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Abstract: To combat global environmental deterioration and energy scarcities, it is crucial to imple-
ment energy-saving upgrades for urban road lighting. Comparatively, LEDs have emerged as an
advanced and eco-friendly lighting option due to their low energy consumption, excellent perfor-
mance, high color rendering index, and prolonged lifespan. By incorporating solar cell technology, a
smart LED street light controller based on small-scale integrated circuits was developed to enable
intelligent control for various lighting needs such as dimming, timing, automatic detection, and
sound and light control. Through circuit simulations and experimental outcomes, it has been vali-
dated that the controller’s structure and performance parameters align with the design specifications.
This design encompasses knowledge from diverse fields, including fundamentals of circuit and
electronic technology, photovoltaic cell technology, power electronics, and sensor technology, show-
casing robust engineering and practicality. Its utilization in the experimental course for second-year
college students majoring in electrical engineering contributes to the grooming of professionals and
expands the perspectives of future talents, enriching their application of knowledge and practical
innovation capabilities.

Keywords: controller of LED light; DC-DC converter; photovoltaic cell; switch power supply

1. Introduction

To reduce greenhouse gas emissions and address global energy shortages, the ap-
plication and development of renewable energy technologies have received widespread
attention. In the process of new energy conversion, power electronics technology pro-
vides reliable technical support and has become an important component, and related
technological research continues to make new progress. Elrefaey et al. introduced an
enhanced topology for a DC–DC converter suitable for PV applications, with the ability to
be powered by multiple DC sources and to output to multiple channels [1]. Kulasekaran
and Dasarathan focused on integrating rooftop solar with the DC microgrid and proposed
a high-gain DC–DC converter for photovoltaic systems (HGBC-PVS) to connect to a higher-
voltage network [2]. A smart controller designed by A. Derrouazin based on fuzzy control
was developed to oversee a sustainable hybrid power system, aiming to sustain a typical
residential environment [3]. Bodele and Kulkarni employed the bidirectional modular
PV battery system (BMPBS), which utilizes non-isolated buck and boost converter combi-
nations, to mitigate module mismatch losses due to factors such as partial shading (PS),
dissimilar aging effects, different power ratings, etc. [4].

The advancement and implementation of new energy technologies have resulted in a
growing need for engineering and technical expertise in relevant industries. Within this
context, creating design projects centered on power electronics technology and new energy
technology holds practical significance and promotional value for enhancing the knowledge
and skills of second-year college students majoring in electrical engineering. The LED street
light controller based on small-scale integrated circuits integrates fundamentals of circuit
and electronic technology, photovoltaic cell technology, sensing technology, and switch
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power supply technology. The design’s tasks and objectives encompass the following three
components. The design of an energy-efficient street light intelligent controller utilizes
simulator devices.

1.1. Power Module

Utilizing a lithium-ion battery, model 18650, with main parameters of 4800 mWh and
3.7 V, as the power source, the controller circuit is supplied with ±5 V DC power. When
the ambient light conditions are met, the lithium battery is charged using a solar panel,
selected with parameters of 5 V and 200 mA in this design.

1.2. Controller

When light is detected, the LED street light is turned off. When no light is detected, the
LED street light is illuminated with low brightness, and the intensity of the low-brightness
illumination can be adjusted. When someone approaches, a sound signal is detected, or
a manual switch is triggered, the LED street light will illuminate at high brightness for a
certain period of time, and the duration of high-brightness illumination can be adjusted.

1.3. LED Driver

The street light utilizes LED light source and requires a corresponding LED constant
current driving circuit.

The remainder of the paper is organized as follows. Section 2 will introduce the whole
implement of the controller. Section 3 will describe a simulation based on OrCAD used to
verify the whole implement. Section 4 will provide an implementation of the intelligent
controller and verify availability.

2. Design of Intelligent Controller

The intelligent controller’s structural diagram is depicted in Figure 1. It primarily
encompasses (1) the DC power supply unit, which furnishes DC power for detection and
control circuits via DC-DC conversion. This unit comprises three modules: a boost circuit,
a negative voltage generation circuit, and a battery-charging circuit [5]. (2) The sensor
detection unit comprises four modules: the light detection circuit, human infrared detection
circuit, sound detection circuit, and manual switch circuit, which yield multiple logic levels.
(3) The logic control unit transforms these multiple logic levels into control signals to
regulate the operation, shutdown, and brightness of LED street lights. The brightness of the
LED light is adjusted by the PWM modulation circuit, and the duration of high-brightness
lighting is determined by the timing circuit. (4) The LED driver unit accepts the control
signals and drives the LED street lights to operate with a constant current.
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The organizational structure of the main circuit and the design of parameters are
outlined as follows.
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2.1. Passive Infra-Red Sensing Signal Processing Circuit

The passive infra-red (PIR) sensor, specifically the KB-500B model (Shenzhen Haiwang
Sensor Co., Ltd., Shenzhen, China) chosen for this design, integrates an N-channel junction
field-effect transistor in its configuration, connected using a common drain setup for
impedance transformation. This converts the charge output from the pyroelectric detection
element into a voltage output. Since the infrared center wavelength of human radiation
falls within the 9–10 µm range, the detection element’s wavelength sensitivity spans
from 0.2 to 20 µm. Typically, a window with a filter lens is positioned atop the sensor,
allowing the passage of light within the 7 to 10 µm wavelength range. This facilitates the
creation of an infrared sensor tailored for human radiation detection. To enhance detector
sensitivity and expand the detection range, a Fresnel lens is commonly installed in front
of the detector. This lens, composed of transparent plastic with equidistant tooth patterns
engraved on one side, limits the incident light’s peak wavelength to approximately 10 µm.
Alongside an amplification circuit, it can amplify the detection signal by over 70 dB and
detect human body movement within a 20 m range [6]. Furthermore, sensor sensitivity is
influenced by the direction of human movement. Radial movement has low sensitivity,
while transverse movement (i.e., perpendicular to the radius) is highly sensitive. Therefore,
strategic installation positions must be selected to achieve optimal detection sensitivity.

The sensing signal is directed to a dedicated integrated circuit, with the BISS0001 [7]
selected for processing in this design. The BISS0001 comprises an operational amplifier,
voltage comparator, state controller, delay time timer, blocking time timer, and reference
voltage source, primarily utilized for signal amplification, control, and timing functions.
As the sensor’s detection element encounters varying infrared radiation, it undergoes
impedance conversion and transmits the voltage signal to the integrated circuit’s input
terminal. Subsequently, it undergoes multi-stage amplification and bidirectional amplitude
discrimination to identify the effective triggering signal. This then triggers a delay time
timer to produce high-level pulses of a specific duration (Tx). Subsequently, the blocking
time timer is initiated to obstruct the input end for a defined period (Ti) to suppress various
interferences arising during the load switching process. Consequently, the detection of
human infrared radiation is converted into a high-level pulse signal output.

The schematic diagram of the infrared pyroelectric sensing signal processing circuit is
shown in Figure 2. The main parameters include the following.
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The first stage of voltage magnification is:

.
Av1 = 1 +

R3

R2
= 43.6

The second stage of voltage magnification is:

.
Av2 = − R4

RP1
> −100
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The total magnification can achieve 73 dB by adjusting potentiometer RP1.
The delay time of the output high level is:

Tx = 4.9 × 105R8C7 = 230 ms

The input hold-off time is:

Ti = 24R7C8 = 1.1 ms

2.2. Sound Detection and Processing Circuit

The schematic diagram depicts the operation of the sound detection and processing
circuit, as shown in Figure 3. The circuit first captures the sound signal through an
electret microphone and converts it into an electrical signal. This signal is then amplified
through a two-stage amplification circuit to produce a voltage signal corresponding to the
sound signal.
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The design incorporates an NPN transistor (model 9013 [8]), which switches between
the on/off states. Initially, it is in the cutoff region, generating a high-level output from
the collector. As the microphone’s sound signal is converted into a weak electrical signal,
it undergoes initial amplification through a common source amplifier circuit composed
of N-channel field-effect transistors (model 2SK117 [9]). The signal then passes through a
common emitter amplifier circuit, causing the transistors to enter the saturation zone and
resulting in the collector outputting a low level.

The designed parameters provide flexibility. According to the parameter calculation
in the diagram, when the microphone’s output signal amplitude is 10 mV, the transistor
enters the saturation zone, leading to a low-level output from the collector. During actual
debugging, the potentiometer RP2 can be adjusted to set the transistor’s initial state to
“cut-off”, ensuring that the collector initially outputs a high level.

2.3. Light Detection and Processing Circuit

The diagram depicted in Figure 4 illustrates the light detection and processing circuit.
The main circuit consists of an in-phase voltage comparator made up of an integrated
operational amplifier (specifically, model LM358 [10] was chosen for this design). When
light is present, the resistance of the photoresistor (model 5537 was used in this design)
decreases, with a bright resistance of about 18–50 kΩ. This results in the input voltage
of the operational amplifier dropping below the reference voltage, leading to negative
saturation of the operational amplifier output. In the absence of light, the resistance value
of the photoresistor increases, with a dark resistance of about 2 MΩ, causing the input
voltage of the operational amplifier to surpass the reference voltage and resulting in positive
saturation of the operational amplifier output. The sensitivity of the circuit to light intensity
can be adjusted by manipulating potentiometer RP3.
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2.4. PWM Generation Circuit

The circuit of PWM generation is shown in Figure 5. The circuit is composed of
a triangular wave generator and comparator module. The triangular wave generator
adopts an integral circuit structure of constant current charging and discharging to generate
triangular waves with excellent linearity. The period of the triangular wave can be obtained
through the following equation.

T = 4R26C21
R25

R24
= 96.8 µs
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And the frequency is given by:

f =
1
T

= 10.3 kHz

The amplitude of the triangular wave is:

Vom =
R25

R24
VZ = 3.06 V

The duty of output PWM is:

D =
Vr

Vom

where Vr is the reference level of the same phase input terminal of the comparator. Adjusting
the potentiometer RP4 can change the size of this value. In this scheme, the integrated
operational amplifier uses TL972 [11] and the voltage comparator uses LM311 [12].
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2.5. Timing Circuit

The timing circuit is utilized to produce intense illumination for a set period, em-
ploying the standard monostable circuit configuration of 555 [13] integrated circuits. The
circuit diagram is depicted in Figure 6. The input terminal experiences a falling edge and is
non-retriggerable.
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The delay time is given by the following equation:

tw = R21C17 ln
VDD − 0

VDD − 2
3 VDD

= R21C17 ln 3 = 3.6 s

2.6. Logic Circuit

The logical circuit is the kernel of implementing intelligent control, which converts the
logic level output by the multi-channel detection circuits into the control signal of the LED
driver. The logical relationship is shown in Table 1.

Table 1. Port output status description.

Port Label Port Source Description

J3 Sound detection circuit If not sounds, output H level; otherwise, output L level
J4 PIR sensing circuit If no one detected, output L level; otherwise, H level
J9 Manual switch An H level is output when manual is switched, or keep L level
J8 Light detection circuit If no light, output H level, or output L level
J10 PWM generation circuit Brightness control by duty cycle
J6 LED driver circuit If O555 = 1, J6 obtains H level; otherwise, J6 obtains L level

Logical expressions are designed according to the following requirements:

In555 = J3 + J4 + J9

J6 = O555 J10 ·J8

The circuit schematic diagram of this scheme using logic gate circuits 74LS00 [14],
74LS08 [15], and 74LS32 [16] is shown in Figure 7.
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2.7. LED Driver Circuit

The schematic diagram of the LED driver circuit is shown in Figure 8, mainly com-
posed of a TPS61165 boost converter [17]. By changing the input voltage of the VIN pin
and the control signal of the CTRL pin, LED on/off and brightness control can be achieved.
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Figure 8. LED driver circuit.

This design load comprises a series connection of four white 1 W high-luminance
(80–90 lm) LEDs, with a maximum operating current of 350 mA and a voltage of 3.0–3.4 V
per LED. When the CTRL pin is held high, the reference voltage from the FB pin is 200 mV,
with a 2% accuracy. The minimum value of sampling resistance is:

R38 =
VFB

ILED
=

0.2
0.35

= 0.57 Ω

The driving circuit operates at a fixed switching frequency of 1.2 MHz, with a switching
current limit of 1.2 A. According to

∆iL = 20% · Iomax = 70 mA, VIN = 5 V, VOUT = 12 V, D = 0.58

the minimum inductor is L3 = 17.3 µH. This design case selects an inductance value of
22 µH. Appropriately increasing the R38 resistance value can decrease the output current
and reduce LED brightness.

2.8. Battery Charging Circuit

The schematic diagram of the charging circuit is shown in Figure 9. This design
uses a BQ21040 integrated charger [18] to charge lithium-ion batteries using solar panels.
According to the typical parameter KISET in the BQ21040 data manual KISET = 540AΩ,
taking RISET = R33 = 2 kΩ, the output fast charge current can be obtained as:

Iout =
KISET

R33
= 0.27 A
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Reducing the RISET resistance value can increase the charging current, but cannot
exceed the maximum continuous charging current range of lithium batteries.

2.9. Boost Circuit

The boost circuit’s schematic diagram is depicted in Figure 10. This design employs
the LM2735 integrated circuit [19] to elevate the DC voltage from the 3.7–4.2 V output of
lithium batteries to 5 V, and accomplishes voltage stabilization. Utilizing a boost topology
based on dedicated integrated circuits enables boost conversion to be achieved under
voltage closed-loop feedback control.
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According to the reference voltage VREF = 1.255 V provided in the LM2735 data
manual, the sampling voltage divider resistor can be designed using the following equation.

R36

R37
=

VOUT

VREF
− 1 =

5
1.225

− 1 ≈ 3

Take R36 = 30 kΩ, R37 = 10 kΩ, at which point the duty cycle of the boost circuit
is 0.26. Based on the LM2735 data manual, the output inductance is selected as 22 µH in
order to keep the boost circuit operating in CCM mode.

2.10. Negative Voltage Generation Circuit

The diagram in Figure 11 illustrates the schematic of the negative voltage generation
circuit. This design utilizes the TPS60401 integrated charge pump voltage converter [20]
to accomplish polarity reversal from +5 V to −5 V. Following the passage through series
inductors and parallel capacitors, a stable −5 V DC voltage is produced. According to the
typical parameters outlined in the TPS60401 data manual, the capacitance C36 is chosen as
10 µF. The fixed switching frequency is 20 kHz, and the inductance L2 is selected as 22 µH.
The capacitance C38 is also chosen as 22 µF.
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3. Simulation Based on OrCAD
3.1. PIR Sensing Signal Processing Circuit

The parameters for the PIR sensing circuit model using LM358 and 555 are to be
constructed, and both quiescent point and transient analysis are to be completed. The
simulation results are displayed in Figure 12a,b. Based on the simulation results, the PIR
sensor triggers the monostable trigger inside the chip when it receives a sine signal with
an offset.
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3.2. Sound Detection and Processing Circuit

To create a sound detection and processing circuit based on the provided design
schematic, completing both quiescent point and transient analysis is necessary. The simula-
tion results are illustrated in Figure 13a,b. According to the transient analysis, when the
circuit receives a 10 mV, 1 kHz sine signal, the output remains in a saturated state, aligning
with the design principle.
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3.3. Light Detection and Processing Circuit

To construct a light detection and processing circuit based on the design schematic, we
replaced the photosensitive resistor with an adjustable resistor and completed the quiescent
point analysis. The simulation results are shown in Figure 14. The analysis indicated that
the circuit produces low and high output levels when the adjustable resistance values are
50 kΩ (representing illuminated) and 500 kΩ (representing non-illuminated), respectively,
aligning with the design principle.
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3.4. PWM Generation Circuit

To construct a PWM generation circuit based on the design schematic, we completed
quiescent point analysis and transient analysis, and the simulation results are shown in
Figure 15a,b. The transient analysis revealed that the triangular wave generation circuit
produces positive and negative alternating triangular waves, subsequently generating a
square wave with an adjustable duty cycle amplitude of 5 V through the LM311 comparator.
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3.5. Timing Circuit

To construct a timing circuit based on the design schematic, we completed quiescent
point analysis and transient analysis, and the simulation results are shown in Figure 16a,b.
The transient analysis results indicate that the falling edge of the input signal triggers the
timing circuit. The capacitor begins to charge, and the circuit outputs a high level with a
pulse width of approximately 3.3 s. When the voltage of the capacitor reaches 3.3 V, the
capacitor begins to discharge, and the circuit outputs a low level, which is consistent with
the design principle.
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3.6. Logic Circuit

The logic circuit, as per the design schematic, utilizes the Intel MAX 10 series FPGA
(model 10M50DAF484C7G [21]). The triangular wave generator, Triangle: u2, and the ADC
[7:0], as a comparator input, are employed to produce PWM waves. The simulation was
conducted using ModelSim (Quartus-lite-17.1.0.590-windows), and the results are depicted
in Figure 17.
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The simulation results revealed that when the light detection circuit produces a low
level, the J6 output remains at a low level. When the light detection circuit outputs a high
level, but the timing circuit is not triggered, J6 outputs a PWM wave, and the duty cycle
can be adjusted by the ADC output, indicating adjustable brightness of the LED at low
intensity. When the light detection circuit outputs a high level and triggers the timing
circuit, J6 produces a high level for a specific duration determined by the timing circuit,
indicating the LED’s operation at high brightness for a certain period.

4. Implementation of Controller Circuit

We implemented a controller testing platform as shown in Figure 18, and based on
this platform, we completed the functional and characteristic testing of the following
main modules.
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Figure 18. Testing platform of intelligent controller.

4.1. LED Driver Circuit

When the LED illuminated and the intensity was high, oscilloscope channel 1 was
connected to the SW pin of the TPS61165 driver chip, and the waveform was observed as
depicted in Figure 19. Based on the waveform measurement, the operational frequency of
the driving circuit was 1.22 MHz, and the average output voltage was 11.32 V, which is
largely consistent with the intended value. During practical measurement, the sampling
resistance can be set to 2 Ω, resulting in an output current of approximately 100 mA, aiming
to reduce LED brightness and output power for ease of debugging.
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Figure 19. SW pin of LED driver circuit.

4.2. Timing Circuit

Masking the photoresistor to replicate a light-free environment causes the LED to
function in a state of low-brightness illumination. The manual switch is activated, triggering
the timing circuit. The process of the LED transitioning from low to high brightness, then
returning to low brightness, can then be observed. The oscilloscope’s channel 1 is connected
to the SW pin of the driver chip TPS61165, and the waveform is depicted in Figure 20.

Based on waveform measurements, the average output voltage of the LED under
low-brightness illumination is approximately 9.03 V, while under high-brightness illumi-
nation, the average output voltage is around 11.25 V. The duration of maintaining this
value is approximately 4.05 s, with a theoretical calculation of 3.6 s, indicating an error of
approximately 12%. This is primarily influenced by the precision of the selected electrolytic
capacitor and resistor, which is within an acceptable range.

4.3. Sound Detection and Processing Circuit

The microphone is lightly tapped to activate the sound detection circuit, causing
the LED lighting brightness to transition from low to high. The output of the sound
detection circuit is used as the trigger source for the oscilloscope, employing a single trigger
capture. A digital logic probe is utilized to observe the output waveforms of each circuit,



Energies 2024, 17, 1838 13 of 16

as illustrated in Figure 21. In the figure, probes D0~D5, respectively, indicate the output
signals of light detection, sound detection, infrared sensing, manual control, and PWM
circuit, as well as the logical status of LED drive control signals.
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Upon waveform observation, it is evident that when the output of the sound detection
circuit shifts from a high level (silent) to a low level (audible), the LED drive control signal
switches from PWM mode to high-level output mode, indicating the brightness of the LED
lighting transitioning from weak to strong. As the sound is received by the microphone in
wave form, it can be observed from the graph that the D1 waveform generates multiple
pulses within the 25 ms range.

4.4. PIR Sensing Signal Processing Circuit

The oscilloscope logic channel connection method in Section 4.3 is maintained. Moving
the human body to effectively trigger the infrared sensing circuit, using the output of the
infrared sensing circuit as the oscilloscope trigger source, and capturing the waveform
with a single trigger as shown in Figure 22 should be performed. Upon waveform obser-
vation, it is evident that when the PIR sensing circuit is triggered, a high-level pulse is
generated and maintained for a period of time before returning to the low level. Using
the oscilloscope cursor measurement, it can be seen that the duration of the high level is
approximately 227 ms, which is consistent with the design value of 230 ms. The use of the
dedicated integrated circuit BISS0001 allows for clear visibility of rising and falling edges
without jitter.

4.5. Manual Switch Circuit

The connection method for the logic channel of the oscilloscope is maintained as
described in Section 4.3. The LED lighting brightness change is triggered manually using
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a switch. The switch output is used as the trigger source for the oscilloscope, and the
waveform is depicted in Figure 23.
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Upon waveform observation, it is evident that when the switch is closed and opened,
there will be short-term rapid fluctuations. When the first jitter occurs, the LED driver con-
trol signal is triggered to switch from PWM mode to high-level output mode, representing
the brightness of the LED lighting transitioning from low to high. According to the cursor
measurement results, the switch action lasted for approximately 325 ms.

4.6. Light Detection and Processing Circuit

The methodology for maintaining the connection of the oscilloscope logic channel
in Section 4.3 and linking the oscilloscope analog channel CH1 to the SW pin of the LED
driver chip TPS61165 should be upheld. The lighting simulation involves using a flashlight
and using the output of the light control circuit as the trigger source for the oscilloscope,
capturing the waveform with a single trigger, as illustrated in Figure 24. Upon observation
of the waveform, it is evident that the transition of the lighting detection circuit output
from a high level (representing no illumination) to a low level (representing illumination)
causes the LED driver control signal to shift from PWM mode to low-level output mode,
indicating the change in the LED light’s operational state from low-brightness illumination
to off. The output waveform of the oscilloscope analog channel demonstrates a gradual
decrease in the output voltage of the driving circuit to 5 V as the output of the optical
control circuit changes. As per the cursor measurement, the output voltage drop process in
the figure takes approximately 10 ms.
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Figure 24. LED control triggered by light detection circuit.

The simulation and actual measurement results of the primary unit circuits affirm
that the intelligent controller’s circuit functions and main performance indicators fulfill the
design requirements. It can intelligently regulate the operational status of LED street light
through light intensity, human infrared, sound, and manual switches, thereby achieving
energy-saving effects.

5. Conclusions

This paper presents an intelligent controller of LED street light, leveraging simulator
devices to enable intelligent perception, dimming, and control of LED street light across
multiple channels. The design encompasses fundamental circuit principles, digital and
analog electronic technology, as well as core professional courses like power electronic tech-
nology and sensor technology. The training focuses on theoretical design, EDA simulation,
and experimental debugging. It also integrates the design and implementation of basic unit
circuits such as digital logic circuits, BJT and MOS transistor circuits, operational amplifiers,
and comparator circuits. Furthermore, it includes targeted expansion in typical applications
of 555 chips and DC-DC power supply chips, with a focus on practical teaching value.
By substituting and combining local unit circuits, advanced designs for this controller
can be developed. For example, using FPGA technology to achieve PWM generation and
control is expected to improve controller performance and development efficiency. Due to
the focus of this solution on the circuit implementation of analog devices and the lack of
in-depth research on FPGA applications, this will be the main research area of the team in
the next stage.
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