − t f , which represents the threshold time within
which the restoration is to be finished. Buffer subsystems in the ICIs contribute to system
performance by storing resources (for those resources which can be stored), adjusting the
supply of resources in nominal operation and compensating for missing resources in case
of shortage during accident. To model buffers, we assign initial inventory buffer levels
with xt=0

BFi
representing the initial resource level of buffer BFi at t = 0.

2.3. System Resilience Metric

The system performance function is denoted as P(t) and the target system performance
function, or performance reference function, is represented as PR(t) (Figure 2).
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We introduce a resilience metric R = (Rm, Rr, Rt) composed of three indicators [15]:
(1) resilience by mitigation Rm, which corresponds to the ability of the system to withstand
threats in the aftermath of the disruption; (2) resilience by recovery Rr, which refers to the
capacity of recovery by the restoration actions; and (3) total resilience Rt, which indicates
the level of system resilience throughout the event. As illustrated in Figure 2, resilience
by mitigation is the proportion of the total area between the system performance curve
and the time axis (the area shaded with upward diagonal stripes in Figure 2) to the total
area between the performance reference curve and the time axis of all users (the dotted
area in Figure 2), for the time period t f ≤ t ≤ tr, which corresponds to the response time
Hr = tr − t f ,

Rm =

∫ tr
t f

P(t) dt∫ tr
t f

PR(t) dt
. (6)

Resilience by recovery is the proportion of the total area between the actual per-
formance curve and the time axis (the area shaded with downward diagonal stripes in
Figure 2), to the area between the performance reference curve and the time axis (the
dark area in Figure 2), for the time period tr ≤ t ≤ th with th ≥ tr, i.e., from the start of
restoration to the end of the time horizon, Hh − Hr = th − tr,

Rr =

∫ th
tr

P(t) dt∫ th
tr

PR(t) dt
. (7)

Total resilience, Rt, represents the level of system resilience in the entire failure-
recovery event; it includes both the resistance and recovery aspects of the system during
the disruptive event, i.e., t f ≤ t ≤ th,
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Rt =

∫ th
t f

P(t) dt∫ th
t f

PR(t) dt
. (8)

The resilience indicators take values in the interval [0, 1]. If the system performance is
not affected by a disruptive event, then the performance of the system is on target, i.e., the
indicators equal to 1.

2.4. Resilience Indicators for ICIs

Based on the ICIs dynamic model introduced previously, the performance function
P(t) is characterized directly in terms of the weighted sum of the users’ states:

P(t) =
iy=Ny

∑
iy

ωiy(t)yiy(t), (9)

where ωi y with iy = 1, . . . , Ny is the weight of the iyth user. The target system performance
of ICIs, PR(t), which is the total demand of resources or service by the users, is calculated
as follows:

PR(t) =
iy=Ny

∑
iy

ωiy(t)Miy(t). (10)

Under nominal operating conditions, the supply to each user, e.g., iy, with respect to
its demand Miy is always achieved; i.e., yiy(t) = Miy(t) and P(t) maintains values close to
the nominal performance function PR(t). By combining the general indicator equations
of system resilience (6), (7) and (8) with the equations describing the actual performance
function (9) and demand function (10) based on the ICIs dynamic model, the system
resilience metric for dynamic ICIs can be computed.

3. Global Sensitivity Approach

In this work, we apply a systematic approach of global sensitivity analysis to a ICIs
resilience model for the first time. Then, this opens the question of adopting a methodolog-
ically rigorous systematic approach. The first step is to define the quantity of interest in
the model output. In our case, we consider three resilience indicators, i.e., the resilience
by mitigation Rm, the resilience by recovery Rr, and the total resilience Rt, because they
evaluate the resilience level for ICIs at different stages in the aftermath of a disruptive
event, and give insights on the effects of system protection and restoration measurements
in the different stages. Once the quantity of interest has been identified, it is crucial to
define the sensitivity analysis settings [32,33]. In this work, we consider the factor prior-
itization, direction of change, and interaction quantification. In the first setting, the goal
is to determine the key drivers of uncertainty. In the second setting, we are interested in
understanding whether an increase or decrease in the parameter leads to an increase or
decrease in the quantity of interest. In the third setting, we are interested in determining
the relevance of interactions.

3.1. A General Framework for Global Sensitivity Methods

Several methods have been defined to provide an answer to the above-mentioned
sensitivity analysis settings under uncertainty, and, in particular, global sensitivity meth-
ods emerged as the appropriate tools for the analysis [34–36]. The framework is as
follows. Let Y = g(Θ) denote the relationship between the model output (Y) and the
parameters Θ = {Θ1, Θ2, . . . , Θn}. The capital letters here denote the fact that the pa-
rameters are uncertain random variables following the joint probability distribution
FΘ(θ) = Pr(Θ ≤ θ). This probability distribution reflects the decision-maker (analyst)
viewpoint on the parameters. With uncertainty in Θ, the model output becomes a function
of random variables, because Y depends deterministically on Θ through g(Θ). The model
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output Y, then, may be viewed as a random variable, with a probability distribution given
by FY(y) = Pr(Y < y).

Consider now that the decision maker is informed that one of the parameters, Θi,
has value equal to θi. Then, the conditional distribution FY|Θi

(y) = Pr(Y < y|Θi = θi)
represents the decision-maker uncertainty about Y given that she (he) is informed that
Θi = θi. Several global sensitivity measures can be written in the form [34]:

ξi = EΘi[ζ(FY, FY|Θi)] (11)

where ζ(·, ·) is a generic operator between probability distributions. The quantity ζ(FY, FY|Θi
)

is a random function of Θi providing a dissimilarity measure. The external expectation
over the marginal distribution of Θi makes it unconditional, leading to the numerical value
ξi. This numerical value is the global sensitivity measure of parameter Θi based on the
inner operator ζ(·, ·). To illustrate, consider setting the inner operator equal to the relative
difference of conditional variances, V[Y|Θi] , and the unconditional output variance, V[Y]:

ζ(FY, FY|Θi
) =

V[Y]−V[Y|Θi]

V[Y] . (12)

Then, taking the expectation with respect to Θi we obtain

E[ζ(FY, FY|Θi
)] = E[ V[Y]−V[Y|Θi]

V(Y) ] =
V(Y)−E[V(Y|Θi)]

V(Y) = ηi, (13)

which represents the first-order Sobol’s sensitivity measure of Θi. Similarly, if we set

ζ(FY, FY|Θi
) =

1
2

∫ +∞

−∞
| fY(y)− fY|Θi

(y)|dy (14)

and take the expectation, we find

E[ζ(FY, FY|Θi
)] = E[1

2

∫ +∞

−∞
| fY(y)− fY|Θi

(y)|dy] = δi, (15)

which is known as Borgonovo’s δ [35]. This importance measure is a representative of the
class of moment-independent importance measures and is based on the distance between
density functions. In this work, we shall make use also of moment-independent sensitivity
measures based on the distance between cumulative distribution functions, in particular, of

βKS = E[sup
y
|FY(y)− FY|Θi

(y)|], (16)

βKu
i = E[sup

y
(Fy(y)− FY|Θi

(y)) + sup
y
(FY|Θi

(y)− FY(y))], (17)

βCVM
i = E

[∫ +∞

−∞

(
FY(y)− FY|Θi

(y)
)2

dy
]

, (18)

and

βAD
i = E

[∫ +∞

−∞

(
FY(y)− FY|Θi

(y)
)2

FY(y)dy
]

. (19)

The two global sensitivity measures in Equations (16) and (17) are based on the
Kolmogorov–Smirnov and the Kuiper distances between cumulative distribution functions,
respectively. The works [36,37] thoroughly discuss the properties of these two global sen-
sitivity measures. The sensitivity measures in Equations (18) and (19) are based on the
Cramer–von Mises and Anderson–Darling distances, respectively (see [38] for a discussion
of sensitivity analysis using the Cramer–von Mises distance). All these importance mea-
sures possess the “nullity-implies-independence” (NII) property. That is, a null value of any
of the sensitivity measures in Equations (15)–(19) reassures the analyst that Y is independent
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of Θi. Other sensitivity measures that possess this property are, for instance, sensitivity
measures based on the Hilbert–Schmidt independent criterion [38] (see also [39–41]). How-
ever, not all sensitivity measures possess this property. For instance, a null value of ηi in
Equation (13) does not imply that Y is independent of Θi. In this respect, it has been recently
proven in [34] that a global sensitivity measure possesses the nullity-implies-independence
property if and only if we are considering the entire distribution (either as a density or
as a cumulative distribution function) of the model output. The work of [34] requires the
continuity of the input densities and of the separation measurement. These conditions are
usually met in practical applications. However, more recent works have shown that only
the convexity of the separation measurement is needed, relaxing even the conditions on
the output distribution.

In addition, the sensitivity measures δi, βKS
i , βKu

i and βCVM
i are transformation-

invariant. That is, if we apply a monotonic transformation to the model output Y, their val-
ues remain unchanged. Transformation invariance is an advantageous property in estima-
tion, because it accelerates numerical convergence while avoiding the problem of transfer-
ring results back to the original scale [36]. In general, one can expect δi, βKS

i , βKu
i and βCVM

i
to produce a similar ranking of the inputs. Indeed, it has been recently proven that
δi and βKu

i have identical values if the model output marginal and conditional distribu-
tions are unimodal [42]. Thus, in the case where their values were to differ, their simulta-
neous estimation would allow the analyst to appreciate the deviations from unimodality
of the distributions. In general, because different sensitivity measures consider different
properties of the output, by relying on a portfolio of sensitivity measures, the analyst avoids
the pitfall of overly trusting a single indicator. Then, if the measures in the ensemble agree
about the most important inputs, the analyst is reassured about the indication to provide to
the engineer or the manager. Conversely, if the measures in the ensemble disagree, then the
analyst is informed that the inputs contribute differently to alternative properties of the
output (e.g., to the variance or to the overall distribution). In this case, the analyst must
communicate the results in accordance with the overall engineering or decision-making
goal of the analysis.

Under independence, the sum of the first-order variance-based sensitivity measures
equals the portion of the variance explained by individual input contributions. Then, the

difference 1 −
n
∑

i=1
ηi is the fraction of the variance that can be attributed to interactions

among the inputs. This information can then be used to assess whether the model responds
additively to input changes and whether further analysis for the determination of the most
relevant interactions is warranted. We discuss a method for the visualization of interaction
effects in Section 3.3.

3.2. Computational Issues of Global Sensitivity Methods

The estimation of global sensitivity measures has been a traditional challenge in computer
experiments. In fact, any estimator based on a brute-force implementation of the common
rationale in Equation (11) would correspond to a computational cost of CBruteForce = nNextNint,
where n, Next, Nint are, respectively, the number of model inputs, the size of the Monte Carlo
sample for the external loop, which fixes a value of Θi in each outer iteration, and the size
of the Monte Carlo sample for the internal loop, in which simulations conditional to the
chosen value are performed. To illustrate, if we set n = 10, Next = Nint = 1000, we obtain
a total estimation cost CBruteForce = 10,000,000 model runs. This cost is clearly too expensive
for most computer codes. This cost constraint was lowered with the introduction of Sobol’
method [43,44] that estimates variance-based first-order and total effects. The associated pick-
and-freeze sample design has computational costs CPickFreeze = (n + 2)Nbase, where Nbase is
the size of a basic sample block used to build up the pick-and-freeze sample. Moreover, recent
works have exploited an intuition of [45] leading to the so-called given-data estimation [46–49].
This estimation method requires a single Monte Carlo pass (whence the one-sample name),
reducing the cost to CGivenData = N. If a Monte Carlo sample is already available, then it can
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be used directly. The rationale of this estimation method is that of creating the scatterplot
of Y against Θi. Then, one partitions this scatterplot on the horizontal axis using M bins. In
particular, let Ti denote the support of Θi, and Ti,m an element of the partition. Formally, we

have
M
∪

m=1
Ti,m = Ti and Ti,r ∩ Ti,t = ∅, r, t = 1, 2, . . . , M (r ̸= t). That is, the partition bins cover

the entire support of the parameter Θi and are non-intersecting. We refer to [46] for further
technical details. What is relevant here is that, if we substitute the point condition Θi = θi with
the bin condition Θi ∈ Ti,m, we can write an estimator of ξi as

ξ̂i =
M

∑
m=1

1
M

ζ(FY, FY|Θi∈Ti,m
), (20)

where FY|Θi∈Ti,m
(y) = Pr(Y < y

∣∣∣Θi ∈ Ti,m) is the conditional probability of the model out-
put given that Θi is in bin Ti,m. In [46], it has been proven that, under mild conditions, the
given-data estimator in Equation (20) is consistent. That is, as the sample size N increases,
ξ̂i tends to ξi. Therefore, in this work, only one single Monte Carlo input–output sam-
ple for uncertainty propagation will be necessary to obtain an estimate of the sensitivity
measures. This makes the analysis computationally feasible. Regarding the sampling
scheme, the analyst can generate the input sample from the input distributions, resorting
either to a crude Monte Carlo generator, or to a quasi-Monte Carlo method based on Sobol’
sequences [50,51], Halton sequences [52], or to a Latin Hypercube Sampling scheme [53,54].

3.3. Visual Tools for Sensitivity Analysis

In addition, the same input–output dataset can be used to obtain further insights for
the modelers and the risk analyst. In particular, regional information is available using
curves which show the cumulative sum of the normalized reordered output (Cusunoro),
defined by [55]

cMean
i (τ) =

τ ·E
{

Y −E[Y]|[Θ i ≤ F−1
Θi

(τ)]
}

√
E
[
(Y −E[Y])2

] , (21)

where τ ∈ [0, 1] parametrizes the input factor of interest via its quantile. Here, the output
Y is standardized, and its expectation is taken conditional to the input being below a
quantile threshold. With a sample pair (θji, yj)i=1,...,k,j=1,...,N , we may estimate this curve by
rearranging the order in the output and taking cumulative sums via

ĉMean
i (τ) =

1
N ∑

⌈τN⌉
m=1

(
yπi(m) − y

)
√

1
N−1 ∑N

m=1(ym − y)2
, (22)

where y is the output mean and πi(·) is the order permutation of model input i, yielding an
increasingly ordered sample of the input of interest θπi(j)i ≤ θπi(j+1)i for j = 1, . . . , N − 1.
By plotting these curves for each input factor, we obtain insights on the direction of change.
To this end, if there are no intersections of ci(τ) with the horizontal axis, the contributions
from the associated parameters are monotonic on average. For instance, if ci(τ) < 0 for all τ,
then the mean to the left of a given τ is always smaller than the overall mean, signaling that
E[Y|Θi] is increasing in Θi. Moreover, if the curve is not symmetric, then the dependence
between Y and Θi is non-linear. Cusunoro curves, therefore, yield insights within a direction
of change setting. We recall that, in such a setting, an analyst is interested in knowing how
the model output Y varies as a model input Θi varies in its range.

To illustrate, we consider the Cusunoro curves for a well-known test case, the Ishigami
function [56]. The model has the form

y = sin(x1)(1 + 0.1x3
4) + 7 sin (x2)

2, (23)
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and the three input parameters Xi, X2, X3 are uniformly distributed in [−π, π]. Figure 3a
shows the Cusunoro curves cmean

i (τ) in Equation (21) for the three model inputs. From
Figure 3a, we observe that X1 and X2 contribute to the mean, whereas no contribution is
offered by X3. Regarding monotonicity, the Cusunoro curve of X2 intersects the horizontal
axis at multiple locations, signaling a non-monotonic behavior of the model.
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(cdfs = cumulative distribution functions).

One feature of the Ishigami model is that parameter X3 does not contribute to the
mean of the model output. However, this is not enough to deem the model input as
non-influential. In fact, we are to see shortly that X3 indeed contributes to the model output
variance. With a slight modification, Cusunoro curves can be used to obtain regionalized
information on the squared deviation (Y −E[Y])2 (whose expectation is the model output
variance, V[Y]). Proceeding with a similar logic as for Equation (21), we can write [55]:

cvar
i (τ) =

τ ·E
{
(Y −E[Y])2 −V[Y]

∣∣∣Xi ≤ FXi
−1(τ)

}
√
E[((Y −E[Y])2 −V[Y])

2
]

. (24)

The function cvar
i (τ) in Equation (23) plots the conditional contribution of Xi to the

model output variance as Xi varies from its lowest to its highest value. It can be seen as an
alternative approach to the contribution to the sample variance [57]. The idea of analyzing
quantities other than the conditional mean has also been discussed in a broader context
by [58]. From the plot of one of these curves, we obtain regional information about the
contribution of Xi to the model output variance. To illustrate, Figure 3b plots the variance
Cusunoro curves [cvar

i (τ), Equation (24)] for the Ishigami function. This graph shows
the region where each Xi contributes to the model output variance. Indeed, we now can
visually observe that X3 is an active model input, with a symmetric contribution to the
second-order central moment of the output.

3.4. A Tool for Interaction Analysis

As we mentioned in Section 3.1, a sum of the first-order indices lower than unity
might communicate to the analyst the need to explore parametric interactions. A frequently
used approach to calculating second- and higher-order interaction effects is to make use
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of polynomial chaos expansion [59]. In this section, we propose a method associated with
the calculation of variance-based sensitivity indices using the fast Fourier transform [60].
Here, frequencies are assigned to the input of interest via a suitable reordering, and their
resonances and superpositions in the output can be detected and are attributed to the
variance-based first- and higher-order effects. For first-order effects, this reordering is
induced by sorting the input of interest. For higher-order effects, search curves are used
which approximate space-filling curves (see [60] for further details). As a result, one obtains
estimates of higher-order variance-based sensitivity measures. In this work, we shall make
use of estimates of second-order sensitivity measures. To illustrate, we again use the
Ishigami model.

Figure 4 displays the inputs’ relative variance contributions in a heat map, with first-
order effect estimates η̂i in the diagonal entries and second-order interaction estimates η̂ij
in the off-diagonal entries. Darker colors indicate stronger contributions. The diagonal
elements show that η2 is the highest individual contribution, followed by X1, with a null
contribution of X3. This input is, instead, involved in the only active interaction contained
in the Ishigami function, with a non-null value of η̂13. These findings agree with previous
results on this model.
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In summary, several insights about the behavior of a model can be obtained directly
from the sample generated by an uncertainty quantification and sensitivity analysis. In the
next section, we discuss how these insights can be obtained for our case study in detail.

4. Case Study

The model used here considers two interconnected critical infrastructures: a natural
gas distribution network and a power grid (Figure 5, solid and dash-dotted lines, respec-
tively) [31]. The objective of this system is to provide the necessary amount of gas and
electricity to the users. In particular, the gas distribution network supplies gas to two
demand nodes, D1 and D2, and to two electric power generators, E1 and E2, that provide
electricity to two users of electricity, L1 and L2.

The nodes in the network are classified into five categories according to their func-
tionalities, as introduced in Section 2.1. We denote the gas volume unit 1000 cubic feet as
MCF. The natural gas distribution network has two suppliers, S1 and S2, whose outputs
are assumed to be equal to 90 MCF, and 180 MCF, respectively; two buffers (gas reservoirs),
DS1 and DS2; five transporters a, b, c, d, and e; and two users D1 and D2, whose demands,
DD1 and DD2, are equal to 100 MCF and 80 MCF, respectively. The electric power network
has two converters (electric power generators), E1 and E2, that transform gas into electric-
ity with a constant coefficient β; two transporters, G1 and G2; and two users L1 and L2,
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whose demands, DL1 and DL2, are equal to 500 MWh and 400 MWh, respectively. More
information about the case study can be found in [31].
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Figure 5. Case study: interconnected natural gas-power systems [19].

The dynamic modeling approach introduced in Section 2 is implemented to simulate
the resilience of this ICIs system under different scenarios. In our previous work [19], we
modeled the dynamic response of the different components of the system under scenarios
caused by single subsystem random failures. In this work, the resilience analysis is focused
on scenarios with multiple initial failures, whereby a large-scale undesired event may lead
to different levels of disruptions on multiple vulnerable elements. The vulnerable elements
of the system as identified in [31] are marked with bold lines in Figure 6.
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Figure 6. Case study: states and control inputs in the system and vulnerable elements [19].

The dynamic model output is a function of input variables comprising the system
design parameters, initial condition parameters, and failure-related parameters. These
constitute the uncertain input of Section 3.1, with n = 20. The ranges of values of the system
design and initial condition parameters are given in Table 1, and those related to the failure
characteristics of the vulnerable elements are given in Table 2. The latter parameters are
used to describe different failure scenarios (failure magnitude F) and different recovery
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plans (recovery rate µ). Uniform distributions are assumed for all parameters. The 20 inputs
are relabeled as follows: (1) the response time: Hr; (2) the time horizon: Hh; (3) the initial
storage of buffer subsystem DS1: xt=0

DS1
; (4) the initial storage of buffer subsystem DS1:

xt=0
DS2

; (5) the failure magnitude of supplier S1: F1; (6) the recovery rate of supplier S1: µ1;
(7) the failure magnitude of supplier S2: F2; (8) the recovery rate of supplier S2: µ2; (9) the
failure magnitude of link a − b: F3; (10) the recovery rate of link a − b: µ3; (11) the failure
magnitude of link b− c: F4; (12) the recovery rate of link b− c: µ4; (13) the failure magnitude
of link c − d: F5; (14) the recovery rate of link c − d: µ5; (15) the failure magnitude of link
d − e: F6; (16) the recovery rate of link d − e: µ6; (17) the failure magnitude of link E1 − G1:
F7; (18) the recovery rate of link E1 − G1: µ7; (19) the failure magnitude of link E2 − G2: F8;
and (20) the recovery rate of link E2 − G2: µ8. In the following sections, we may use the
number of these variables instead of the associated symbols for ease of illustration.

Table 1. System design parameters and initial conditions.

Description Symbol Bounds Unit Measure

Response time Hr [0, 30] hours

Time horizon Hh [50, 100] hours

The initial storage of the buffer DS1 xt=0
DS1

[1000, 4000] MCF

The initial storage of the buffer DS2 xt=0
DS2

[2000, 8000] MCF

Table 2. Magnitude of failure and recovery rate of vulnerable elements.

i Vulnerable Element Failure Magnitude Fi Units of Fi Recovery Rate µi Units of µi

1 Supplier S1 [0, 90] MCF [0, 1.8] MCF/h

2 Supplier S2 [0, 180] MCF [0, 3.6] MCF/h

3 Link a − b [0, 300] MCF [0, 6] MCF/h

4 Link b − c [0, 170] MCF [0, 3.4] MCF/h

5 Link c − d [0, 100] MCF [0, 2] MCF/h

6 Link d − e [0, 100] MCF [0, 2] MCF/h

7 Link E1 − G1 [0, 800] MWh [0, 16] MWh/h

8 Link E2 − G2 [0, 400] MWh [0, 8] MWh/h

We use the Monte Carlo method to propagate input uncertainty onto the system
resilience indicators. The sample size is N = 5000. The output distributions for mitigation
Rm, resilience by recovery Rr and total resilience Rt are shown as histograms in Figure 7a,
Figure 7b, and Figure 7c, respectively. Table 3 reports the corresponding means and
standard deviations.

Table 3. Parameters of the empirical distributions of the resilience indicators.

Distribution of Resilience Indicators Mean Standard Deviation

Resilience by mitigation Rm 0.6121 0.1815

Resilience by recovery Rr 0.5356 0.1557

Total resilience Rt 0.5425 0.1471

While the above analysis characterizes uncertainty in the output, obtaining insights
on the influence of the inputs requires one to apply global sensitivity analysis methods.
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5. Sensitivity Analysis Results

To implement the sensitivity analysis on the ICIs case study, we generate by Monte
Carlo simulation a sample of 5000 system responses and obtain the corresponding resilience
indicators. (As a rule of thumb, the Monte Carlo error is of order 1√

n . Hence, for n = 5000,
we can expect a relative error in the estimates of the order of 2%.) We proceed in three
steps. First, we analyze the sensitivity in terms of contribution to the model outputs’
mean, then in terms of contributions to the model outputs’ variance, and then we estimate
moment-independent sensitivity measures to obtain the key uncertainty drivers.

Let us start with the contribution to the output mean.
Figure 8 displays the Cusunoro curves for our case study. The resilience by mitigation

Rm decreases as all the model inputs increase, with a nonlinear behavior, and the two major
contributors can be easily spotted. The resilience by recovery Rr and the total resilience Rt
show only minor differences in their sensitivity. However, while resilience by mitigation
is decreasing as all model inputs increase, Rr and Rt are decreasing in model inputs 9(F3),
17(F7), 7(F2), 11(F4), 1(Hr), and 5(F1), and increasing in model inputs 2(Hh), 10(µ3), 12(µ4),
8(µ2), and 18(µ7).
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We then consider the contributions to the model output variance. A look at the
associated Cusunoro curves reveals some regionalized effects (Figure 9). For resilience
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by mitigation Rm, the two most active contributors are model inputs 9 (F3) and 17(F7),
but model inputs 9 (F3) contributes to the variance of resilience by recovery Rm only for
values below 50%. For resilience by recovery Rr and total resilience Rt the variance is only
influenced by the major contributor, model input 9 (F3), for values beyond 50%.
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influences of the conditional output variance.

Clearly, repeating the analysis for all higher moments is not practical. Thus, this
analysis does not lead to a conclusive inference concerning the most important parameters.
To do this, we estimate the first-order variance-based sensitivity measures (Figure 10), as
well as the moment-independent sensitivity measures βKu

i , βKs
i and δi (Figures 11–13). Note

that these moment-independent sensitivity measures have a larger level of numerical noise
than the variance-based measures.
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For model output 1, resilience by mitigation Rm, model inputs 1(Hr), 9(F3) and 17 (F7),
11(F4) are the key uncertainty drivers, with the remaining inputs playing a minor role
(Figures 10 and 11). For model output 2, resilience by recovery Rr, we have the results in
Figure 12. We see that model inputs 9(F3) and 17(F7) are the most important, with 2(Hh),
7(F2), 11(F4), and 10(µ3) forming a group of runners-up.

For model output 3, total resilience Rt, we have the results in Figure 13. Model input
9(F3) is the key driver followed by 17(F7), with 2(Hh), 7(F2), and 11(F4) forming a group of
runners-up, closely followed by 1(Hr) and 10(µ3). Hence, the difference in performance of
the resilience by recovery Rr and the total resilience Rt is marginal.

To corroborate these results, we also computed the importance measures in
Equations (22) and (23). Results are displayed in Figure 14 and confirm the identifi-
cation of the uncertainty drivers obtained with the previous methods. The interpre-
tation of all these results is discussed in the next section.
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Figure 14. Moment-independent sensitivity measures based on Gini distances using Cramer–von
Mises (CVM) and Anderson–Darling (AD) statistics confirm results concerning the identification of
the key uncertainty drivers.

Finally, we note that the sum of the first-order sensitivity indices for this model leads
to 92%, 75%, and 79%, respectively, for the outputs. This may prompt an analysis of the
interaction structure, especially for the resilience by recovery and the total resilience. As
discussed in Section 3.3, the first- and second-order effects may be readily estimated from
available data, which are shown in Figure 15. The largest value in each of the subplots is
represented by the black color. The sensitivity for the resilience by mitigation is mainly
concentrated on the diagonal, where the first-order effects are found in the plot, with a
small interaction (3.5%) between X1 and X9. For the recovery and total resilience indicators,
we obtain similar results.



Energies 2024, 17, 1823 18 of 24

Energies 2024, 17, x FOR PEER REVIEW 19 of 25 
 

 

 
Figure 14. Moment-independent sensitivity measures based on Gini distances using Cramer–von 
Mises (CVM) and Anderson–Darling (AD) statistics confirm results concerning the identification of 
the key uncertainty drivers. 

 
Figure 15. Interaction analysis showing 20 first-order and 190 second-order variance-based sensitiv-
ity indices for the three resilience indicators discussed. 

We spot small interactions between 9X   and 10X   (6%/4%), and 7X   and 8X  
(2.5%/2%). These two identified interactions indeed represent vital links in the system. 

6. Discussion and Interpretation 
The approach allows us to identify the most relevant input parameters affecting the 

response of the system resilience model and to understand how the model behaves as a 
function of these parameters. In the failure process, the values of the global sensitivity 
measures indicated as key uncertainty drivers for resilience by mitigation are the response 
time ( rH  ), the failure magnitude of link a b−   ( 3F  ), the failure magnitude of link 

1 1E G−  ( 7F ), and the failure magnitude of link b c−  ( 4F ). Regarding the direction of 
change, the Cusunoro curves indicate that resilience by mitigation decreases monoton-
ically with these system variables. The response time ( rH ) is important because, in the 
failure phase, the recovery actions have not been taken and a large response time leads to 
a strong reduction in the subsystems’ performance and failure propogation through the 
interdependences among the subsystems. Link a b− , link b c− , and link 1 1E G−  are 
the most important elements to protect during the failure stage of the disruption, as their 
initial failures can largely impair the resilience by mitigation. The results of the sensitivity 

Figure 15. Interaction analysis showing 20 first-order and 190 second-order variance-based sensitivity
indices for the three resilience indicators discussed.

We spot small interactions between X9 and X10 (6%/4%), and X7 and X8 (2.5%/2%).
These two identified interactions indeed represent vital links in the system.

6. Discussion and Interpretation

The approach allows us to identify the most relevant input parameters affecting the
response of the system resilience model and to understand how the model behaves as a
function of these parameters. In the failure process, the values of the global sensitivity
measures indicated as key uncertainty drivers for resilience by mitigation are the response
time (Hr), the failure magnitude of link a − b (F3), the failure magnitude of link E1 − G1
(F7), and the failure magnitude of link b − c (F4). Regarding the direction of change, the
Cusunoro curves indicate that resilience by mitigation decreases monotonically with these
system variables. The response time (Hr) is important because, in the failure phase, the
recovery actions have not been taken and a large response time leads to a strong reduction
in the subsystems’ performance and failure propogation through the interdependences
among the subsystems. Link a − b, link b − c, and link E1 − G1 are the most important
elements to protect during the failure stage of the disruption, as their initial failures can
largely impair the resilience by mitigation. The results of the sensitivity analysis match
our intuition about what would happen in reality: the more severe the failures are, the less
likely the system will be to maintain its performance.

The most important input variables for resilience by recovery are the failure magnitude
of link a − b (F3), the failure magnitude of link E1 − G1 (F7), the time horizon (Hh), the
failure magnitude of supplier S2 (F2), the failure magnitude of link b − c (F4), the response
time (Hr), and the recovery rate of the link a − b (µ3). The Cusunoro curves show that,
among the important variables, the resilience by recovery of system increases with the
time horizon (Hh) and the recovery rate of the link a − b (µ3), and decreases with others.
The time horizon represents the expected time duration for recovery; therefore, a large
time horizon can ensure the restoration time of the system performance and, in this sense,
increase resilience. We notice that the key subysystems for resilience by recovery are
partially overlapped with those for resilience by mitigation, i.e., link a − b, link b − c, and
link E1 − G1. This indicates that the protection of these elements is important, as the
influence of their failures on system resilience continues throughout the aftermath of the
undesired event. The supplier S2 is the largest supplier subsystem, so that its operability
guarantees the most supply. The failure magnitude and recovery rate of link a − b are both
important for resilience by recovery, implying the importance of link a − b in the recovery
stage. The restoration of link a − b should have a higher priority than any other elements.
In fact, this conclusion is intuitive, observing the system topological structure (Figure 4),
where link a − b is the single bridge between suppliers and users.

As for the total system resilience, it can be seen that the most important input variables
and parameters are the combination of those for resilience by mitigation and those for re-
silience by recovery. This result conforms to the meaning of total resilience, which represents
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the resilience level of the system cumulated in both the failure and recovery stages. More-
over, the Cusunoro curves show that the important parameters for resilience by recovery
and total resilience have similar impacts in terms of the direction of change, which indicates
that restoration strategies play a significant and decisive role for the system protection.

The input variables significantly affecting the system resilience during the entire
disruptive event are: the response time, Hr, the time horizon, Hh, the failure magnitude of
supplier S2, F2, the failure magnitude of link a − b, F3, the recovery rate of link a − b, µ3,
the failure magnitude of link b − c, F4, and the failure magnitude of link E1 − G1, F7. In
particular, the most relevant subsystems are identified as link a − b, link b − c, link E1 − G1,
and the supplier S2. The interaction analysis may suggest that µ2, the recovery rate of S2,
might also be a non-negligible input variable.

We then performed a conceptual experiment fixing the least influential inputs at their
mean values and comparing the distributions of the resilience metrics obtained in this
case against the ones obtained when varying all uncertain inputs. Figure 16a–c report the
histograms for the three metrics; Table 4 reports the means and standard deviations.

Energies 2024, 17, x FOR PEER REVIEW 21 of 25 
 

 

brief, it is practical to consider as fixed values the model input variables with minor effects 
on the system resilience. 

   
(a) (b) (c) 

Figure 16. Resilience metrics histograms and fitted empirical distributions in the case where only 
important input variables are allowed to vary. 

Table 4. Parameters of the empirical distributions of the resilience metrics in the case where only 
important inputs are allowed to vary. 

Distribution of Resilience Metrics Mean Standard Deviation 
Resilience by mitigation 𝑅  0.6177 0.1874 

Resilience by recovery 𝑅  0.5678 0.1692 
Total resilience 𝑅  0.5597 0.1625 

In practice, according to the indications obtained from the sensitivity analysis, the 
loss of system resilience can be mitigated by increasing the robustness of link a b− , link 
b c− , and link E1 − G1. Moreover, at the first stage of a disruptive event, speeding up the 
response is the best solution to reduce consequential effects. That is related to more effi-
cient failure detections and the more effective preparedness of the emergence systems. In 
the second stage of the scenario, the restoration of link a b− , link b c− , link 1 1E G− , 

and supplier 2S  are most important. 

7. Conclusions 
This methodological paper has presented a systematic approach that combines off-

the-shelf techniques of sensitivity analysis in a novel way to identify the most relevant 
variables affecting infrastructure resilience. The approach is intended to provide insights 
on system criticalities, to support the understanding of the system behavior. It is based on 
the direct use of the input–output sample generated in an uncertainty analysis to obtain 
global sensitivity insights. 

We can summarize the procedure in the steps of Figure 17: 
(1) We identify the resilience metric of interest: this step is essential as the metric of in-

terest determines the subsequent engineering decisions. (2) We quantify uncertainty 
in the resilience metric of interest via uncertainty propagation from the input distri-
butions: this is performed by generating an input sample from the assigned distribu-
tions, and then running the ICIs model to obtain the corresponding values of the 
model output. (3) A third step, sometimes carried out implicitly, consists of analyzing 
qualitatively the results of the uncertainty quantification. From the distribution of the 
resilience metric, the analyst obtains information on the mean value, the variance, the 
interquantile range, etc. (4) Establish the goals of the sensitivity analysis. This step 
helps the analyst in defining the goals of the analysis, and then in identifying the 
methods appropriate to answer them. The tools we have proposed allow the analysts 
to post-process the data to extract simultaneously several desirable insights. (5) For 
the direction of change, we have proposed the use of the graphical representation of 

Figure 16. Resilience metrics histograms and fitted empirical distributions in the case where only
important input variables are allowed to vary.

Table 4. Parameters of the empirical distributions of the resilience metrics in the case where only
important inputs are allowed to vary.

Distribution of Resilience Metrics Mean Standard Deviation

Resilience by mitigation Rm 0.6177 0.1874

Resilience by recovery Rr 0.5678 0.1692

Total resilience Rt 0.5597 0.1625

Comparing Tables 3 and 4, we can observe that the empirical distributions are very
similar, especially for the resilience by mitigation metric. As for the resilience by recovery
and total resilience, the means of the distributions are slightly higher in the case where the
unimportant inputs are fixed (case 2) than when all inputs are allowed to vary (case 1). The
cause of this deviation is the conservative setting for the values of the unimportant input
variables in case 2. In case 2, the failure magnitude of more than half of the vulnerable
subsystems are random, but the buffer subsystems are half-filled and the recovery rates
of all vulnerable subsystems, except link a − b, are at an average level, so that the relative
high inventories and recovery rates make the recovery process more efficient. In brief, it is
practical to consider as fixed values the model input variables with minor effects on the
system resilience.

In practice, according to the indications obtained from the sensitivity analysis, the loss
of system resilience can be mitigated by increasing the robustness of link a − b, link b − c,
and link E1−G1. Moreover, at the first stage of a disruptive event, speeding up the response
is the best solution to reduce consequential effects. That is related to more efficient failure
detections and the more effective preparedness of the emergence systems. In the second
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stage of the scenario, the restoration of link a − b, link b − c, link E1 − G1, and supplier S2
are most important.

7. Conclusions

This methodological paper has presented a systematic approach that combines off-
the-shelf techniques of sensitivity analysis in a novel way to identify the most relevant
variables affecting infrastructure resilience. The approach is intended to provide insights
on system criticalities, to support the understanding of the system behavior. It is based on
the direct use of the input–output sample generated in an uncertainty analysis to obtain
global sensitivity insights.

We can summarize the procedure in the steps of Figure 17:
(1) We identify the resilience metric of interest: this step is essential as the metric of interest

determines the subsequent engineering decisions. (2) We quantify uncertainty in the resilience
metric of interest via uncertainty propagation from the input distributions: this is performed by
generating an input sample from the assigned distributions, and then running the ICIs model
to obtain the corresponding values of the model output. (3) A third step, sometimes carried
out implicitly, consists of analyzing qualitatively the results of the uncertainty quantification.
From the distribution of the resilience metric, the analyst obtains information on the mean value,
the variance, the interquantile range, etc. (4) Establish the goals of the sensitivity analysis. This
step helps the analyst in defining the goals of the analysis, and then in identifying the methods
appropriate to answer them. The tools we have proposed allow the analysts to post-process the
data to extract simultaneously several desirable insights. (5) For the direction of change, we have
proposed the use of the graphical representation of Cusunoro curves. From these graphs, the
engineer can have a first visualization of the impact of an input on the resilience metric and can
also understand whether this dependence is monotonic, increasing, or decreasing. (6) For factor
prioritization, we have proposed the simultaneous use of an ensemble of indicators. These
indicators consider alternative properties of the resilience metric and allow the analyst to avoid
false negatives, that is, to regard a variable as non-influential when, instead, it plays a role in
the model. These two sets of sensitivity indicators complement each other insofar as, from
indicators of the trend, it is possible to gauge whether an input is active on the output, but
no definitive conclusion can be drawn on the relative importance of the inputs. We have also
seen that the calculation of first-order variance-based sensitivity indices allows one to have an
appreciation of the relevance of interactions when inputs are independent (step 7) and we have
introduced a given-data approach to visually identify relevant second-order interactions. The
last step is, then, to present and discuss the results with stakeholders.

For illustration purposes, we have, then, applied the approach to a simplified ICIs
resilience model of a gas network and a power grid. The dynamic behavior of ICIs is
simulated using a dynamic model driven by a model predictive control algorithm, with
uncertain input variables. The target performance of the ICIs is defined and the system
resilience is evaluated. The systematic approach allows us to identify the model input
variables and parameters that are not very relevant and enables us to use the relevant ones
to prioritize the importance of the vulnerable elements for system resilience at different
stages during a disruptive event.

By the application of the simplified ICIs model to the case study, it is shown that the
approach can be straightforwardly implemented to identify the most relevant variables on
system resilience and obtain the most important subsystems. The key factors which affect
system resilience in multiple initial failures scenarios are found. This allows us to identify
the key resilience improvement measurements, and their priorities. In the first stage of the
aftermath of a disruptive event, the enforcement of failure detections and speeding up the
response are the main actions to take, and designing redundancy for the most vulnerable
components is also important. In the recovery process, repairing some key subysystems
and increasing the capacity of one gas storage device are the most relevant actions for
system restoration.
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The method is really scalable. In fact, the given-data approach makes the estimation
cost-independent of the number of inputs. Throughout the work, we have assumed
independent inputs. The removal of this assumption would not impact the way in which
first-order variance-based, as well as distribution-based, sensitivity measures are computed.
It would, however, impact the interpretation of the graphical tools for trend and interaction
analysis. The independence assumption is advantageous in the initial modeling phases,
where the analyst wishes to gain confidence in the model behavior. However, as further
information on the inputs is collected, the data may reveal correlations. At that moment,
alternative ways to study the direction of change and interactions are required. It is part of
the future work of the authors to identify new methods, especially those available in the
machine-learning literature, to study trend determination and interaction quantification
under input correlations. Moreover, an extension to time-dependent outputs is needed to
capture the changing importance of the subsystems during recovery, and the corresponding
changing priorities of resilience actions. Moreover, part of the future research concerns the
application of the method to systems with a greater number of inputs and of a realistic size.
In this respect, the given-data approach is advantageous, as it makes the computational cost
independent of the size of the input vector, as highlighted in the recent literature outside
the resilience realm [61]. We also observe that, for models with a stochastic response, the
methods introduced for factor prioritization hold with no formal changes. For the direction
of change and interaction quantification, some considerations are needed. If the quantity
of interest is a quantile (e.g., the median) or the mean of the resilience metric, then the
proposed methods apply with no changes. If the entire distribution is of interest, then
the methods for trend identification and interaction quantification used here need to be
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replaced with alternative methods or tests borrowed from the statistical and machine-
learning literature. However, the methodology would warn the analyst up-front of such
a need, as soon as step 4 is reached after the selection of a stochastic rather than a scalar
quantity of interest. Thus, the applicability of the method for models with a stochastic
response is also a further research avenue that follows the present work.

Supplementary Materials: The repository https://gitlab.gwdg.de/elmar.plischke/global-sensitivity-
analysis-collection contains MatLab/Octave scripts for performing sensitivity analysis which were
used in analyzing the simulation data.
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