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Abstract: This study presents a comprehensive assessment of the offshore wind energy potential
in Mexico across 40 years (1979–2018) of numerical simulations using the Weather Research and
Forecasting (WRF) model and data from the Coupled Model Intercomparison Project Phase 6 (CMIP6).
The WRF identifies three regions with moderate to good wind potential: off the north coast of
Tamaulipas (Zone I), the northwest coast of Yucatan (Zone II), and the Gulf of Tehuantepec (Zone
III). The analysis involves comparing 47 CMIP6 climate models with the WRF results and selecting
the best performing models to obtain future projections for the short term (2040–2069) and the long
term (2070–2099). Two ensemble-based strategies were implemented. The first one, which uses an
intersection approach from which four CMIP6 models were considered, reveals positive percentage
differences in Zone II for both future projections, especially for the long-term one. In Zones I and
III, positive values are also observed near the coast, mainly for the long-term projection, but they
are considerably lower compared to those in Zone II. The second ensemble strategy uses weight
assignment through the Mean Absolute Percentage Error, so that a greater weight is given to the
model that performed better in each particular zone, potentially providing more accurate results. The
findings suggest the likelihood of increased offshore wind energy in these three zones of Mexico, for
both short- and long-term future projections, with positive percentage differences of up to 10% in
certain areas.

Keywords: offshore wind energy in Mexico; wind power future projections; climate change;
numerical modeling

1. Introduction

Wind energy is a promising solution to mitigate the effects of climate change, as it
is considered to be a clean and renewable energy source that does not emit greenhouse
gasses during plant operation. Although, it must be taken into account that any generation
facility has a carbon footprint that has to consider prospection, design, materials extraction,
transportation, manufacturing, and decommissioning, among other factors. In energy
production, when comparing various sources, there is a stark contrast in the amount of
greenhouse gas emissions. Wind power, for instance, emits just 11 g of CO2 per kWh,
significantly less than coal, which generates a staggering 980 g of CO2 per kWh, and natural
gas, which emits about 465 g of CO2 per kWh [1]. However, the development of wind
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energy is not without challenges: social, economic, political, technical, and environmental
factors may limit its growth [2]. In particular, offshore wind energy projects require
significant investment in infrastructure, technology, and labor, although this can stimulate
economic growth in the regions where they are developed. Potential impacts on marine
ecosystems, such as seabirds, marine mammals, and fish populations, include collision risks,
habitat alteration, and acoustic disturbances. To minimize these impacts, it is crucial to take
advantage of technological advances and implement noise reduction measures, as well as
find adequate locations and management for offshore wind farms [3,4]. Additionally, there
may be visual and aesthetic impacts on coastal areas and seascapes, which communities
may perceive positively or negatively depending on individual preferences and cultural
values [5].

Despite these challenges, the global wind power market is expected to experience
significant growth in the short term driven by the increasing energy demand. Due to the
advantages of energy generation in offshore wind farms compared to that onshore, which
are related to greater wind intensity and more persistent winds over the ocean surface,
significant investments have recently been made in these types of facilities. For example, in
Europe, offshore wind power accounted for 13% of new installations in 2022, connecting
2.5 GW of wind capacity to the grid. The United Kingdom ranked at the top of the list with
1.2 GW, followed by France (0.5 GW), the Netherlands (0.4 GW), and Germany (0.3 GW) [6].

In this context, Mexico is faced with the imperative challenge of breaking free from
its entrenched reliance on fossil fuels and embracing a more ambitious approach toward
renewable energy. Achieving this requires the implementation of decisive energy policies,
the removal of barriers, the development of the capacities of renewable technologies, and a
new energy culture within society [7]. Only through a collective and sustained endeavor
can the nation fully harness the vast potential of renewable energies, thus propelling
Mexico towards a more sustainable and resilient energy future [7]. According to a progress
report on clean energy in Mexico, the country generated 86.27 TWh of clean energy in
2021, accounting for 26.7% of the total, which falls short of the 35% goal set by Mexico in
the Energy Transition Law [8]. Additionally, Mexico has a large wind capacity potential,
estimated at 3669 GW, but the accumulated installed capacity at the end of 2021 was only
7154 MW [8].

Some previous studies have recognized Mexico’s potential for offshore wind energy
development. In particular, Canul-Reyes et al. [9] identified two areas with high wind
energy potential in Mexico using the ERA5 and MERRA-2 reanalyses: northeast Tamaulipas
and the northwest Yucatan Peninsula. These findings were supported by Arenas-Lopez
and Badaoui [10], who assessed wind resource potential in coastal Mexico using 40 years
of MERRA-2 data and identified several areas with high wind power density, including
Tamaulipas. Furthermore, Bernal-Camacho et al. [11] evaluated the technical feasibility
of using floating offshore wind turbines in the Gulf of Tehuantepec, and recommended
safety and stabilization measures during extreme conditions. These studies have outlined
an initial depiction of the offshore wind resource in Mexico, but it is necessary to carry out
a comprehensive climatological analysis that incorporates the behavior of the wind in the
coming decades, given the challenges imposed by climate change.

Research carried out in different places worldwide has been based on data from the
sixth phase of the Coupled Model Intercomparison Project (CMIP6) to project continen-
tal and marine wind resources under future scenarios defined by the Intergovernmental
Panel on Climate Change (IPCC). Among them, Martinez and Iglesias [12,13] applied a
novel multi-model downscaling approach to CMIP6 projections from an 18-model global
climate ensemble. They compared evolving wind resources under climate scenarios across
11 European regions [12], and at national/sub-national scales in Canada, the U.S., Mexico,
and Central America [13], generating wind projections under two Shared Socioeconomic
Pathways (SSP), the SSP2-4.5 (moderate emissions) and SSP5-8.5 (intensive emissions)
(see Section 2.2 below). For Mexico, Martinez and Iglesias [10] anticipate increases in
wind power density, mainly in the long-term future (2091–2100), specifically for regions
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in the northeast and south of Mexico. Shen et al. [14] evaluated the ability of CMIP6
models to simulate long-term surface wind changes. They projected decreases in aver-
age global wind speeds, but showed variations between regions which they attributed to
asymmetric changes between the hemispheres arising from changes in the surface air tem-
perature gradient caused by increasing greenhouse gas emissions over time. Furthermore,
Zhang et al. [15] projected offshore wind energy impacts in China for the period 2021–2100
using CMIP6 models and a downscaling method based on deep learning networks. The
authors identified small decreases over the East China Sea and increases in the South China
Sea under the same scenarios mentioned above.

Previous studies related to the estimation of future projections of wind resources have
not specifically addressed the marine regions in Mexico that could have promising climate
prospects within this clean energy sector. Therefore, the motivation for this research arises
from the absence of a comprehensive climatological analysis of the offshore wind resources
in Mexico, including climate projections. Our approach to addressing this gap involves
using high-resolution numerical simulations generated with the Weather Research and
Forecasting model (WRF) to characterize historical climatology and leveraging results from
the CMIP6 models to obtain future projections. Likewise, we review different technological
and terrain features to analyze the viability of operating offshore wind farms in different
marine areas of Mexico, in order to support decision making and industry growth.

Overall, this work encompasses the following main aspects:

• Identification of marine regions in Mexico with significant wind energy potential using
40 years of high spatial resolution numerical simulations with the WRF model.

• Evaluation of the feasibility of developing offshore wind farms in these regions based
on the analysis of bathymetric data and the availability of nearby transmission lines.

• Assessment of the ability of the CMIP6 models to reproduce the climatic characteristics
of the wind field in the identified regions. This evaluation is conducted by comparing
CMIP6 data with the monthly climatologies of wind magnitude obtained from the
WRF simulations.

• Obtaining future projections for the regions in Mexico with high offshore wind poten-
tial from the results provided by the CMIP6 models that exhibited the best performance.
In this study, data from the SSP5-8.5 scenario, representing the most severe future
climate projection, are analyzed.

A feature that distinguishes our study from previous work is the use of relatively
high-resolution (~10 km) numerical simulations with the WRF model, which provide more
detailed results compared to the data sources used in similar previous studies and to global
climate models. Also, a novel idea is the generation of ensembles considering only those
CMIP6 models that showed a good performance in reproducing the magnitude of the
winds in the areas of interest, instead of using all available models.

A description of the data sources, including WRF model configuration and CMIP6
models, handling, and processing is presented in Section 2. The Section 3 begins with the
identification of areas with high/moderate offshore wind potential in Mexico, followed
by a description of their bathymetric features and the availability of nearby transmission
lines. Next, a comparative analysis between the WRF simulations and the CMIP6 mod-
els is presented for the average wind speed at 50 m above the surface in the identified
marine areas. At the end of the Section 3, the construction of ensembles with different
CMIP6 models for each region is presented and the future projections of wind energy are
analyzed. The Section 4 aims to summarize the main results of the study and to present a
discussion of them. Finally, the conclusions of the research are presented in the Section 5 of
the manuscript.
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2. Data and Methods
2.1. WRF Simulations

The Weather Research and Forecasting (WRF) model was developed through the
collaboration of research institutions led by the National Center for Atmospheric Research
(NCAR) [16]. As one of the most widely used regional climate models, WRF is a flexible
and customizable model that can be adapted to different applications such as weather
forecasting, air quality assessment, and renewable energy evaluation. Its dynamic core is a
numerical scheme that solves the governing equations of fluid motion, and it also has a
set of parameterization schemes that represent physical processes such as boundary layer
interactions, convection, and radiation, among others.

WRF applications range from regional to micro scales, and allow for an evaluation
of the impact of various factors, such as terrain [17], land use [18,19], and atmospheric
stability [20]. WRF has been applied in the assessment of wind energy potential, including
in the European Wind Atlas project which aimed to create a high-resolution, high-quality
wind resource atlas [21–23]. Completed in 2014, the atlas provided valuable information
to the wind industry and policymakers for the siting, design optimization, and planning
of wind turbines and farms [23]. WRF was also used to reconstruct wind speeds in the
Taiwan Strait in the period 1981–2000, establishing a baseline for the region from which the
potential influence of climate change on regional wind patterns was evaluated through a
statistical downscaling framework applied to the outputs of some CMIP6 models [24].

In the specific case of Mexico, the Ocean-Atmosphere Interaction Group (IOA) [25] of
the Institute of Atmospheric Sciences and Climate Change (ICAyCC) [26] at the National
Autonomous University of Mexico (UNAM) has employed the WRF model [16] to generate
a 40-year hindcast (1979–2018) that serves as a baseline for climate studies in Mexico and
its maritime zones. The IOA group has used the WRF model in several research areas,
such as incorporating accurate land cover data into atmospheric modeling to improve
regional climate simulation and weather forecast accuracy [27,28]. They have also studied
the sensitivity of the WRF model to different initial and boundary conditions of the Global
Forecast System model at various resolutions [29], analyzed the model’s performance in
capturing the dynamics of sea breezes and their interactions with other meteorological
phenomena [30], and evaluated the model’s sensitivity to different Land Surface Models
(LSMs) to reproduce surface temperature variations in Mexico [31].

The WRF simulations used in this study were conducted using version 3.9.1, with a
horizontal resolution of 10 km, 50 vertical levels, and an hourly temporal resolution. The
initial and boundary conditions are from the Climate Forecast System Reanalysis (CFSR)
dataset [32], which provides global atmospheric and land surface fields at a horizontal
resolution of 0.5◦ and 37 pressure levels. The domain of the simulations covers a wide
geographic area, ranging from 5.08◦ N to 35.73◦ N and from 70.51◦ W to 129.48◦ W. The sim-
ulations were run on the Miztli supercomputer at UNAM, requiring approximately 11,000 h
of computing time [33]. Table 1 provides information on the WRF physics parameterization
schemes employed.

Table 1. Weather Research and Forecasting (WRF) physics parameterization schemes.

Parameterization Scheme Scheme Used

Land Surface Model Noah-MP

Surface Layer Model MM5 Monin-Obukhov

Microphysics WRF Single-moment 3-class

Shortwave Radiation Dudhia Shortwave Scheme

Longwave Radiation RRTM Longwave Scheme

Planetary Boundary Layer Yonsei University Scheme (YSU)

Convection Kain-Fritsch Scheme
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To carry out the processing of the large volume of data from the 40-year WRF simula-
tions (1979–2018), a high-performance computing (HPC) cluster was used, dedicated to
the development of numerical weather prediction models and the execution of operational
forecasting at the ICAyCC-UNAM. This cluster offers a significant computational capacity,
with 1360 cores and a combined processing power of 42 Tflops, as well as a large storage
capacity of over 700 TB.

To have a more adequate representation of land use and land cover (LULC) for Mexico,
a high-resolution database was incorporated based on information from the National
Institute of Statistics and Geography (INEGI) of Mexico (López-Espinoza et al. [27] and
Rivera-Martínez [28]). In addition, Meza-Carreto [31] found that, for most of Mexico,
the Noah-MP LSM scheme provided a better representation of temperature variability.
Consequently, this scheme is the one used for the WRF simulations. In particular, the LULC
data set used in the WRF hindcast is more complete and accurate than the predetermined
global information. This is very important since this information has a direct effect on the
LSM scheme and, therefore, also on the PBL scheme of the WRF model; that is, it has a
significant influence on the modeling of the processes that occur at the surface–atmosphere
interface, as well as in the structure of the atmospheric boundary layer [34]. Figure 1 shows
the LULC classifications from INEGI and the USGS [35] and the non-match map between
both classifications, where it can be seen that there are no coincidences in large parts of the
Mexican territory.
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2.2. CMIP6 Models

The CMIP6 project is a coordinated international effort organized by the WCRP (World
Climate Research Programme) and the CMA (Climate Modeling Alliance) to provide a com-
prehensive set of coupled climate model simulations using advanced models [36–39]. Its
main goal is to improve our understanding of the Earth’s climate system and its response
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to anthropogenic and natural forcings, including the evaluation of future climate projec-
tions. CMIP6 includes various institution/country models to allow direct comparisons of
performance and structural differences [40,41].

CMIP6 uses updated Global Circulation Models (GCMs) driven by a new set of emis-
sions and land use scenarios, as described in Riahi et al. [42], and encompasses historical
(1850–2014) and climate projection (2015–2100) experiments. Historical simulations bridge
the gap between past and present by utilizing modern climate observations. Climate
projections are provided by the Scenario Model Intercomparison Project (Scenario-MIP),
the main activity within the CMIP6. They cover the period from 2015 to 2100, and are based
on the Shared Socioeconomic Pathways (SSPs) and the Representative Concentration Path-
ways, which reflect different possible future trajectories of societal development, including
economic growth, energy use, land use, and population growth, among others.

The SSP5-8.5 scenario used in this study is one of eight scenarios developed within
the SSP framework, which links socioeconomic scenarios to greenhouse gas emissions
trajectories. SSP5-8.5 projects a radiative forcing of 8.5 W m−2 by the end of the 21st century,
estimated by integrated assessment models [43]. This scenario is characterized by heavy
reliance on fossil fuels for economic growth and assumes no additional mitigation policies,
resulting in a substantial increase in greenhouse gas emissions; it also plays a crucial role in
climate research by assessing the potential impacts of high emissions pathways on various
Earth system components, such as temperature rise, precipitation patterns, sea level rise,
and ecosystem changes.

Data are provided on a regular global grid, with the horizontal resolution varying
between models and vertical coverage including levels from 1 to 1000 hPa. Table 2 includes
a list of the CMIP6 models, along with their name, origin, and spatial resolution. To acquire
the CMIP6 data, the Python CDSAPI library (version 0.6.1) was used [44], which allows
for easy access to and retrieval of data from the Copernicus Climate Data Store. Data are
available at monthly, daily, and fixed temporal resolutions, and the format follows the
NetCDF4 standard.

The monthly near-surface wind speed data from 47 available models were downloaded
for the historical period of 1985–2014, as well as for the future projections of 2040–2069 and
2070–2099. The choice of the historical period from 1985 to 2014 is based on the availability
of climate data from CMIP6 models, which cover the most recent 30 years up to the cutoff
date in 2014. This time window provides a robust foundation for assessing projected
changes in the future. Furthermore, the selection of 30-year periods for future projections,
specifically 2040–2069 and 2070–2099, was made to maintain consistency in the duration of
the analyses and ensure comparability between historical and future results.

Table 2. Models within the Coupled Model Intercomparison Project Phase 6 (CMIP6).

Modeling Center/Nation Model Name Horizontal Resolution

Commonwealth Scientific and Industrial Research
Organization/Australia access_cm2, access_esm1_5 1.25◦ × 1.875◦, 1.25◦ × 1.875◦

Alfred Wegener Institute, Helmholtz Centre for
Polar and Marine Research/Germany awi_cm_1_1_mr, awi_esm_1_1_lr 0.94◦ × 0.94◦, 1.8◦ × 1.8◦

Beijing Climate Center China Meteorological
Administration/China bcc_csm2_mr, bcc_esm1 1.125◦ × 1.125◦, 2.81◦ × 2.81◦

Canadian Centre for Climate Modelling and
Analysis/Canada canesm5_canoe 2.8◦ × 2.8◦

National Center for Atmospheric Research, Climate
and Global Dynamics Laboratory/USA

cesm2, cesm2_fv2, cesm2_waccm,
cesm2_waccm_fv2

0.94◦ × 1.25◦, 2.5◦ × 1.8◦,
0.94◦ × 1.25◦, 2.5◦ × 1.8◦

Fondazione Centro Euro-Mediterraneo sui
Cambiamenti Climatici/Italy

cmcc_cm2_hr4, cmcc_cm2_sr5,
cmcc_esm2

0.94◦ × 0.94◦, 0.94◦ × 0.94◦,
0.94◦ × 0.94◦
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Table 2. Cont.

Modeling Center/Nation Model Name Horizontal Resolution

Centre National de Recherches
Météorologiques–Centre Européen de Recherche et
de Formation Avancée en Calcul Scientifique/France

cnrm_cm6_1, cnrm_cm6_1_hr,
cnrm_esm2_1

1.4◦ × 1.4◦, 0.50◦ × 0.50◦,
1.4◦ × 1.4◦

LLNL (Lawrence Livermore National Laboratory,
Livermore, CA 94550, USA); ANL (Argonne National
Laboratory, Argonne, IL 60439, USA); BNL
(Brookhaven National Laboratory, Upton, NY 11973,
USA); LANL (Los Alamos National Laboratory, Los
Alamos, NM 87545, USA); LBNL (Lawrence Berkeley
National Laboratory, Berkeley, CA 94720, USA); ORNL
(Oak Ridge National Laboratory, Oak Ridge, TN 37831,
USA); PNNL (Pacific Northwest National Laboratory,
Richland, WA 99352, USA); SNL (Sandia National
Laboratories, Albuquerque, NM 87185, USA)

e3sm_1_0, e3sm_1_1, e3sm_1_1_eca 0.94◦ × 0.94◦, 0.94◦ × 0.94◦,
1.25◦ × 1.875◦

Fondazione Centro Euro-Mediterraneo sui
Cambiamenti Climatici/Italy fgoals_f3_l 1.125◦ × 1.125◦

Geophysical Fluid Dynamics Laboratory/USA fgoals_g3 2.5◦ × 1.875◦

Geophysical Fluid Dynamics Laboratory/USA gfdl_esm4 0.94◦ × 0.94◦

German Climate Computing Center/Germany hadgem3_gc31_ll, hadgem3_gc31_mm 2.5◦ × 2.5◦, 2.5◦ × 2.5◦

Institute for Global Environmental Strategies/Japan inm_cm4_8, inm_cm5_0 2.0◦ × 2.5◦, 2.0◦ × 2.5◦

Institute of Numerical Mathematics, Russian
Academy of Sciences/Russia iitm_esm 0.94◦ × 0.94◦

Institut Pierre-Simon Laplace/France ipsl_cm5a2_inca, ipsl_cm6a_lr 1.4◦ × 1.4◦, 1.4◦ × 1.4◦

Japan Agency for Marine-Earth Science and
Technology/Japan kace_1_0_g 1.125◦ × 1.125◦

Korea Institute of Ocean Science and
Technology/South Korea kiost_esm 1.5◦ × 1.5◦

Max Planck Institute for Meteorology/Germany mpi_esm1_2_hr, mpi_esm1_2_lr 0.94◦ × 0.94◦, 0.94◦ × 0.94◦

Meteorological Research Institute/Japan mri_esm2_0 0.94◦ × 0.94◦

Norwegian Computing Center/Norway noresm2_lm, noresm2_mm 1.25◦ × 1.875◦, 1.25◦ × 1.875◦

Research Institute for Global Change/Japan sam0_unicon 1.25◦ × 1.875◦

The Australian National University/Australia taiesm1 1.875◦ × 3.75◦

National Institute for Environmental Studies/Japan ukesm1_0_ll 2.5◦ × 2.5◦

European consortium of national meteorological
services and research institutes

EC-Earth3, EC-Earth3-Veg,
EC-Earth3-AerChem, EC-Earth3-CC

0.94◦ × 0.94◦, 0.94◦ × 0.94◦,
0.94◦ × 0.94◦, 0.94◦ × 0.94◦

First Institute of Oceanography, State Oceanic
Administration, Qingdao National Laboratory for
Marine Science and Technology/China

fio_esm_2_0 0.94◦ × 0.94◦

2.3. Methods
2.3.1. Regridding CMIP6 Data to the WRF Grid

In this study, we employed the regridding process to interpolate the CMIP6 data to
the fixed grid of the WRF model. The CMIP6 models have different grid configurations,
while the WRF model has a resolution of 10 km. Regridding allows us to transform
the CMIP6 data from its original grid representation to its corresponding position in the
WRF grid in a systematic manner. To achieve accurate regridding, the new capabilities
available in NCL were utilized, employing the Earth System Modeling Framework software
(version 6.6.2) [45], which provides advanced regridding techniques that are compatible
with rectilinear, curvilinear, and unstructured grids. In this study, the bilinear interpolation
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method was employed, preserving the linearity and smoothness of the data during the
regridding process.

2.3.2. Application of the Power Law Method

In order to estimate wind speed at various heights, the power law method was used,
which is a widely used technique in wind energy studies [46,47]. This method relies on
the power law equation, which specifies the relationship between wind speed at a given
height z and near-surface wind speed. Mathematically, the power law equation can be
expressed as

Vz = Vre f (
z

zre f
)

α
(1)

where Vz is the wind speed at height z, Vre f is the near-surface wind speed, zre f is the
reference height (usually 10 m), and α is the power law exponent. The value of α varies
depending on atmospheric stability conditions and surface roughness.

While the specific value of α can vary for different locations and conditions, it is
common to use a standard value of α = 1

7 in wind energy studies [48–50], including those
related to both offshore and onshore wind potential, although it is important to note that it
may not be universally applicable to all situations. A particular study would be required
to discuss in detail the implications of using the power law method and the selection of α,
which is beyond the scope of this work.

There are several studies that have used the power law method and CMIP6 data to
analyze wind energy resources in different regions. For example, Akinsanola et al. [51]
focused on projecting changes in wind speed and wind energy density in West Africa using
the latest CMIP6 models. The CMIP6 ensemble average accurately captured the wind speed
distribution in the region, considering the information from the ERA5 reanalysis system
as a baseline. The authors found a projected intensification in wind speed at the height of
the wind turbine hub, especially in the summer season and with the highest magnitude
observed along the coast of Guinea.

2.3.3. Bias Correction and Variability Adjustment of CMIP6 Models

The evaluation and comparison of climate models requires taking into account poten-
tial biases in the time series data. In this framework, we have incorporated a methodology
focused on bias correction and variability adjustment for the CMIP6 monthly time series
data using the WRF model as a reference. The methodology employed in this study, which
is an adaptation based on the work of Navarro et al. [52], is described below.

Bias Calculation

The bias in the median BiasMed is defined as the difference between the median of the
CMIP6 time series and the median of the WRF reference model. Similarly, the bias in the
mean BiasMean is calculated as the difference between the mean of the CMIP6 time series
and the mean of the WRF model.

BiasMed = Median(CMIP6)− Median(WRF) (2)

BiasMean = Mean(CMIP6)− Mean(WRF) (3)

Bias and Variability Adjustment

To mitigate the identified biases, the CMIP6 model time series is adjusted. Bias
adjustment CMIP6′ involves adding the calculated biases to the original model series. Sub-
sequently, additional variability is introduced through quantile mapping, which improves
the agreement between the WRF model data and CMIP6 simulations. Previous studies
have demonstrated the positive application of quantile mapping in bias correction for vari-
ous meteorological variables in climate model simulations [53–55]. With this adjustment,
the data could be better suited for detailed climate analysis. The result is the adjusted
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series CMIP6adjusted, reflecting a more accurate correction and controlled introduction
of variability.

CMIP6′ = CMIP6 + BiasMed + BiasMean (4)

CMIP6adjusted = CMIP6′ + ScalingFactor · (Q(CMIP6′)− CMIP6′) (5)

where Q(CMIP6′) represents the quantile mapping of the adjusted series, and ScalingFactor
is a parameter controlling the introduction of variability. In estimating the bias correction,
the quantile mapping technique was used to align the model data with the statistical distri-
bution of the reference data. The process consisted of two main steps: percentile calculation
and quantile interpolation.

Percentiles were calculated for both the bias-corrected model data and the reference
data, generating points representing the cumulative distribution of values in each data set.
Subsequently, a linear interpolation was performed between the percentiles of the model
and those of the reference data. This interpolation assigns new values to the CMIP6 model
data to fit the quantile distribution of the reference data.

2.3.4. Statistical Metrics

The use of statistical metrics plays an important role in evaluating climate models
and their predictive capabilities as they quantitatively determine the performance of a
model [56,57]. In this section, we detail several statistical metrics used specifically to
determine the degree of similarity between wind speed monthly mean climatologies from
the WRF model and the 47 CMIP6 models. Table 3 presents the metrics, their formulas, and
descriptions of what each one provides.

Table 3. Statistical metrics used. Notation: xi represents the wind speed value at time i in the
WRF model, and yi represents the corresponding wind speed value from one of the CMIP6 models.
Overbar represents the mean value.

Metric Description Formula

Pearson Correlation
Coefficient (r)

Pearson’s correlation helps assess how related two
time series are in a linear sense. R is a
dimensionless quantity.

r = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1 (xi − x)2

√
∑n

i=1 (yi − y)2

Mean Absolute Error
(MAE)

MAE provides a robust measure of accuracy, as it
does not disproportionately penalize large errors. MAE = 1

n

n
∑

i=1
|xi − yi|

Mean Absolute Percentage
Error (MAPE)

MAPE provides a measure of how closely
predictions align with actual values in terms of
percentage error. It is scale-independent, facilitating
comparisons across different types of datasets.

MAPE = 1
n

n
∑

i=1

∣∣∣ xi − yi
yi

∣∣∣× 100

Root Mean Square
Deviation (RMSD)

RMSD indicates the typical magnitude of errors and
penalizes large errors significantly. RMSD =

√
1
n

n
∑

i=1
(xi − yi)

2

Minkowski Distance

The Minkowski Distance, with its adjustable p
parameter, serves as a versatile metric and offers a
generalized approach to LP distances. It effectively
measures dissimilarity between time series,
considering both the magnitude and trend of the
data, and it is an effective tool for identifying
systematic error patterns in comparing similarities
between datasets. Like other LP distances,
Minkowski is limited to comparing equal-length
time series.
In this study, a Minkowski Distance with p = 4 was
employed. This choice increased the metric’s
sensitivity to discrepancies in extreme values within
the time series.

D(x, y) =
(

n
∑

i=1
|xi − yi|p

)1/p

p = 1 corresponds to the Manhattan distance;
p = 2 corresponds to the Euclidean distance;
and p > 2 provides a more general distance
metric that can adapt to various data
characteristics.
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Formula and description of the Pearson coefficient (r) were obtained from
Cassisi et al. [58], while descriptions on the Mean Absolute Percentage Error (MAPE),
the Mean Absolute Error (MAE), and the Root Mean Square Deviation (RMSD) were
taken from Morley et al. [59], and those for the Minkowski Distance were obtained from
Mori et al. [60]. The values of r, MAE, MAPE, and RMSD were calculated for each node
in the WRF grid and the corresponding node in each of the 47 CMIP6 model grids. The
average values of MAE, MAPE, and r were then calculated for each CMIP6 model and
compared to those of the WRF model. Calculations were performed using Python scripts
and the following packages: NumPy (version 1.26.0), Pandas (version 2.0.3), Matplotlib
(version 3.8), and SciPy (version 1.12.0).

3. Results
3.1. Identification of Areas with High Offshore Wind Potential in Mexico

To assess the feasibility of wind power at a site, wind power density is important. The
formula for calculating wind power density is:

P =
1
2

ρv3 (6)

where P is the power density (W/m2), ρ is the air density (set at 1.225 kg/m3 for standard
conditions, i.e., at sea level with a temperature of 15 ◦C and pressure of 1 atmosphere [61]),
and v is the wind speed (m/s). This approach is consistent with the typical initial phase of
a wind resource assessment.

This study analyzes wind potential at 50, 100, and 200 m above ground level (AGL),
all of which are within the levels considered in the Global Wind Atlas [62] and also fall
within the range recommended by Lantz et al. [63], which suggests tower heights of 80 to
160 m AGL.

Figure 2 presents the annual wind power (W/m2) calculated from the WRF model
data for the period 1979–2018, at three distinct altitudes: (a) 200, (b) 100, and (c) 50 m
AGL. The maps distinctly highlight three key regions with substantial offshore wind power
potential in Mexico: the north coast of Tamaulipas (Zone I), the northwest coast of Yucatan
(Zone II), and the Gulf of Tehuantepec (Zone III). The wind power for Zones I and II is
higher at higher altitudes, ranging from 300 to 400 W/m2. For Zone III, the wind power
remains constant for different altitudes, with intensities of up to 600 W/m2.
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3.2. Bathymetry and Transmission Lines

Offshore grid connections play a crucial role in the viability of offshore wind energy,
enabling the efficient transmission of power from offshore wind farms to onshore con-
sumers. When it comes to deciding between AC (Alternating Current) and DC (Direct
Current) for these connections, several factors come into play. Traditional advantages of
AC, such as lower station costs, are important to consider. However, as distance and power
capacity increase, transmission losses in AC systems become more significant.

On the other hand, DC connections offer lower cabling costs and lower losses over
longer distances. The current trend in offshore wind projects, particularly in Europe’s North
Sea, is leaning towards the adoption of high-voltage direct current (HVDC) transmission
systems. These HVDC systems have proven to be operationally efficient and cost-effective,
making them a popular choice for offshore wind connections. With the growth of off-
shore wind projects globally, the prospects for HVDC offshore wind connections remain
promising, contributing to sustainable growth and the global shift towards cleaner energy
sources [64].

In the context of offshore wind energy development, bathymetry plays an important
role in determining the most suitable technology to harness wind resources. The water
depth at a given offshore location directly impacts the type of foundation that can be used
to support wind turbines. Table 4 outlines various foundation technologies tailored to
distinct water depth ranges, as informed by references such as Nagababu et al. (2017) [65].
Figure 3 shows the offshore annual climatological wind potential at an elevation of 200 m
for Zone I (a), Zone II (b), and Zone III (c), as well as the availability of nearby onshore
power transmission lines and bathymetric characteristics.

Table 4. Foundation technologies for offshore wind turbines according to water depth range
(Nagababu et al., 2017 [65]).

Water Depth Range (m) Foundation Technology

0–30 Monopile/Gravity
30–50 Jacket/Tripod

50–120 Floating Structures
(Tension Leg Platform and/or Semi-Submersible Type)

>120 Floating Structures (Spar Type)

One viable option for Mexico would be the utilization of HVDC transmission systems.
This choice is primarily driven by the presence of transmission lines located within a
distance of less than 100 km from the coastline (Figure 3). By adopting HVDC technology,
Mexico can leverage its advantages, such as enhanced efficiency and reduced energy
loss during long-distance transmission. Furthermore, by proactively considering the
future development of offshore wind farms in Mexico, incorporating HVDC transmission
infrastructure from the outset would facilitate a more seamless and cost-effective integration
of the energy generated by these projects into the national grid. This strategic approach
aligns with Mexico’s commitment to sustainable growth and the global transition towards
cleaner energy sources.

On the other hand, in terms of bathymetry, one possible approach would involve
considering the foundation technologies for offshore wind turbines outlined in Table 4,
which are based on water depth ranges [65]. For Zones I and II, where the water depths
allow for fixed foundations, Monopile/Gravity and Jacket/Tripod structures could be
considered as suitable options. However, in Zone III of the Gulf of Tehuantepec, where
the bathymetric features are more variable compared to the other two zones, alternative
options such as Floating Structures could be explored (Figure 3). This suggestion takes into
account the underwater conditions in Zone III and aims to optimize the effectiveness of
offshore wind energy infrastructure in this specific region.
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3.3. Comparison between CMIP6 Models and WRF

A comparative analysis between the WRF simulations and data from the CMIP6
models for the average wind speeds at 50 m AGL in the three marine zones with high wind
potential is presented below. For this analysis, the CMIP6 time series that were previously
adjusted by bias correction and variability adjustment were used. To perform this, three
regions were delimited in which the maximum values of wind speed occur in each zone.
Delimitation of these regions is achieved by identifying polygons that enclose each area
of interest (Table 5 and Figure 4). In order to ensure a greater reliability of the results, our
search for models within each target region considered the various configurations inherent
to CMIP6 models, which dictate their complexity and resolution. By selecting the models
that exhibit the greatest similarity, we aim to improve the robustness of our analysis.

Table 5. Geographic coordinates of the vertices that delimit each region within the zones of interest.

Zone Name Coordinates of the Vertices

Tamaulipas (24.94, −97.12), (25.89, −97.12), (24.94, −95.97), (25.89, −95.97)
Yucatán (21.5, −90), (22.25, −90), (21.5, −88.8), (22.25, −88.8)

Tehuantepec (15, −94.5), (16, −94.5), (15, −95.5), (16, −95.5)

For this analysis, we focused on the period 1985–2014, which was chosen because
it encompasses data from all the models included in our study (Table 2), allowing for a
comprehensive analysis of wind patterns over nearly three decades. The criteria used in
the model selection process included a maximum limit of 20% for the MAPE. However, it
is worth noting that the metrics used to estimate similarity errors are consistent with the
MAPE results. In other words, models that perform well in terms of MAPE also show good
results in metrics such as Pearson correlation, MAE, and RMSD. Likewise, the Minkowski
Distance similarity metric also shows consistency, which can be seen in the region-specific
tables presenting these scores, arranged based on the best MAPE for each CMIP6 model.
By considering not only the MAPE but also the consistency of other similarity metrics, we
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ensure that the selected models provide reliable and robust results for the analysis of wind
patterns in each target region.

The metrics were computed considering the average of all nodes within each region
delimited in the three zones of interest in order to determine the similarity between the
WRF model and each of the 47 CMIP6 models. The analysis of each region was performed
individually, and different methods of comparison and evaluation were used. The outcome
of these comparative analyses for each area of interest is detailed below.
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The north coast of Tamaulipas (Zone I): Table 6 presents the values of the different
metrics obtained for the CMIP6 models that showed the best performance in Zone I,
considering the WRF data as the baseline. Taking all of the metrics into account as a whole,
it can be considered that the EC_EARTH3_VEG_LR model showed the best performance
for simulating the wind conditions in the region. However, similar values were obtained
for the other five models in Table 6.

Table 6. Values of the statistical metrics for the CMIP6 models that presented the best performance
on the north coast of Tamaulipas (Zone I).

Model MAPE Pearson
Correlation

RMSD
(m/s)

MAE
(m/s)

Minkowski Distance
(m/s)

EC_EARTH3_VEG_LR 7.619 0.855 0.700 0.553 2.452
MRI_ESM2_0 7.665 0.829 0.691 0.544 2.529

EC_EARTH3_CC 7.821 0.826 0.700 0.563 2.291
HADGEM3_GC31_MM 7.933 0.852 0.702 0.572 2.423

CNRM_CM6_1_HR 7.967 0.824 0.701 0.568 2.479
CNRM_CM6_1 8.025 0.833 0.717 0.573 2.459

Below are comparisons of the time series of monthly averages (Figure 5) and annual
cycles (Figure 6) of wind speed at 50 m AGL between the best performing models in
Zone I (see Table 6) and the WRF data, considering the historical period of 1985–2014. It
is observed that, in general, the models adequately reproduce the seasonal variation in
the wind, although not necessarily the interannual variability, and that they overestimate
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the wind magnitude in this region (Figure 5). The average annual cycle in Zone I, based
on the WRF data, shows stronger winds from November to April, with values between
approximately 7.8 m/s and 8.3 m/s, and weaker winds in August and September, with
values of approximately 5.5 m/s and 5.75 m/s, respectively (Figure 6). Figure 6 clearly
shows the overestimation of the wind speed by the models, which is more evident during
the winter months when winds are more intense.
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The northwest coast of Yucatan (Zone II): In Table 7, the outcomes for the CMIP6 models
showcasing the best performance off the northwest coast of Yucatan (Zone II) are provided.
Examining the various statistical metrics, it is observed that the HADGEM3_GC31_MM
model has the lowest RMSD, MAE, and Minkowski Distance and the highest Pearson
correlation compared to the other three models in Table 7. In this region, the models present
lower MAPE, RMSD, MAE, and Minkowski Distance values than those obtained for Zone
I; however, the correlation coefficients turned out to be lower. This shows the importance
of calculating various statistical metrics to carry out an evaluation of the models.
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Figures 7 and 8 show the comparative plots of the time series of the monthly averages
and annual cycles, respectively, of the wind speed at 50 m AGL obtained from the WRF
data and the CMIP6 models that showed better performance in Zone II. From Figure 7,
it is observed that the time series obtained from the WRF data shows greater variability
in Zone II compared to Zone I, which has an impact on the values obtained for the Pear-
son correlation coefficient. However, the four models adequately represent the average
annual cycle in the region (with a discrepancy from the CNRM_CM6_1_HR model in June)
(Figure 8). The annual cycle on the northern coast of Yucatan is somewhat different from
that in Zone I (north coast of Tamaulipas), presenting average maximum winds from March
to June, with values between approximately 7.85 m/s and 8.20 m/s, although the weakest
winds also occur in August–September but with magnitudes higher than those in Zone I.

The Gulf of Tehuantepec (Zone III): In Table 8, the results for the CMIP6 models
showing the best performance in the Gulf of Tehuantepec (Zone III) are presented. In
general, the metrics obtained for the FGOALS_F3_L model highlight its better performance
in simulating the monthly winds in Zone III. The time series of the monthly averages of
wind speed at 50 m above the surface (Figure 9) clearly shows that the models underestimate
the magnitude of the winds during the summer. This underestimation is also noted in the
comparison of the mean annual cycles (Figure 10), where it can be seen that none of the
models considered to have the best performance reproduce the relative maximum of the
wind magnitude during July and August, which is a characteristic feature of this region [66]
and is well represented in the WRF data.

Table 7. Values of the statistical metrics for the CMIP6 models that presented the best performance
off the northwest coast of Yucatan (Zone II).

Model MAPE Pearson
Correlation

RMSD
(m/s)

MAE
(m/s)

Minkowski Distance
(m/s)

KACE_1_0_G 5.018 0.594 0.481 0.378 1.825
HADGEM3_GC31_MM 5.024 0.639 0.473 0.375 1.717

CNRM_CM6_1_HR 5.133 0.587 0.489 0.388 1.885
GFDL_ESM4 5.352 0.622 0.492 0.403 1.698
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performing CMIP6 models (colored lines according to legend) and WRF data (black line) off the
northwest coast of Yucatan (Zone II).
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Figure 8. Annual cycles of wind speed (m/s) at 50 m AGL off the northwest coast of Yucatan (Zone II)
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Table 8. Values of the statistical metrics for the CMIP6 models that presented the best performance in
the Gulf of Tehuantepec (Zone III).

Model MAPE Pearson
Correlation

RMSD
(m/s)

MAE
(m/s)

Minkowski
Distance

(m/s)

FGOALS_F3_L 11.996 0.802 1.379 1.070 5.126
BCC_CSM2_MR 13.404 0.817 1.430 1.162 5.043

CNRM_CM6_1_HR 15.248 0.789 1.656 1.334 5.814
MRI_ESM2_0 17.555 0.759 1.914 1.594 6.089
GFDL_ESM4 17.761 0.827 1.878 1.549 6.592
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Figure 9. Time series of monthly averages of wind speed (m/s) at 50 m AGL for the five best 
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One option was to consider the ensemble average by equally averaging the model 
outputs. However, this approach may lead to a lower performance by treating all models 
equally. In contrast, the weighted average ensemble assigns specific weights to each 
model [67], prioritizing those that showed a better performance. Nonetheless, for a 
comprehensive analysis, both the ensemble average and the weighted average ensemble 
were calculated. 

3.4.1. Ensemble Average 
The ensemble average was applied to the set of CMIP6 models that performed best 

in their evaluation and appeared in at least two of the three zones of interest. Table 9 
shows which CMIP6 models were chosen to generate the ensemble average: 
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3.4. CMIP6 Ensembles: Projecting Future Wind Power

After the evaluation of the CMIP6 models, ensembles were generated to analyze future
projections regarding the offshore wind potential in the three regions of interest. One option
was to consider the ensemble average by equally averaging the model outputs. However,
this approach may lead to a lower performance by treating all models equally. In contrast,
the weighted average ensemble assigns specific weights to each model [67], prioritizing
those that showed a better performance. Nonetheless, for a comprehensive analysis, both
the ensemble average and the weighted average ensemble were calculated.

3.4.1. Ensemble Average

The ensemble average was applied to the set of CMIP6 models that performed best
in their evaluation and appeared in at least two of the three zones of interest. Table 9
shows which CMIP6 models were chosen to generate the ensemble average: MRI_ESM2_0,
HADGEM3_GC31_MM, CNRM_CM6_1_HR, and GFDL_ESM4.

Table 9. List of the best performing CMIP6 models for each region, highlighting those that appeared
in at least two of them.

Model Zona I Zona II Zona III

BCC_CSM2_MR ✓

EC_EARTH3_VEG_LR ✓

MRI_ESM2_0 ✓ ✓

EC_EARTH3_CC ✓

HADGEM3_GC31_MM ✓ ✓

CNRM_CM6_1_HR ✓ ✓ ✓

CNRM_CM6_1 ✓

FGOALS_F3_L ✓

GFDL_ESM4 ✓ ✓

KACE_1_0_G ✓
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Before calculating the ensemble average, an analysis was carried out that consisted
of comparing the wind potential’s historical climatology (1985–2014) with the short-term
(2040–2069) and long-term (2070–2099) projections considering the selected CMIP6 models.
The climatologies were determined by averaging the monthly data. Absolute differences
and percentage differences between the projections and the historical climatology were
calculated to assess trends using the following equations:

Absolute di f f erence =
∣∣CMIP6proj − CMIP6hist

∣∣ (7)

Percentage di f f erence =

∣∣CMIP6proj − CMIP6hist
∣∣

CMIP6hist
× 100 (8)

Absolute difference measures the numerical change in wind potential between the
projected and historical periods, providing a direct indication of the magnitude of the
change in units of W/m2. Percentage difference expresses this change as a percentage
of the historical wind potential, and therefore, is a dimensionless quantity. Together,
these quantities allow the expected variations in wind potential over time to be quantified
and compared, providing valuable information on the scale and relative significance of
such changes.

Figure 11 presents the results of the comparative analysis between the historical
(Figure 11a,e,i,m) and short-term (2040–2069) projections (Figure 11b,f,j,n) for each selected
CMIP6 model. It becomes apparent that the historical and climate projection maps exhibit
variations between the different models.

Particularly in Zone III, the HADGEM3_GC31_MM model shows a significant under-
estimation of wind potential (Figure 11g), accompanied by a negative percentage difference
(Figure 11h). The MRI_ESM2_0 model also exhibits a negative percentage difference for
Zone III (Figure 11d), in contrast to those of the CNRM_CM6_1_HR and GFDL_ESM4 mod-
els, which suggest positive percentage differences (Figure 11l,p). This implies that Zone
III might benefit from a more detailed ensemble approach, such as the weighted average
ensemble. In general, for Zones I and II, more consistent results are obtained between
the models, indicating positive percentage differences (Figure 11d,h,l,p) that suggest an
increase in wind potential in these zones for the short-term period.

Figure 12 presents a comparative analysis similar to the previous one but for the
long-term projection (2070–2099), showing similar results to those of the short-term period
for each model. It is important to highlight that the existing patterns are accentuated in the
long-term period, which suggests a greater increase in wind potential for Zones I and II.

Next, the ensembles average for wind power from the selected models (see Table 9),
both for the short-term and long-term projections compared to the historical mean, are
shown in Figure 13. It is evident in Zones I and II that there is a positive percentage
difference in the short term, which is significantly accentuated in the long-term projection.
In Zone III, a positive percentage difference is observed close to the coast and negative
values offshore.
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Figure 11. Historical (1985–2014) and short-term (2040–2069) wind power (W/m2) maps at 50 m AGL 
for the best-performing CMIP6 models, which appear in at least two of the three areas of interest 
(see Table 9). Each row corresponds to a CMIP6 model, showcasing the maps in the following 
sequence: Historical mean (1st col.), short-term projection (2nd col.), short-term deviation (3rd col.), 
and short-term percentage deviation (4th col.). The models and their respective maps are presented 

Figure 11. Historical (1985–2014) and short-term (2040–2069) wind power (W/m2) maps at 50 m AGL
for the best-performing CMIP6 models, which appear in at least two of the three areas of interest (see
Table 9). Each row corresponds to a CMIP6 model, showcasing the maps in the following sequence:
Historical mean (1st col.), short-term projection (2nd col.), short-term deviation (3rd col.), and short-
term percentage deviation (4th col.). The models and their respective maps are presented as follows:
MRI_ESM2_0 (a–d); HADGEM3_GC31_MM (e–h); CNRM_CM6_1_HR (i–l); GFDL_ESM4 (m–p).
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Figure 12. Historical (1985–2014) and long-term (2070–2099) wind power (W/m2) maps at 50 m AGL 
for the best-performing CMIP6 models, which appear in at least two of the three areas of interest 
(see Table 9). Each row corresponds to a CMIP6 model, showcasing the maps in the following 
sequence: Historical mean (1st col.), long-term projection (2nd col.), long-term deviation (3rd col.), 
and long-term percentage deviation (4th col.). The models and their respective maps are presented 

Figure 12. Historical (1985–2014) and long-term (2070–2099) wind power (W/m2) maps at 50 m AGL
for the best-performing CMIP6 models, which appear in at least two of the three areas of interest (see
Table 9). Each row corresponds to a CMIP6 model, showcasing the maps in the following sequence:
Historical mean (1st col.), long-term projection (2nd col.), long-term deviation (3rd col.), and long-
term percentage deviation (4th col.). The models and their respective maps are presented as follows:
MRI_ESM2_0 (a–d); HADGEM3_GC31_MM (e–h); CNRM_CM6_1_HR (i–l); GFDL_ESM4 (m–p).
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Figure 13. Maps of the ensemble average for wind power (W/m2) at 50 m AGL obtained from the 
selected CMIP6 models, comparing the historical average (1985–2014) with the short-term (2040–
2069) (upper panels) and long-term (2070–2099) (bottom panels) projections. The historical average 
is shown in panels (a,e); the projections’ maps are shown in (b,f); deviations from the historical 
average are shown in (c,g), and the percentage deviations are shown in (d,h). 

3.4.2. Weighted Average Ensemble 
The method used to obtain the weighted average ensemble from the CMIP6 models 

is based on calculating the contributions of each model according to its similarity with the 
reference WRF model in each of the three zones, based on the lowest MAPE values 
obtained previously. The procedure is described in Table 10. 

Table 10. Procedure for calculating the weighted average ensemble. 

Description Equation 
Equation for calculating the weights based on the 

inverse of the squared MAPE. 
𝑤  = 1𝑀𝐴𝑃𝐸  

Equation for normalizing the weights. 𝑤  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑤  ∑ 𝑤  = 𝑤  𝑛 

Equation for calculating the weighted ensemble 
using the normalized weights. 

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 𝑤  𝑛 ⋅ 𝑥  

Detailed below are the results of the weighted average ensembles for the set of CMIP6 
models that showed the best performance in each zone of interest, emphasizing the 
delimited areas within each zone (see Figure 4). It is important to remember that the set 

Figure 13. Maps of the ensemble average for wind power (W/m2) at 50 m AGL obtained from the
selected CMIP6 models, comparing the historical average (1985–2014) with the short-term (2040–2069)
(upper panels) and long-term (2070–2099) (bottom panels) projections. The historical average is
shown in panels (a,e); the projections’ maps are shown in (b,f); deviations from the historical average
are shown in (c,g), and the percentage deviations are shown in (d,h).

3.4.2. Weighted Average Ensemble

The method used to obtain the weighted average ensemble from the CMIP6 models
is based on calculating the contributions of each model according to its similarity with
the reference WRF model in each of the three zones, based on the lowest MAPE values
obtained previously. The procedure is described in Table 10.

Table 10. Procedure for calculating the weighted average ensemble.

Description Equation

Equation for calculating the weights based on the
inverse of the squared MAPE. wi = 1

MAPEi
2

Equation for normalizing the weights. wi normalized = wi
∑n

i=1 wi
= wi n

Equation for calculating the weighted ensemble
using the normalized weights. Ensemble =

n
∑

i=1
wi n · xi

Detailed below are the results of the weighted average ensembles for the set of CMIP6
models that showed the best performance in each zone of interest, emphasizing the de-
limited areas within each zone (see Figure 4). It is important to remember that the set
of models differs for each zone (see Section 3.3). Weighted means are calculated for the
historical period (1985–2014) and the short-term (2040–2069) and long-term (2070–2099)
projections for each zone. After estimating these values, a comparative analysis is carried
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out using the absolute and percentage differences between the historical mean and both
future projections.

The north coast of Tamaulipas (Zone I): Figure 14 presents the weighted ensem-
ble results for Zone I. In this case, the models considered include EC_EARTH3_VEG_LR,
MRI_ESM2_0, EC_EARTH3_CC, HADGEM3_GC31_MM, CNRM_CM6_1_HR, and
CNRM_CM6_1 (see Table 6). The map of the absolute difference for the short-term projec-
tion reveals, in general, relatively low values (between −5 and 10) within the delimited
area (Figure 14c), while the percentage differences are between −1% and 4% (Figure 14d).
An increase in positivity is observed for the long-term projection, both in absolute and
percentage differences (Figure 14g,h). In particular, coastal areas exhibit larger percent-
age deviations, of about 3–4% for the short-term projection and 6–7% for the long-term
projection, which gradually decrease offshore where small negative values can be observed.
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Figure 14. Weighted average ensemble maps for wind power at 50 m AGL for Zone I were obtained 
using the best performing CMIP6 models for this zone (see Table 6). The upper (lower) panels show 
the results of the comparison between the historical average (a,e) and the short (long) term 
projection: (b,f) average projection; (c,g) absolute difference; (d,h) percentage difference. 

The northwest coast of Yucatan (Zone II): The models considered for the weighted 
ensemble average in Zone II include KACE_1_0_G, HADGEM3_GC31_MM, 
CNRM_CM6_1_HR, and GFDL_ESM4 (see Table 7). Similar to what was observed in Zone 
I, in Zone II positive absolute and percentage differences with respect to the historical 
average are evident for the short-term projection (Figure 15c,d), and become more 
pronounced for the long-term projection (Figure 15g,h). However, in this case, the largest 
deviations are not observed along the coast but in the center of the delimited region, with 
values that reach around 4–5% in the percentage difference for the short-term projection 
and around 8–9% for the long-term period. This suggests that this area may possess the 
most favorable conditions for the development of an offshore wind park in Zone II. 

Figure 14. Weighted average ensemble maps for wind power at 50 m AGL for Zone I were obtained
using the best performing CMIP6 models for this zone (see Table 6). The upper (lower) panels show
the results of the comparison between the historical average (a,e) and the short (long) term projection:
(b,f) average projection; (c,g) absolute difference; (d,h) percentage difference.

The northwest coast of Yucatan (Zone II): The models considered for the weighted en-
semble average in Zone II include KACE_1_0_G, HADGEM3_GC31_MM, CNRM_CM6_1_HR,
and GFDL_ESM4 (see Table 7). Similar to what was observed in Zone I, in Zone II positive
absolute and percentage differences with respect to the historical average are evident for
the short-term projection (Figure 15c,d), and become more pronounced for the long-term
projection (Figure 15g,h). However, in this case, the largest deviations are not observed
along the coast but in the center of the delimited region, with values that reach around
4–5% in the percentage difference for the short-term projection and around 8–9% for the
long-term period. This suggests that this area may possess the most favorable conditions
for the development of an offshore wind park in Zone II.

The Gulf of Tehuantepec (Zone III): The models considered for the weighted aver-
age ensemble in Zone III include: FGOALS_F3_L, BCC_CSM2_MR, CNRM_CM6_1_HR,
MRI_ESM2_0, and GFDL_ESM4 (see Table 8). The map of the percentage difference for the
short-term projection (Figure 16d) shows values between 9% and 10% within the delimited
area, while in a small area very close to the coast, values greater than 10% are reached.
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Values greater than 10% also occur in Zone III in a wide region to the south (offshore) of
the delimited area. For the long-term projection, the values of the percentage differences
within the delimited area are between 6% and 8%, while near the coast the values exceed 9%
(Figure 16h). In Zone III, the differences between the future projections and the historical
average show the highest values towards the center of the area and decrease towards the
eastern and western extremes.
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Figure 15. Weighted average ensemble maps for wind power at 50 m AGL for Zone II were obtained 
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Figure 15. Weighted average ensemble maps for wind power at 50 m AGL for Zone II were obtained
using the best performing CMIP6 models for this zone (see Table 7). The upper (lower) panels show
the results of the comparison between the historical average (a,e) and the short (long) term projection:
(b,f) average projection; (c,g) absolute difference; (d,h) percentage difference.
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Figure 16. Weighted average ensemble maps for wind power at 50 m AGL for Zone III were obtained 
using the best performing CMIP6 models for this zone (see Table 8). The upper (lower) panels show 
the results of the comparison between the historical average (a,e) and the short (long) term 
projection: (b,f) average projection; (c,g) absolute difference; (d,h) percentage difference. 

4. Discussion 
Next, we delve into a discussion of the main results of this study, making 

comparisons with previous studies. 
(1) Identification of high wind potential areas and recommendations for foundation 

technologies: Three areas with significant offshore wind potential in Mexico were 
identified through relatively high spatial resolution (~10 km) numerical 
simulations with the WRF model for the 40-year period of 1979–2018: the north 
coast of Tamaulipas (Zone I), the northwest coast of Yucatan (Zone II), and the 
Gulf of Tehuantepec (Zone III). These areas have been studied in other works 
under different approaches. Among them, Canul-Reyes et al. [9] assessed offshore 
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Figure 16. Weighted average ensemble maps for wind power at 50 m AGL for Zone III were obtained
using the best performing CMIP6 models for this zone (see Table 8). The upper (lower) panels show
the results of the comparison between the historical average (a,e) and the short (long) term projection:
(b,f) average projection; (c,g) absolute difference; (d,h) percentage difference.
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4. Discussion

Next, we delve into a discussion of the main results of this study, making comparisons
with previous studies.

(1) Identification of high wind potential areas and recommendations for foundation
technologies: Three areas with significant offshore wind potential in Mexico were
identified through relatively high spatial resolution (~10 km) numerical simulations
with the WRF model for the 40-year period of 1979–2018: the north coast of Tamauli-
pas (Zone I), the northwest coast of Yucatan (Zone II), and the Gulf of Tehuantepec
(Zone III). These areas have been studied in other works under different approaches.
Among them, Canul-Reyes et al. [9] assessed offshore wind potential in the Gulf
of Mexico based on data from the ERA5 and MERRA2 reanalyses (~30 and 50 km
resolution, respectively), identifying promising areas for development based on geo-
graphical restrictions, wind speed analysis, and capacity factor seasonal variability.
They identified the north coast of the Tamaulipas state and the northwest of the
Yucatan peninsula as the areas with the greatest potential for offshore wind energy
development in the Gulf of Mexico.

On the other hand, Bernal-Camacho et al. [11] identified the Gulf of Tehuantepec
as a promising location in the Mexican Pacific for wind energy harvesting. This study
carried out a technical evaluation to analyze the feasibility of installing a floating offshore
wind turbine platform, according to the most probable and extreme maritime conditions in
the region. The authors concluded that such technology could be suitable for installation
in the Gulf of Tehuantepec. According to our analysis of the bathymetric characteristics
of Zone III, the implementation of floating foundation technologies would be the most
convenient, which alignes with the results of Bernal-Camacho et al. [11]. For the other two
zones, located in the Gulf of Mexico, fixed-foundation technologies would be the most
appropriate. Additionally, and based on the arrangement of transmission lines located less
than 100 km from the coast in the three identified zones, the use of HVDC transmission
systems is suggested due to their greater efficiency and lower energy loss, in addition to the
fact that it would promote a more fluid and profitable integration of the energy generated
by offshore wind farms on the national grid.

(2) Model performance: A comparative analysis was carried out of the time series of
monthly averages and annual cycles of wind magnitude at 50 m above the surface,
obtained from the WRF data and the best performing CMIP6 models in the three
zones of interest for the historical period 1985–2014. The results indicated that, in
general, the CMIP6 models adequately reproduce seasonal variations and annual
cycles, although not necessarily the interannual variability, with a certain over or
underestimation of the values depending on the time of year and the particular zone.
Each zone shows particular behaviors throughout the year in terms of the variable
analyzed. For example, the annual cycle in Zone I (see Figure 6) shows a range
of values approximately between 5.50 and 8.30 m/s, with stronger winds between
December and April and weaker ones in August and September. In Zone II, winds
with a greater interannual variation are observed compared to the other two zones
(see Figure 7), which influenced the lower values of the correlation coefficient we
obtained. Its annual cycle shows a smaller range of variation, with values between
approximately 6.75 and 8.25 m/s; however, the most intense winds occur between
March and May and not during the winter months (see Figure 8). This is a zone
that is predominantly affected by the easterly trade winds which flow parallel to the
coast throughout the year, while in Zone I the predominant winds change direction
throughout the year and most of the time flow from sea to land coming from the
southeast [68]. The above indicates that the dynamic processes that determine the
high wind potential in both areas are different. The results obtained in the present
study are in accordance with the analyses of the monthly averages of the capacity
factor in these two areas of the Gulf of Mexico carried out by Canul-Reyes et al. [9].
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In general, they obtained the maximum values between March and April and the
minimum values from July to September in those regions, which coincides with our
analysis of the annual cycle of wind magnitude.

Zone III, for its part, shows a bimodal behavior in the annual cycle of wind magni-
tude, with higher values during winter (~10.5–12.3 m/s) that decrease towards summer
(minimum values of ~6.2 m/s) but with a slight increase in the months of July–August
(~8.2 m/s and 7.7 m/s, respectively) (see Figure 10). This characteristic has been reported
in previous works and it is associated with an increase in the pressure gradient between the
Gulf of Mexico and the Gulf of Tehuantepec that causes an intensification of the northerly
winds that cross through the mountainous gap that exists in the region [66]. Apparently,
this topographic feature is not well represented in the CMIP6 models, given its horizontal
resolution, resulting in an underestimation of the wind magnitude in Zone III during these
months (see Figure 10).

(3) Future projections of offshore wind energy potential: In this work, two types of
CMIP6 model ensembles were tested in order to analyze the future projections
of offshore wind potential considering a short-term (2040–2069) and a long-term
(2070–2099) period under the SSP5-8.5 scenario: the ensemble average and the
weighted average ensemble. The latter was obtained by calculating the contribution
of each CMIP6 model according to its similarity with the climatological conditions of
the wind magnitude computed from the WRF reference model for each of the three
analyzed zones. To do this, the smallest MAPE values for each zone were considered
(see Tables 6–8). The result is a weighted-average ensemble which assigns specific
weights to each model, prioritizing those that showed better performance in each
area, unlike the ensemble average that considers them all equally. In this sense, we
consider that the weighted average ensemble yields more consistent, reliable, and
robust results compared to the average ensemble.

Then, a comparative analysis was carried out using the absolute and percentage
differences between the historical mean (1985–2014) and both future projections. In general,
the results show certain regions in which both future projections estimate an increase in
wind potential, with higher values for the long-term period (see Figures 14–16). In terms of
the percentage differences with respect to the historical climatology, the ensemble showed
the highest values in Zone III for the long-term projection, reaching 10% very close to the
coast and towards the central part of the region, where the most intense winds occur. In
Zone II, values between 8% and 9% are reached in the center of the region, and in Zone I,
the percentages reach values between 6% and 7% along coastal areas.

Some recent studies have investigated climate projections for offshore wind power in
different regions using CMIP6 model outputs. The work of Thomas et al. [69] focused on
the offshore wind energy potential in the Spanish territorial waters, finding increases of up
to 15% particularly in the northwest of the Iberian Peninsula and the Canary Islands for the
near future (2030–2059) under SSP5-8.5. On the other hand, Claro et al. [70] conducted a
study on wind power density, finding statistically significant increases during the summer
season off the northwest coast of Portugal and over the Serra da Estrela. The research
also highlighted anomalies in wind direction during winter, with a westward shift over
southern Portugal and the nearby ocean. These studies can be compared to ours in that
they used a multi-model CMIP6 ensemble and the WRF atmospheric model. Although
there may be differences in the methodologies used, these studies found similar trends in
offshore wind energy potential for different geographic areas.

Finally, Martinez and Iglesias [71] conducted a study on offshore wind energy re-
sources in the Mediterranean Sea using CMIP6 models and ERA5 data as the baseline,
for different SSPs. Under the SSP5-8.5 scenario, an overall decrease of around 20% was
projected particularly in the central and western Mediterranean, and up to 30% in other
areas. These results are consistent with other large-scale studies using CMIP5 projections,
but with more significant changes. However, discrepancies were observed when comparing
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wind projections with those from downscaling initiatives such as CORDEX. While studies
employing GCMs provide a preliminary understanding of general trends in the Mediter-
ranean Sea, they may not fully capture regional phenomena associated with smaller-scale
dynamics. This confirms the importance of incorporating RCMs into climate projections, as
we did in our study.

Overall, these findings would indicate that it could be viable and profitable to direct
efforts to the construction of offshore wind farms in the three identified marine areas, taking
into consideration the bathymetric characteristics and environmental conditions of each
one, but without forgetting the fact that there is always uncertainty associated with future
climate projections.

5. Conclusions

This study provides a comprehensive assessment of Mexico’s offshore wind energy
potential using numerical climate modeling. Numerical simulations with the WRF model
for a 40-year historical period allowed us to identify three offshore zones with different
degrees of wind energy potential: the northern coast of Tamaulipas, the northwest coast
of Yucatan, and the Gulf of Tehuantepec. Previous research highlights the importance
of employing regional models to accurately capture climatic processes. Regional models,
such as the WRF model, have been shown to effectively represent fine-scale features,
topographical influences, and coastal effects [72,73], which are crucial factors for evaluating
offshore wind energy potential.

The historical simulations generated with the WRF model served as a basis to identify
the CMIP6 models that more accurately represented the climatological behavior of the
wind magnitude in the areas of interest mentioned above. From these, ensembles were
constructed using two methods: the simple average and the weighted average. The results
show that the future projections of wind potential based on ensemble-weighted averages
of the selected CMIP6 models for each zone, provide more reliable projections compared to
the average ensemble. Weighted averaging optimizes accuracy and assesses climate change
impacts on wind energy resources by prioritizing best CMIP6 models according to regional
characteristics, such as coastal and marine contrasts.

In a comparable study, using the same emissions pathway (SSP5-8.5), substantial mid-
term (2051–2060) and long-term (2091–2100) increases in wind resources were observed
across various regions of North America [13]. Although the focus of such research is
primarily on onshore wind resources, maps illustrating percentage differences in wind
potential also include offshore regions. The results indicate a potential mid-term increase of
approximately 10% in wind potential in the maritime zone off the north coast of Tamaulipas
and in the Gulf of Tehuantepec, while the maritime zone off the northwest coast of Yucatan
exhibits percentage differences close to zero, suggesting no significant changes in wind
potential in that particular area. In the long-term, an increase in wind potential is observed
only in the maritime zone off the north coast of Tamaulipas, while other areas do not show
significant changes. In our study, we obtained positive percentage differences in wind
power with respect to the historical average (1985–2014) in the three identified regions for
the long-term projections (2070–2099). The values are around 6–7% along coastal areas off
the north coast of Tamaulipas (Zone I), around 8–9% off the northwest coast of Yucatan
(Zone II), and up to 10% very near the coast and at the center of the Gulf of Tehuantepec
(Zone III).

Different regional approaches and model selection procedures lead to discrepancies
in the results of different studies. The selected methodology must be appropriate for
the specific objectives of each individual study, as different regions and timescales may
justify tailored modeling approaches to resolve unique features at relevant spatial and
temporal scales.

In particular, no previous research has focused specifically on analyzing the possible
climate impacts on the wind potential of the marine areas of Mexico based on the CMIP6
models. Therefore, this regional analysis offers preliminary assessments of the capacity
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for offshore wind energy in Mexico in the context of climate change, which can help
guide sustainable development opportunities in those areas. Improvements using higher
resolution models would strengthen our understanding and future planning decisions. In
conclusion, Mexico has important offshore wind resources that seem to be promising for
use in the future. Doing so sustainably could bolster energy security while supporting
national economic and climate mitigation goals.
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