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Abstract: Based on the mutual compensation of offshore wind energy and wave energy, a hybrid
wind–wave power generation system can provide a highly cost-effective solution to the increasing
demands for offshore power. To provide comprehensive guidance for future research, this study
reviews the energy conversion and coupling technologies of existing hybrid Wind–wave power
generation systems which have not been reported in previous publications. The working principles
of various wind and wave energy conversion technologies are summarised in detail. In addition,
existing energy coupling technologies are specifically classified and described. All aforementioned
technologies are comprehensively compared and discussed. Technological gaps are highlighted, and
future development forecasts are proposed. It is found that the integration of hydraulic wind turbines
and oscillating wave energy converters is the most promising choice for hybrid wind–wave power
extraction. DC and hydraulic coupling are expected to become mainstream energy coupling schemes
in the future. Currently, the main technological gaps include short their operating life, low energy
production, limited economic viability, and the scarcity of theoretical research and experimental tests.
The field offers significant opportunities for expansion and innovation.

Keywords: offshore wind energy; wave energy; hybrid energy extraction; energy coupling;
energy conversion

1. Introduction

With the intensity of the energy crisis, the international structure of energy has grad-
ually shifted from traditional fossil fuels to clean, renewable energy sources [1]. Ocean
renewable energy sources, such as offshore wind, wave, and solar energies, are not only
abundant but also widely distributed, garnering global attention [2,3]. Europe currently
has the world’s largest installed ocean energy capacity, which is expected to increase to
188 GW by 2025 [4]. Countries such as the UK, Denmark, France, Germany, and Belgium
have implemented lasting policies to promote the development of ocean renewable en-
ergy [5,6]. In alignment with this global trend, the Chinese government has committed
to ocean energy development and its utilisation through significant national strategies,
including the ‘12th Five-Year Plan’ in 2012 and the ‘13th Five-Year Plan’ in 2020. These
strategic initiatives underscore the heightened focus on expanding China’s ocean energy
capabilities and increasing its investment in renewable energy development [7].

Compared to other ocean energy sources, offshore wind energy is considered the
most promising because of its high energy density and well-established technological
development. One of the most famous demonstration projects of this is WindFloat Atlantic,
which is located 20 km off the coast of Viana do Castelo, Portugal. It is considered to be
the world’s first semi-submersible floating wind farm and was the first floating wind farm
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in continental Europe [8]. Ambitious plans have been formulated to increase wind farms’
capacity from 12 GW in 2020 to 300 GW by 2050 in the EU and from 5 GW in 2020 to 200 GW
by 2050 in China [9,10]. However, the inherent randomness and intermittence of offshore
wind energy inevitably lead to large power fluctuations in the terminal power system,
resulting in increased maintenance and balance costs [11–13]. To address this challenge,
various multi-energy complementary power generation schemes have been proposed that
integrate offshore wind energy with other ocean energy sources [14–19]. Among these, the
combined wave–wind power generation system is considered to be the best option due to
its economic efficiency and technical feasibility [20–23].

Offshore wind and wave energies can compensate for each other in time and space,
showing a certain synergy between the wave peaks that follow wind peaks [24,25]. The
combined exploitation of offshore wind energy and wave energy has several advantages,
including enhanced energy yields, improved predictability, smoothed output power, cost-
effectiveness, and environmental benefits [26–28]. In recent years, numerous countries
have conducted comprehensive resource assessments of offshore wind and wave energy
to develop combined wind–wave power generation systems [29–37]. Based on their foun-
dation and layout, combined wind–wave power generation systems can be classified
as follows [26]: co-located (Figure 1a), island systems (Figure 1b), and hybrid systems
(Figure 1c). Co-located systems and island systems consist of large offshore wind farms and
wave energy converter arrays on independent foundations in the same marine area [38,39].
The major technologies of these systems are relatively mature and many demonstration
projects have been implemented globally [40–44]. Hybrid systems, identified as a new
research hotspot in recent years, combine offshore wind turbines and wave energy convert-
ers on the same foundation [45]. Compared with co-located and island systems, hybrid
systems have the advantages of a smaller size, lower manufacturing and maintenance
costs, and higher energy utilisation efficiency per unit area [46]. The most renowned hybrid
wind–wave system is part of the WindFloat Atlantic project. This system has three floating
wind turbines with a total capacity of 25 MW and a wave energy converter developed
by the Portuguese company WavEC Offshore Renewables [47]. The wind turbines are
anchored using advanced floating platforms that allow them to operate in deeper waters.
The wave energy converter, which is integrated into the same floating platform as the wind
turbine, captures energy from ocean waves.
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Figure 1. Classification of combined wind–wave power generation systems: (a) Co-located system.
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system. Reproduced with permission from [49], Elsevier (Amsterdam, The Netherlands), 2022. (c) Hy-
brid system. Reproduced with permission from [50], Elsevier (Amsterdam, The Netherlands), 2024.
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Although hybrid wind–wave systems have recently become a research hotspot, studies
on hybrid wind–wave systems are limited. The current research is primarily categorised
into three groups: (i) potential assessments of hybrid wind–wave explorations [31,51–54];
(ii) hydrodynamic studies on substructures such as wave energy converters, wind turbines,
and floating or bottom-fixed platforms [55–62]; and (iii) the power preferences of their
integrated systems [63–67]. Several reviews have been conducted on these research areas
in recent years. Qiang et al. assessed the potential of hybrid wind–wave exploration in
Australia [31]. Iglesias et al. classified combined wind–wave systems and reviewed WEC
technologies [26]. Hongda et al. provided a comprehensive review, which included global
assessments of wind energy and wave energy resources and the foundation structures of
hybrid wind–wave systems [45]. McTiernan and Sharman reviewed the types of hybrid
wind–wave systems and discussed their advantages and disadvantages [68]. Subbulakshmi
et al. summarised the state-of-the-art experimental and numerical methods used for the
dynamic analysis of hybrid wind–wave systems [69]. Anthony et al. reviewed industrial
projects for hybrid wind–wave energy extraction [70]. However, there are no publications
that provide a systematic review of the energy conversion and coupling technologies of
existing hybrid wind–wave systems.

The effectiveness of a hybrid wind–wave power generation system relies heavily on its
seamless integration of energy conversion and coupling technologies. This paper presents
a comprehensive review of the energy conversion and coupling technologies of existing
hybrid wind–wave systems. A major contribution of this study is that it provides an in-
depth analysis of the current state of the research in this field, emphasising the importance
of efficient energy conversion and coupling strategies. The remainder of this paper is
organised as follows: In Section 2, the energy conversion technologies of existing hybrid
wind–wave systems are illustrated. Section 3 classifies and analyses the energy coupling
technologies of existing hybrid wind–wave systems. Section 4 discusses these technologies,
elaborates on technological gaps, and forecasts the development of these technologies.
Finally, the conclusions are presented in Section 5.

2. Energy Conversion Technologies

The development of hybrid wind–wave systems has benefited significantly from
the technological advancements in offshore wind turbines and wave energy converters.
These systems combine offshore wind turbines and wave energy converters on the same
foundation. This section presents a summary of the wind and wave energy conversion
technologies utilised in existing hybrid wind–wave systems. The classification of these
technologies is illustrated in Figure 2.
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Figure 2. Classification of the energy conversion technologies utilized in existing hybrid wind–
wave systems.

2.1. Wind Energy Conversion Technologies

Hybrid wind–wave systems utilise the same foundation structures as traditional
offshore wind turbines, comprising both floating and bottom-fixed foundations. The wind
energy conversion technologies employed in existing hybrid wind–wave systems can be
divided into two types: mechanical–electrical and hydraulic–electrical.
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2.1.1. Mechanical–Electrical Schemes

Mechanical–electrical wind energy conversion schemes are widely employed in hybrid
wind–wave systems. Over the past decade, numerous demonstration projects have been
conducted, such as Wave Treader [71], W2Power [72], Floating Power Plant AS [73], and
WindWaveFloat [74]. In addition, a considerable number of conceptual hybrid wind–wave
systems employing a mechanical–electrical wind energy conversion scheme have been
proposed over the past three years [65,67,75–77]. A typical mechanical–electrical wind
energy conversion scheme is depicted in Figure 3. The blades are driven by wind, and their
pitch angles and rotational speeds are continually adjusted to optimise their wind energy
utilisation efficiency. The generator converts wind energy into electrical energy.
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There are two energy conversion processes in the mechanical–electrical wind energy
conversion scheme. First, wind energy is converted into mechanical energy, and the gener-
ator transforms that mechanical energy into electrical energy. However, the generator’s
output power is subject to instability due to the uncertainty and intermittency of wind.
Consequently, additional energy storage and regulation components are necessary for wind
turbine systems.

2.1.2. Mechanical–Hydraulic Schemes

Many researchers have integrated hydraulic transmission technology into offshore
wind turbines to reduce system complexity and improve energy transmission efficiency. A
typical mechanical–hydraulic wind energy conversion scheme is shown in Figure 4. These
systems first convert wind energy into mechanical energy, and then convert that mechanical
energy into hydraulic energy. Although mechanical–hydraulic wind energy conversion
schemes have not been implemented in commercial hybrid wind–wave systems, they offer
significant advantages such as stepless speed regulation, a high power-to-weight ratio,
flexible transmission, and low maintenance costs [79,80]. In recent years, there has been a
clear upward trend in the number of the studies focusing on these systems [81,82].
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2.2. Wave Energy Conversion Technologies

Various wave energy converters have emerged worldwide over the past few decades
and their performance has been systematically studied [83–87]. A comprehensive wave-
to-wire model was developed to evaluate wave energy’s conversion from sea resources to
the grid [88]. In hybrid wind–wave systems, wave energy converters are installed on the
foundation of offshore wind turbines. Based on their working principles, the wave energy
conversion technologies of hybrid wind–wave systems can be classified into three types:
oscillating bodies, oscillating water columns, and overtopping.

2.2.1. Oscillating Bodies Systems

Oscillating bodies systems (OBs) are widely employed in existing hybrid wind–wave
systems, as shown in Figure 5. Notable examples include Wave Star [58,89], Pelamis [90],
and W2Power [72]. Many conceptual prototypes have been developed in recent years [91].
In hybrid wind–wave systems, OBs are installed on a floating or bottom-fixed platform to
capture wave energy via the movements of various oscillating bodies [92]. The structures of
OBs can be divided into oscillating bodies, Power Take-Off (PTO) systems, and generators.
Oscillating bodies are excited by waves, which convert the wave energy into mechanical
energy. The PTO system transmits the mechanical energy of the oscillating bodies to
the generator.
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Figure 5. Hybrid wind–wave systems with OBs: (a) OBs installed on a floating platform. Repro-
duced with permission from [93], Elsevier (Amsterdam, The Netherlands), 2021. (b) OBs installed
on a bottom-fixed platform. Reproduced with permission from [94], Elsevier (Amsterdam, The
Netherlands), 2024.

There are two types of PTO systems in OBs: hydraulic and direct-drive PTO systems.
The hydraulic PTO scheme is widely applied because of its high energy transmission
efficiency, simple structure, and strong controllability [95]. A typical hydraulic wave energy
PTO system, illustrated in Figure 6, consists of a hydraulic cylinder, hydraulic pipelines,
hydraulic control and regulation components, and a hydraulic motor. A hydraulic cylinder
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can convert wave energy into hydraulic energy [96]. Hydraulic control and regulation
components can reduce the pressure fluctuations across the entire system [97].
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In recent years, several conceptual prototypes have been developed for direct-drive
PTO systems [98–101]. Direct-drive PTO systems can be classified as mechanical-drive
and electrical-drive, as illustrated in Figure 7. A mechanical-drive PTO system comprises
various mechanical components that transmit the mechanical energy of the oscillating
bodies to the generator shaft. This complex structure increases the energy loss and decreases
the system’s life. In contrast, an electrical-drive PTO system consists of a linear generator
and a simple mechanical structure. The oscillating body is excited by waves and drives the
linear generator to generate electricity.
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2.2.2. Oscillating Water Column Systems

Although OBs have been used in several commercial projects, the high damage rate of
their mechanical components results in high maintenance costs [102–104]. Compared with
other wave energy converters, oscillating water column devices (OWCs) are more suitable
for integration into hybrid wind–wave systems. OWCs consist of a semi-submerged
chamber and a turbo generator (Figure 8). OWCs have the advantages of a simple structure
and long operating life [105,106]. The waves continually move up and down, compressing
the air out of the chambers and then back into them through the turbo generator. The turbo
generator is driven by airflow.
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Figure 8. Schematic of the OWC device.

Based on this foundation, hybrid wind–wave systems utilising OWCs are primarily
categorised into bottom-mounted and floating systems, as shown in Figure 9. In a bottom-
mounted system, an offshore wind turbine is fixed to the seabed. The OWCs are installed
onto the wind turbine tower. The floating-type system involves mounting both the offshore
wind turbines and the OWCs on a shared floating platform [107].
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2.2.3. Overtopping System

Existing research on overtopping wave energy converters is scarcer than that on
OBs and OWCs. The number of hybrid wind–wave systems that employ overtopping
wave energy converters is limited. The primary advantage of overtopping wave energy
converters is their structural simplicity. A schematic drawing of an overtopping wave
energy converter is shown in Figure 10. Waves run up along a ramp and flow into a reservoir
installed at a level higher than the sea. The water drives a hydro-turbine connected to a
generator via water flow [110].

At present, there are only a few studies on hybrid wind–wave systems that employ
overtopping wave energy converters. The most well-known demonstrations are WPR and
2Wave1Wind, developed by OWWE [112]. Fiaschi et al. proposed an offshore multi-energy
exploitation system with a yearly energy production potential of 177,000 kWh [113]. The
overtopping wave energy converter used in this system was a Wave Dragon (Figure 11a).
Moschos et al. designed a hybrid wind–wave system containing two offshore wind turbines
and four overtopping wave energy converters (Figure 11b). The output power of this system
was 2000 kW [40]. However, hybrid wind–wave systems employing overtopping wave
energy converters have disadvantages, such as high construction and maintenance costs,
low mobility, and intermittent power generation, which limit their application.
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3. Energy Coupling Technologies

Currently, mainstream research on hybrid wind–wave systems focuses on their hy-
drodynamic performance and resource assessments. However, only a limited number of
studies have been conducted on energy coupling technologies. This section summarises
and analyses the energy coupling technologies of current hybrid wind–wave systems. The
energy coupling subsystem used significantly influences the electric energy production of
the entire system. According to their working principles, the energy coupling technologies
used in existing hybrid wind–wave systems are classified as electrical or hydraulic coupling.
These specific classifications are presented in Figure 12.
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3.1. Electrical Coupling

Electrical coupling schemes utilise electrical components to integrate and regulate the
power from both wind and wave sources. Electrical coupling schemes are widely applied
in currently active hybrid wind–wave systems, such as Poseidon37, W2Power, WaveStar,
and WaveTreader. Based on their type of coupled voltage, electrical coupling schemes can
be further classified into AC and DC coupling schemes.

3.1.1. AC Coupling

AC coupling schemes offer the advantages of a simple structure and low costs. The
configuration of an AC coupling scheme is shown in Figure 13. In this setup, AC/DC con-
verters (rectifiers) are employed to convert the alternating currents generated by different
generators into direct currents. These direct currents are then transformed into alternating
currents of the same frequency using DC/AC converters (inverters). Finally, the alternating
currents from different circuits are connected to the grid.
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The back-to-back pulse-width modulation (PWM) converter is the primary variable-
frequency controller in existing AC coupling schemes due to its strong controllability,
reliability, and flexibility. A typical back-to-back PWM circuit is shown in Figure 14.
Currently, the research on AC coupling schemes can be classified into two categories: one
focuses on the topological optimisations of back-to-back PWM conversion circuits, while
the other focuses on various control strategies.
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AC Microgrid Technology

Microgrid technologies provide an efficient approach for enhancing system perfor-
mance. Wang et al. presented a microgrid system aimed at achieving the hybrid extraction
of offshore wind energy and wave energy. This system comprises a voltage source con-
verter, high-voltage DC link, and damping controller [114]. Soundarya et al. designed a
hybrid DC/AC microgrid to integrate captured offshore renewable energy and introduced
a maximum power point tracking fuzzy control algorithm [115].
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Novel Control Strategies

Novel control strategies have been proposed recently. The authors in [75] proposed a
hybrid wind–wave system that applied an optimised intelligent neural network controller
to enhance the dynamic performance of their system and maximise energy harvesting.
The entire system was simulated and analysed using PSCAD/EMTDC V4 software. Qin
et al. proposed an offshore hybrid power generation system using a coordinated control
method [116]. This system uses grid voltage regulators and DC-link voltage regulators to
control the system’s voltages. In [117], an innovative method was proposed to regulate the
voltages and currents of a multiport magnetic bus, and a damping controller was designed
to maximise wave energy harvesting.

3.1.2. DC Coupling

With the rapid development of power electronics, numerous innovative DC coupling
systems have been integrated into hybrid wind–wave systems in recent years. The config-
uration of DC coupling schemes is shown in Figure 15. Initially, the alternating currents
generated by the different generators are converted into direct currents by AC/DC convert-
ers. Subsequently, the direct currents are integrated. Finally, the coupled direct current is
adjusted by the regulation components and converted back into an alternating current by
the DC/AC converters.
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DC Microgrid Technology

Compared with AC microgrids, DC microgrids are more flexible and reliable. Lu et al.
proposed a hybrid wind–wave system with a DC microgrid that connected a wind turbine
and a wave energy converter via AC/DC converters [64,118]. The entire system was mod-
elled and simulated using MATLAB/Simulink, and its power performance under various
operational conditions was analysed. Talaat et al. presented a multi-energy integrated
system consisting of an AC/DC converter and a DC/DC converter [76]. The wind and
wave energy conversion systems were integrated into a DC busbar, and a buck-boost circuit
was designed to maintain a stable DC busbar voltage.

Novel Control Strategies

Additionally, several innovative approaches based on DC coupling circuits have
been explored. Chen et al. combined a wind turbine with a direct-drive wave energy
converter and designed a full-bridge controlled rectifier circuit to integrate wind and
wave energies [66]. The authors of [100] proposed a hybrid wind–wave system capable
of providing stable power to customers on remote islands. This system employed a
doubly fed induction generator for wind energy capture and a linear permanent magnet
generator for wave energy capture. Rasool et al. proposed a hybrid wind–wave system
with a distribution network that employed back-to-back converters to maximise the energy
extraction from wind and wave energy [101].
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3.1.3. Energy Storage Technology

Energy storage technologies for electrical coupling systems can be divided into two
types: batteries and mechanical storage. Battery storage systems typically use lithium-ion,
lead-acid, or other types of batteries to chemically store electricity. When the electricity
demand increases or decreases, the stored energy can be discharged from the batteries to
supply power to the grid [119]. Mechanical storage elements store energy either mechani-
cally or kinetically.

Zhang et al. proposed a hybrid wind–wave system with an integrated energy storage
system [120]. In this system, the proposed integral compensation control method maximises
energy capture and regulates the rotation speed of the wind turbine rotor. The alternating
currents generated by the wind and wave energy conversion subsystems are integrated into
the system bus after being regulated by back-to-back PWM converters and transformers.
Liu et al. innovatively applied multitoothed doubly salient permanent magnet machines
to serve different generators and used a battery tank to store excess energy [121]. Li
et al. proposed a hybrid wind–wave system connected to a large power grid through a
flywheel energy storage system [122]. They found that this flywheel energy storage system
effectively stabilised power fluctuations. In another study [123], researchers proposed a
novel hybrid wind–wave system comprising an offshore wind turbine and a point absorber
with a hydraulic PTO system. The power sharing among different generators was governed
based on their DC-link voltage, and two mechanical storage schemes were employed to
smooth the DC voltage fluctuations at the DC coupling point.

Battery storage systems offer fast response times and can be easily scaled to meet
various energy storage requirements. However, they have a limited energy capacity and
lifespan, and there are concerns regarding the environmental impact of battery produc-
tion and disposal [124]. Mechanical storage elements can provide larger energy storage
capacities and longer lifespans but may have slower response times and higher upfront
costs [122].

3.2. Hydraulic Coupling

In hydraulic coupling schemes, the energy from the wind and wave energy conversion
subsystems is integrated and regulated using hydraulic components. The configuration
of a hydraulic coupling scheme is shown in Figure 16. Although no commercial projects
have employed hydraulic coupling schemes, existing studies have demonstrated their
excellent power performance. Compared to electrical coupling, hydraulic coupling can
reduce maintenance costs and enhance the system’s operating life due to its simplified
structure. Based on the number of generators, hydraulic coupling schemes are further
classified into multi-generator schemes and single-generator schemes.
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3.2.1. Multi-Generator Schemes

A typical multi-generator scheme is shown in Figure 17. However, research on multi-
generator schemes is limited. One notable engineering case is the W2P proposed by
Chen et al., which comprises an offshore wind turbine and three oscillating body wave
energy converters. This system demonstrated a wave energy conversion efficiency of over
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80% [125]. In this system, the energy conversion subsystems convert wind and wave
energies into hydraulic energy. Hydraulic oil from different hydraulic circuits is regulated
and integrated by accumulators. Finally, the hydraulic motors connected to the generators
are driven.
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3.2.2. Single-Generator Schemes

A typical single-generator scheme is illustrated in Figure 18. There is only one gen-
erator in this energy coupling system. Compared with multi-generator schemes, single-
generator schemes further simplify their system structure, resulting in a higher price
performance ratio and longer operating life.
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Table 1. Representative hybrid wind–wave systems worldwide from 2010 to 2023. 

Year Inventor Wind Conversion 
Scheme 

Wave Conversion Scheme 
/PTO System 

Energy Coupling 
Scheme 

Capacity 

2010 Pelagic Power AS [72] Mechanical–electrical OBs/hydraulic PTO Electrical coupling 10 MW 
2010 Green Ocean Energy [71] Mechanical–electrical OBs/hydraulic PTO Electrical coupling 600 kW 
2011 Principle Power Inc [74] Mechanical–electrical OBs/hydraulic PTO Electrical coupling 7 MW 
2012 Wave Star AS [89] Mechanical–electrical OBs/hydraulic PTO Electrical coupling 600 kW 
2012 Fiaschi et al. [113] Mechanical–electrical Overtopping/electrical PTO Electrical coupling 50 kW 
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Shi et al. designed a hybrid wind–wave system with hydraulic transmission that con-
sisted of an offshore wind turbine and two oscillating body wave energy converters [126].
The system was simulated using MATLAB/Simulink 2016 and AMESim 17.0 software. The
results showed that the energy coupling efficiency of the system was maintained at 75%.
Tri et al. proposed a hybrid wind–wave system containing a vertical-axis wind turbine
and two wave buoys [127]. This system utilised a variable-inertia hydraulic flywheel to
maximise its energy extraction from waves. However, this system lacks an effective control
strategy; therefore, its overall efficiency is only 41.5%.
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Zhejiang University (ZJU) proposed an on–off controlled hybrid wind–wave system
that employs electromagnetic directional valves and pressure sensors to realise the en-
ergy coupling of different hydraulic circuits [128]. This scheme effectively reduces the
negative coupling effect between two energy conversion subsystems. To minimise the
energy losses resulting from interrupted flow rates, ZJU proposed a pressure-regulating
hybrid wind–wave system utilising two additional hydraulic pumps to match the pressure
levels [129]. Kong et al. proposed a hybrid wind–wave system with hydraulic transmission,
which utilised an accumulator and a variable displacement pump for short-term energy
storage [130]. Wang et al. proposed a novel hybrid wind–wave system with an adaptive
motor speed control method [63]. The system was simulated using MATLAB/Simulink
and AMESim 19.0 software. The simulation results indicated an average energy coupling
efficiency of 89%.

4. Discussion

Representative hybrid wind–wave systems worldwide, established from 2010 to 2023,
are listed in Table 1. Because studies on hybrid wind–wave systems are still at an early
stage, discussions about their energy conversion and coupling technologies are crucial.

Table 1. Representative hybrid wind–wave systems worldwide from 2010 to 2023.

Year Inventor Wind Conversion
Scheme

Wave Conversion Scheme
/PTO System

Energy Coupling
Scheme Capacity

2010 Pelagic Power AS [72] Mechanical–electrical OBs/hydraulic PTO Electrical coupling 10 MW
2010 Green Ocean Energy [71] Mechanical–electrical OBs/hydraulic PTO Electrical coupling 600 kW
2011 Principle Power Inc [74] Mechanical–electrical OBs/hydraulic PTO Electrical coupling 7 MW
2012 Wave Star AS [89] Mechanical–electrical OBs/hydraulic PTO Electrical coupling 600 kW
2012 Fiaschi et al. [113] Mechanical–electrical Overtopping/electrical PTO Electrical coupling 50 kW
2013 Shi et al. [126] Mechanical–hydraulic OBs/hydraulic PTO Hydraulic coupling 15 MW
2014 Liu et al. [131] Mechanical–electrical OBs/direct-drive PTO Electrical coupling 500 W
2015 Kim et al. [132] Mechanical–electrical OWCs/electrical PTO Electrical coupling 10 MW
2016 Chen et al. [125] Mechanical–electrical OBs/hydraulic PTO Hydraulic coupling 100 MW
2017 Moschos et al. [40] Mechanical–electrical Overtopping/electrical PTO Electrical coupling 500 kW
2017 Chen et al. [66] Mechanical–electrical OBs/direct-drive PTO Electrical coupling 5 kW
2018 Floating Power Plant [133] Mechanical–electrical OWCs/electrical PTO Electrical coupling 7 MW
2019 Sarmiento et al. [134] Mechanical–electrical OWCs/electrical PTO Electrical coupling 8 MW
2020 Zhu et al. [135] Mechanical–electrical OWCs/electrical PTO Electrical coupling 10 kW
2021 Si et al. [93] Mechanical–electrical OBs/hydraulic PTO Electrical coupling 4.7 MW
2021 Aboutalebi et al. [136] Mechanical–electrical OWCs/electrical PTO Electrical coupling 7 MW
2022 Wang et al. [63] Mechanical–hydraulic OBs/hydraulic PTO Hydraulic coupling 20 KW
2023 Zhang et al. [137] Mechanical–hydraulic OBs/hydraulic PTO Hydraulic coupling 50 KW

4.1. Wind Energy Conversion Technologies

Currently, mechanical–electrical wind energy conversion schemes account for a large
proportion of wind energy conversion technologies. They have been applied in many
demonstration projects, whereas mechanical–hydraulic wind energy conversion schemes
are still in the conceptual stage or are under study in model experiments. The primary
reason for this is that the relevant technologies for mechanical–electrical schemes are more
mature than those for mechanical–hydraulic schemes. A detailed comparison between
mechanical–electrical and mechanical–hydraulic schemes is presented in Table 2. The Lev-
elized Cost of Energy (LCOE) is a standardized way to compare the economic competitive-
ness of different energy technologies [138]. After a comprehensive assessment, the LCOE
of mechanical–hydraulic schemes was found to be higher than that of mechanical–electrical
schemes. Although mechanical–hydraulic schemes have not yet reached full maturity, their
significant advantages have been identified. Moreover, the number of studies on hydraulic
wind turbines has rapidly increased in recent years. Therefore, mechanical–hydraulic
wind energy conversion schemes have great potential to provide a cost-effective method to
accelerate the development of hybrid wind–wave systems.
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Table 2. Comparison between two wind energy conversion schemes.

Evaluation Indexes Mechanical–Electrical Mechanical–Hydraulic

System volume Large Compact
Numbers of components Many Few
Energy conversion times 3 times 3 times

Control difficulty Complex Simple [79]
Reliability Lower [139] Higher

Transmission efficiency lower Higher [140]
Economic costs Higher [141] Lower

Technological maturity Mature Immature

4.2. Wave Energy Conversion Technologies

A detailed comparison of the different wave energy conversion schemes is presented
in Table 3. Overtopping systems are suitable for integration into existing structures but
require a large reservoir volume. OWCs offer simplicity and versatility but are sensitive to
wave conditions. OBs have the potential for higher efficiency but may be more complex.
Compared with overtopping systems and OBs, OWCs have the most balanced LCOE
in terms of cost and efficiency [142]. The use percentages of the different wave energy
conversion schemes from 2012 to 2023 are shown in Figure 19a. OBs and OWCs are the
most widely used in existing hybrid wind–wave systems, whereas overtopping schemes
are scarce because of their high installation and maintenance costs. OBs are widely used
due to their high efficiency. However, complex mechanical and hydraulic systems have
increased initial capital and maintenance costs and reduced operational lifespans.
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The number of studies on the hybrid wind–wave systems using OWCs has gradually
increased in recent years. Among the various wave energy converters, the energy capture
efficiencies of OWCs are relatively high [104,143]. OWCs can be installed on wind turbine
towers, platform foundations, or floating platforms, exhibiting strong construction flexi-
bility. In addition, OWCs exhibit a long operating life and strong adaptability to various
operating conditions [144]. The combination of OWCs with offshore wind turbines for
hybrid energy exploitation has attracted increasing attention worldwide.

The distribution of different Power Take-Off (PTO) systems applied to the OBs in
existing hybrid wind–wave systems from 2012 to 2023 is depicted in Figure 19b. Hydraulic
PTO systems are widely used due to their extended operating life and effective control of
power fluctuations [149]. In contrast, direct-drive PTO systems require numerous electrical
components in the backend power grid to control their power fluctuations during energy
transmission, which increases their energy losses [150].
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Table 3. Comparison between different wave energy conversion schemes.

Scheme Advantages Disadvantages

OBs

1. Can capture energy from a wide
range of wave directions [86]

2. Higher efficiency compared to
some other wave energy
conversion systems [145]

1. Complex mechanical and
hydraulic systems

2. High initial capital and
maintenance costs [146]

OWCs

1. Simple design
2. Lower maintenance costs
3. Can be integrated into various

coastal structures [104]

1. Efficiency can be affected by
variations in wave height
and period

2. Limited to specific locations
with suitable wave
conditions [142]

Overtopping

1. Can be integrated into existing
harbour structures or artificial
breakwaters [147]

2. Suitable for a wide range of
wave conditions

1. Requires a substantial
reservoir volume

2. Efficiency can be affected by
variations in wave height and
period [148]

4.3. Energy Coupling Technologies

Electrical coupling schemes account for a large proportion of energy coupling tech-
nologies due to their maturity. A detailed comparison of AC and DC coupling is presented
in Table 4. AC coupling schemes have the advantages of simple structures and low con-
struction costs. However, they are inevitably affected by cable capacitance, which leads to
high energy losses and severe harmonic interactions [151]. With an increase in the cable
length, the energy losses increase rapidly. Therefore, AC coupling may be a cost-effective
choice for small-capacity hybrid wind–wave systems with short-distance transmission
cables. In contrast, DC coupling schemes can effectively regulate active and reactive power,
presenting advantages such as a stronger fault ride-through capability, fewer control pa-
rameters, and increased reliability and flexibility. Consequently, DC coupling has a lower
LCOE than AC coupling and has garnered increasing attention.

Table 4. Comparison between AC coupling and DC coupling.

Evaluation Indexes AC Coupling DC Coupling

System structure Simple Complex
Control difficulty Simple Difficult

Reliability Lower [152] Higher [153]
Innovation space Large Large

Expandability Finite Strong [154]
Fault ride-though capability Low Strong [155]

The number of relevant studies on hydraulic coupling schemes is fewer than those
on electrical coupling schemes. However, existing hydraulic coupling schemes exhibit an
excellent overall performance, including high energy coupling efficiency, low maintenance
costs, and a long operating life. Hydraulic coupling schemes also exhibit strong adaptability
under different operating conditions, which increases the economy of the system [156].
A detailed comparison between hydraulic coupling and electrical coupling is presented
in Table 5. Compared to electrical coupling schemes, hydraulic coupling schemes have
a longer operating life due to their simpler structures. Moreover, hydraulic transmission
systems exhibit lower energy losses than electrical transmission systems [63].
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Table 5. Comparison between hydraulic coupling and electrical coupling.

Evaluation Indexes Electrical Coupling Hydraulic Coupling

System structure Complex Simple
Storage element Mechanical storage of battery Accumulator

Adaptability Lower Stronger [157]
Transmission efficiency Lower [158] Higher [123]

Innovation space Large Large

Furthermore, the selection of energy coupling schemes must consider backend energy
transmission systems. High-voltage direct current (HVDC) and high-voltage alternating
current (HVAC) are the primary energy transmission modes in ocean energy generation
systems [159]. An HVDC is more suitable for systems requiring long-distance transmission
with high controllability and stability [160]. Conversely, an HVAC is preferable for systems
with shorter distances and lower costs. DC coupling schemes can directly employ HVDC
technology to transmit electrical energy to power stations. AC and hydraulic coupling
schemes can utilise an HVAC for transmitting electrical energy to a power station, although
it is only suitable for short-distance power transmission. AC coupling schemes can rectify
alternating currents into direct currents before employing HVDC for power transmission;
however, their energy losses increase [161]. Due to their high energy coupling efficiency,
hydraulic coupling schemes can rectify alternating current into direct current and utilise
HVDC for power transmission. With the rapid development of offshore renewable energy
generation systems in deep water, both DC coupling and hydraulic coupling are expected
to become the mainstream schemes in the future.

4.4. Seasonal Influences

Wind patterns can vary seasonally, at certain times of the year. In regions with
pronounced wind seasonality, the energy output of the wind turbines within hybrid systems
may fluctuate accordingly. This can affect the overall energy production and reliability of the
system, requiring adjustments in energy management and grid integration strategies [31].
Similar to wind, wave patterns can also exhibit seasonal variability, with changes in wave
height, period, and direction throughout the year [162]. Seasonal variations in wave
energy can influence the performance of the wave energy converters within hybrid systems,
impacting their energy capture efficiency and overall output. Design changes should be
made to optimize the system’s performance under different wave conditions. In addition,
exposure to harsh weather conditions during certain seasons increases the risk of the
corrosion, erosion, or mechanical wear of system components [163], necessitating enhanced
maintenance and monitoring protocols.

4.5. Technological Gaps

To accelerate the development of hybrid wind–wave systems, some challenges in
energy conversion and coupling subsystems must be overcome:

• Short operating lives. Most hybrid wind–wave systems employ OBs. Damage to their
mechanical components significantly decreases their operating life.

• Low energy production. The development of energy conversion and coupling tech-
nologies for hybrid wind–wave systems is still in its early stages. Energy production
has not yet reached its maximum level.

• Limited economic viability. High maintenance costs reduce the economy of these
systems.

• Scarcity of theoretical research and experimental tests. At present, there are a limited
number of studies on the energy conversion and coupling technologies of hybrid
wind–wave systems. The existing numerical models and experimental studies are not
sufficient to support their further development.
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4.6. Technology Development Forecasts

In this section, development forecasts for the energy conversion and coupling tech-
nologies of hybrid wind–wave systems are presented.

In terms of energy conversion technologies, integrating oscillating water column
devices and hydraulic wind turbines into hybrid wind–wave systems has the potential
to enhance their operating life, energy production, and system economy [45]. This will
be a future research trend. Existing studies on energy coupling technologies are scarce.
Therefore, theoretical innovations and novel technical schemes are required. DC coupling
and hydraulic coupling will be the mainstream schemes in the future, considering their
reliability, energy transmission efficiency, construction costs, and applicability in deep-sea
environments [63,109].

5. Conclusions

This study provides a complete review of the energy conversion and coupling technolo-
gies of existing hybrid wind–wave systems that have not been comprehensively reviewed
before. Our original contributions include a detailed classification and comparison of en-
ergy conversion and coupling technologies, the identification of existing technological gaps,
and forecasts on the development of these technologies. Based on the obtained information,
the following conclusions were drawn:

(1) Mechanical–electrical wind energy conversion schemes account for a large proportion
of existing hybrid wind–wave systems. However, mechanical–hydraulic schemes
have more prominent advantages, including compact sizes, simple control methods,
high reliability, high energy transmission efficiency, and low economic costs.

(2) The use percentages of different wave energy conversion schemes from 2012 to 2023
were presented. The percentages schemes implementing OBs, OWCs, and overtop-
ping systems were 58%, 34%, and 8%, respectively.

(3) Of the different wave energy conversion technologies, OWCs have the most balanced
LCOE. Integrating oscillating water column devices and hydraulic wind turbines into
hybrid wind–wave systems is the most promising choice.

(4) The distribution of the different PTO systems applied to the OBs in existing hybrid
wind–wave systems from 2012 to 2023 was presented. Hydraulic PTO systems account
for 73% of OBs, whereas direct-drive PTO systems account for 27%.

(5) DC and hydraulic coupling are expected to become mainstream schemes in the future.
There remains a large innovative space for energy coupling technologies.

(6) Seasonal factors are crucial for the sustainable development of hybrid wind–wave
power generation systems.

(7) Existing challenges in energy conversion and coupling technologies include their short
operating life, low energy production, limited economic viability, and the scarcity of
theoretical research and experimental tests.
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