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Abstract: The existing non-linear load in a three-phase circuit limits the possibilities of using the
symmetrical components method to analyse it. This paper presents a method for analysing such
a circuit when only the zero and positive components are present. Nonlinear loading in a circuit
limits the applicability of the symmetrical components method in the analysis of a three-phase
circuit. When there is only a zero component and a positive component, it is possible to carry out
the analysis as presented in this article. The analysed circuit is balanced. An equal nonlinear load
with a voltage described by a signum function of the current is considered in three phases. This load,
through equal series RL elements, is supplied from a symmetrical three-phase voltage source. For a
steady state with unbroken current flows, the equations of the circuit are solved symbolically. In the
broader scope of the equation, solutions obtained using MATLAB-Simulink R2021b were used. The
matching of the symbolic and simulation solutions was obtained. The current and voltage harmonic
content coefficients of the receiver, the equivalent resistance and inductance of the nonlinear load,
and the distribution of active and reactive power in the circuit were determined. The reactive power
analysis shows that the considered load nonlinearity when generating higher harmonics, increases
the reactive power of the circuit and the inductance of the circuit, which is seen from the terminals of
the power source.

Keywords: three-phase AC circuit; non-linear load; equivalent diagram; inductance increase;
simulation analysis; reactive power; power balances

1. Introduction

Nowadays, three-phase high-voltage lines are the most commonly used means of
electricity transmission. They are used to supply power to consumers with different types
of loads. Such a system was first presented in 1891 at the European International Exhibition
in Frankfurt. It was designed by Michail Dolivo-Dobrovolsky, who used his own inventions
in this system: a three-phase electric generator, a three-phase induction motor with squirrel
cage rotor (1889) and a three-phase three-arm transformer (1890) [1,2]. Since then, the
number of energy consumers, the capacity of the transmission systems and the capacity
of the installed generators have grown rapidly. Within two decades, generator capacity
increased from 100 kW to 25 MW [3]. Generators were interconnected into a wide-area grid
supplying loads, and unquiet high-power loads appeared. As a result, the operation of
the energy supply systems became increasingly unstable. The problems arising from the
development of power systems required the development of new methods for their analysis
and design. An important step in the development of ways to stabilise the operation of
energy transmission systems was the development of the symmetrical components method
by Charles L. Fortescue in 1918 [4], which used the representation of waveforms in the
form of phasors that had been introduced earlier by C.P. Steinmetz.

The symmetrical components method involves representing an asymmetrical three-
phase current or voltage vector as a superposition (that is, a linear combination) of three
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symmetrical components of a positive, negative and zero sequence. Each component has
three phase components of equal amplitude. The clockwise direction of the phase shift is
taken as a reference. The indices of the individual positive and negative components are
shifted successively by 2π/3 radians [5]. In contrast, the zero component has equal ampli-
tudes phase elements and zero phase shifts between them. The proposed decomposition of
supply voltages into symmetrical components has facilitated the analysis of three-phase
circuits and is still widely used [6–8].

In the power system, a distinction is made between three-phase, three-wire and four-
wire systems. The three-phase, three-wire system is used in high and medium-voltage
transmission systems and in high-power loads such as asynchronous motors, synchronous
motors and arc furnaces on the medium and low voltage side [5]. The four-wire circuit
is most often found on the low-voltage side, in the distribution part of the system. In
the analysis of the characteristics of a four-wire circuit, the impedance of the neutral
conductor must be considered in addition to the impedance of the phase conductors [9]. The
standard [10] specifies the value of this impedance for the low-voltage circuit. Disregarding
this impedance, i.e., assuming that it has a value of zero, means that the neutral conductor
short-circuits the centre points of the star of the supply voltages and the stars of the phase
consumers. The three-phase circuit can then be considered as three independent single-
phase circuits, with generally different phase supply voltages and parameters instead of a
four-wire three-phase circuit [5,9].

In the analysis of symmetrical components, the point against which the voltages are
measured is important, as well as the type of circuit (three- or four-wire). If this is the point
at the centre of the symmetrical star of the supply voltages, the zero component of the
supply voltages does not occur. Its amplitude is then equal to zero. It can be assumed that,
for a symmetrical power source, the zero component of the phase consumer voltages is the
voltage between the centres of the voltage phase’s source star and the phase’s load star.
For a linear symmetrical circuit and sinusoidal symmetrical power sources, this voltage
is equal to zero, and only the positive component of the current is present [11]. If in an
asymmetrical linear three-wire circuit with a sinusoidal supply, this condition is not met,
then the voltage exists and is sinusoidal. For non-linear loads, the voltage between the
centres of the supply stars and the load is non-zero and is non-sinusoidal [11], even in
the case of a symmetrical circuit. In the general case of a four-wire circuit, in the neutral
conductor, the current resulting from the voltage zero component and the impedance of
the neutral conductor flows. In the case of a non-linear three-wire asymmetrical circuit, the
phase currents will have zero components.

Voltages at the terminals of three-phase rotating sources, especially those that are
high-power, are generally symmetrical. Asymmetries are most often introduced at the
power transmission and distribution stage. A non-linear load is symmetrical when the
current-voltage characteristics of the individual components are equal, and the phase
voltage waveforms of the loads are shifted in phase (time) sequentially by 2π/3.

The above remarks prove the usefulness of the symmetrical components method.
But, according to [12], “[. . .] the results of Fortescue [. . .] are proven by the superposition
theorem, and for this reason, a direct generalisation to nonlinear networks is impossible”.
Thus, when the voltage of a nonlinear load is a function of the phase current, which is the
sum of the components, the load voltage is not the sum of the voltages determined for
these current components. This means that the symmetrical components method should
not be used in circuits with non-linear loads [10,11]. It also follows from this statement
that this method can be a limitation of the use of methods for determining reactive power,
in which different components are extracted from the current and then different types of
power are determined [13–15].

For certain types of non-linearity, however, it is possible to represent the receiver
voltage as a Fourier series. Using the harmonic balance method [16], it is possible to
determine the higher harmonics of the receiver voltages and currents and then determine
the fundamental harmonic. Such calculations are presented in [17] for a single-phase AC
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circuit and a non-linear load with the voltage described by a signum function of the current.
When analysing an energy supply system, it is necessary to consider the conditions of
compatibility (‘compliance’) of the operator and system user [15]. The recommendations
of this standard should be applied at the point of common connection between the power
system operator (PCC) and the user of this system. According to recommendations [18], the
asymmetry factor, understood as the quotient of the amplitudes of the opposite component
to the compatible component of the supply voltage, should be no greater than 2% [5,19],
and the factor of the content of higher harmonics of the supply voltage should also be no
greater than 3% [20].

The state of symmetry of the power system ensures the efficient operation of trans-
mission system components and three-phase loads, e.g., synchronous and asynchronous
motors. Non-linear loads cause additional disturbances in the circuit in the form of higher
harmonics. For a sinusoidal power supply, the fundamental harmonic transfers energy
from the power source to the load. In a non-linear receiver, the power of the first harmonic
is partially converted to the power of the higher harmonics. The non-linear receiver is the
source of the higher harmonics, and their power is returned in the direction of the power
source. The purpose of this work is to study the principles of power conversion in the
analysed circuit and its characteristics, such as harmonic content ratios and elements of the
equivalent load diagram.

Taking this into account, in this paper, the analysis is restricted to a three-phase,
three-wire circuit fed from a sinusoidal, symmetrical voltage source. This circuit contains
symmetrical elements R and L and a symmetrical three-phase non-linear load. The sym-
metry of the non-linear receiver is that its current-voltage characteristics in each phase are
described by the same non-linear function. Chapter two presents the mathematical model
and the general form of the characteristics of the circuit under consideration with some
reference to the symmetrical components method. The symbolic solution of the steady-state
equation of this model is presented in section three in a limited range of load voltages. This
range was extended in simulation studies using the MATLAB-Simulink system in the next
chapter. The results of the work are presented and discussed in section five. Lastly, closing
remarks are included in the conclusions.

2. Model of a Three-Phase, Three-Wire Circuit with a Non-Linear Load

Based on the connection diagram of three-phase loads such as e.g., arc furnaces, an
equivalent diagram of a three-phase circuit with a non-linear load is adopted, as shown
in Figure 1. This diagram includes inductors and resistors that represent the behaviour
of components found in the power system, such as transformers, transmission lines, and
equivalent impedance introduced by the load. Also equivalent in nature are the AC voltage
sources, which have the same frequencies and are mutually shifted in phase by 2π/3 and
4π/3 but have different amplitudes.
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Figure 1. Schematic of a three-phase circuit with a non-linear load.
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It was assumed that the load voltage in each phase can be described as the product of
an arc-length-dependent parameter and an odd function of the phase current:

Uk(t) = Hk f (Ik(t)), Hk > 0, k = 1, 2, 3 (1)

One possible case of this function is the signum function, which was first used in [21].
The equations describing the circuit in Figure 1 are as follows:

Lk
.
Ik(t) + Rk Ik(t) + Uk(Ik(t)) + U0(t) = Ek(t) (2)

where:
Ek(t) = Es sin(ωt + (k − 1)2π/3 + ψ) (3)

The circuit under consideration is a three-phase circuit without a neutral conductor.
This means that:

I1(t) + I2(t) + I3(t) = 0 (4)

For a non-linear load U0(t), the voltage between the zero (centre) points of the load
star and the star of the sinusoidal supply voltages is equal to:

U0(t) =
1
3

3

∑
k=1

(
Ek(t)− Lk

.
Ik(t)− Rk Ik(t)

)
− 1

3

3

∑
k=1

Uk(Ik(t)) (5)

In a steady state, the voltage U0(t) has two components: one dependent on the
symmetry of the supply part and one dependent on the symmetry of the load. For equal
phase amplitudes of the supply voltages, equal inductance, resistance and H-parameters of
the load voltages (1), the system is balanced, and the first component is zero. The second
component and thus the voltage U0(t) are non-zero. For the arc voltages described by the
signum function of the current, the voltage U0(t) is a rectangular wave with three times
less amplitude than the arc voltages and three times higher frequency. In IEC 60676 [22],
only the first component (5) is considered.

The circuit Is described by state variables. In this case, these are the phase currents. In
steady state, the phase currents can be written in general form as follows:

I=I(E, R, L, H, Uo, ω) (6)

where:

I=

I1
I2
I3

, E=

E1
E2
E3

, R=

R1
R2
R3

, L=

L1
L2
L3

, H=

H1
H2
H3

 (7)

The elements Ik and Ek denote the amplitudes of the current and supply voltage in the
k-th phase, respectively. The values of the elements of the above vectors are different in
general, but the highest load power and energy delivery efficiency are obtained when they
are equal to each other. Therefore, it is assumed that the individual vectors can be written
in the form of currents:

I=

Is
Is
Is

+

I1 − Is
I2 − Is
I3 − Is

 = Is·

1
1
1

+

∆I1
∆I2
∆I3

 = Is·1 + ∆I (8)

The variable Is is chosen so that the sum ∆I1
2 + ∆I2

2 + ∆I3
2 is as small as possible.

This condition is met when:
Is = (I1 + I2 + I3)/3 (9)

Furthermore, it is assumed that:

∆Ik = Is·O(ε), ε = o(1), fork = 1, 2, 3 (10)
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The values Es, Rs, Ls and Hs are selected similarly. The latter parameter determines
the phase voltages of the load. It is also assumed that the different component vectors of
the other vectors satisfy a relation analogous to (10). By substituting the expansions of the
remaining vectors similar to (8) and developing (6) into a Taylor series and later omitting
the terms of order ε, one obtains:

I=I(Es·1 + ∆E,Rs·1 + ∆R,Ls·1 + ∆L,Hs·1 + ∆H,ω) = I(Es·1,Rs·1,Ls·1,Hs·1,ω) + O(ε) (11)

The above expression describes only the current’s vector determined for equal phase
parameters of the circuit, i.e., for a balanced circuit.

3. Steady-State Analysis of a Three-Phase Balanced Circuit, Symbolic Solution

A three-phase balanced circuit in which the load voltage is denoted by Hs = Ua was
considered in [21,23]. It was further assumed that the voltage of a non-linear load is
described by the relation:

Uk(t) = U(Ik(t)) = Ua·sign(Ik(t)) =


Ua Ik(t) > 0
0 Ik(t) = 0

−Ua Ik(t) < 0
; Ua > 0 (12)

In this model, the voltage is a balanced rectangular wave with amplitude Ua and
frequency equal to the frequency of the power source. The voltages in the individual
phases of the circuit are shifted in time by angles 2π/3 and 4π/3. As a result, the voltage
U0(t) is a rectangular wave with amplitude Ua/3 and angular frequency 3·ω, and the circuit
can be represented as three single-phase circuits whose currents and voltages are shifted in
time by angles 2π/3 and 4π/3, the load voltages being described by the sum of Uak(t) +
U0(t), where:

U0(t) = −(U1(t) + U2(t) + U3(t))/3 (13)

Using time scaling:
τ = ω·t (14)

and dimensionless variables:

ua =
Ua

Es
; ro =

Rs

ωLs
; uk(t) =

Uk(t)

Es
; u0(t) =

U0(t)

Es
; ik(t) =

Ik(t)

Ir
; Ir =

Es

ωLs
(15)

Equation (2) of phase 1 (k = 1) of a balanced circuit can be represented as:

di1(τ)
dτ

+ roi1(τ) + u1(τ) + u0(τ) = sin(τ + ψ) (16)

For the non-linear load described by Equation (12) at steady state, over a certain range,
the voltage is a symmetrical rectangular wave with amplitude and fundamental harmonic
angular frequency equal to 1, and the phase currents flow without interruption. This
voltage can be represented as a Fourier series:

u1(τ) = u1h1·
∞

∑
n=1

1
2n − 1

· sin((2n − 1)τ); u1h1 =
4ua

π
(17)

As previously mentioned, the voltage u0(τ) is a symmetrical rectangular wave with
amplitude ua/3, harmonic pulsation equal to 3 and can be represented as a Fourier series:

u0(τ) = −u1h1·
∞

∑
n=1

1
3·(2n − 1)

· sin(3·(2n − 1)τ) = −u1h1
3

·
∞

∑
n=1

1
(2n − 1)

· sin(3·(2n − 1)τ) (18)

The Fourier series of voltages u1(τ) and u0(τ) contain only odd harmonics. Whereby
all harmonics u0(τ) occur in the u1(τ) harmonics spectrum. They have exactly the same fre-
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quencies and amplitudes but are shifted in phase by 180◦. This means that in Equation (16),
triple harmonics will not occur.

The phase shift angle ψ between the supply voltages and the first harmonics of the
load voltages in (16) was introduced to facilitate further analysis.

Analysing the current, the solution of Equation (16) after substituting (17) and (18)
at steady state (quasi-static) according to [24], two components can be distinguished: the
fundamental harmonic and the sum of the higher harmonics:

i1(τ) = i1h1 · sin(τ + ϕ1) + ∑
ν

i1hν· sin(ν·τ + ϕν) (19)

where:
ν = ((2n − 1) ̸= m·3) dla n ∈ ⟨2, 3, . . .) , m ∈ ⟨1, 2, . . .) (20)

From the definition of the load characteristics, for τ = kπ; k = 0, 1, 2, . . . from (12)
follows the relation:

∞

∑
n=1

i1h(2n−1)· sin
(

ϕ(2n−1)

)
= 0 (21)

which can be written in a slightly different form:

i1h1· sin(ϕ1) = −∑
ν

i1hν· sin(ϕν) (22)

Applying trigonometric transformations and separating the factors occurring at
cos((2n − 1)τ) and sin((2n − 1)τ) for n > 1, one obtains:

i1h(2n−1) =
u1h1

(2n − 1)·
√
(2n − 1)2 + r2

o

; sin
(

ϕ(2n−1)

)
=

(2n − 1)√
(2n − 1)2 + r2

o

(23)

Hence, after taking into account that ro follows:

∑
ν

i1hν· sin(ϕν) = ∑
ν

u1h1

ν2 + r2
o

∼= u1h1∑
ν

(
1
ν2 − r2

o
ν4

)
(24)

In [25] it can be found the following infinite sums:

∞

∑
n=1

1
n2 =

π2

6
;

∞

∑
n=1

1
n4 =

π4

90
;

∞

∑
n=1

1
n6 =

π6

945
(25)

Taking into account that only the higher odd harmonics are summed, and with a
frequency that is not a multiple of the triple of the fundamental harmonic frequency, the
relation can be estimated:

i1h1· sin(ϕ1) = −4ua

π
WT (26)

where:

WT =

(
π2

9
− 1
)
− r2

o

(
5π4

486
− 1
)
∼= 0.0966 − 0.00215r2

o (27)

It follows from relations (26) and (27) that the fundamental harmonic of the current is
lagged with respect to the fundamental harmonic of the load voltage.

Similarly, the square of the root mean square (RMS) value of the higher harmonic
currents can be calculated:

i21H = ∑
ν

i21hν = ∑
ν

u2
1h1

ν2(ν2 + r2
o)

∼= u2
1h1∑

ν

(
1
ν4 − r2

o
ν6

)
(28)

i21H
∼= u2

1h1

(
5π4

486
− 1 − r2

o

(
22π6

21149
− 1
))

= u2
1h1

(
0.00215 − r2

o0.0000734
)

(29)
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For comparison, the square of the RMS value of the equivalent higher harmonics of
the load voltage is:

(u1(τ) + u0(τ))
2
1H = ∑

ν

(u1(τ) + u0(τ))
2
1hν = u2

1h1∑
ν

1
ν4 = 0.0966 u2

1h1 (30)

The equivalent load phase voltage in a three-phase balanced circuit is given by:

(u1(τ) + u0(τ)) = uz (31)

The amplitude of the fundamental harmonic of the equivalent load voltage uz in phase
1 is equal to the fundamental harmonic of the voltage u1(τ) and is u1h1 (17). However, the
harmonic content coefficients differ:

THDu1 =

√
∞

∑
n=2

1

(2n − 1)2 =

√
π2

8
− 1 =

√
0.237 = 0.4834 (32)

THDuz =

√
∞

∑
n=2

1

(2n − 1)2 − 1
9

∞

∑
n=1

1

(2n − 1)2 =

√
π2

9
− 1 =

√
0.0966 = 0.310; (33)

Based on the balance of the fundamental harmonic [16], the relation was obtained:

i1h1 =

√[
1

1 + r2
o

(√
1 + r2

o − (u1h1 (1 + WT(1 + r2
o)))

2 − u1h1ro

)]2
+ (u1h1WT)

2 (34)

Hence, the current harmonic content factor has the form:

THDi
∼=

u1h1
i1h1

0.0464(1 − ro
20.017) (35)

The harmonic content coefficient of a non-linear load voltage is defined by (32).
Equation (26) means that the phase shift angle between the first harmonic of the

current and the load voltage is negative, indicating that the current lags behind the voltage.
Therefore, for the fundamental harmonic, the series equivalent diagram of a nonlinear
element consists of inductance and resistance. In further analysis, an equivalent circuit
diagram in the form of a series of connected elements is useful. Based on the voltage drops
across these elements and (26), equivalent element values can be calculated:

ωLZ = ωL
u1h1
i1h1

sin(ϕ1) = ωL
(

u1h1
i1h1

)2
WT(ro) (36)

RZ· = ωL
u1h1
i1h1

cos(ϕ1) ∼= ωL
u1h1
i1h1

(
1 − 0.5

(
u1h1
i1h1

·WT(ro)

)2
)

(37)

Especially interesting is the relation (36). The considered load described by an odd
and unambiguous nonlinear function has an inductance in the equivalent diagram, that is,
a conservative element with an ambiguous current-voltage characteristic. However, the
nonlinear element acts as a voltage source for higher harmonics, with the amplitudes and
phase shifts of currents being determined by the Ls and Ro elements of the circuit, satisfying
the relation (22). As a result, an increase in the circuit’s inductance is observed for the
fundamental harmonic.

The characteristics and equivalent parameters of the circuit are analysed as functions
of ua and ro. Due to the required energy efficiency of the three-phase arc furnace circuit, the
study was conducted for ro ≤ 0.3. The relations presented above refer to the uninterruptible
current flow that occurs for 0 < ua < ub, where ub is the smallest value of ua, at which, for
a certain τ, the value of the equivalent load voltage is equal to the value of the supply
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voltage. For a balanced three-phase system with a phase resistance described by ro = 0, this
limiting value of ua is:

ub =
3/2√

1 +
( 2π

3
)2

= 0.646 (38)

As ro increases, the value of ub decreases slightly. Analysing the circuit model, it was
found that for ua = 0.75, the amplitude of the equivalent voltage uz is equal to 1 and that,
for ua = 0.80, the amplitude of the dimensionless current is about 0.05. Therefore, the study
was carried out for 0.1 < ua ≤ 0.8. But the obtained relations are valid for ua < 0.646. To
study the effect of the circuit resistance, i.e., the parameter ro, and how the results will look
for larger values of ua, the circuit from Figure 1 was simulated in Simulink.

4. Simulation of a Circuit Model with a Non-Linear Load

A three-phase circuit supplied from a sinusoidal three-phase voltage source is consid-
ered, containing an inductance and resistance in series with a non-linear element equal
in each phase. For simulation purposes, the circuit depicted in Figure 1 was modelled in
Simulink, as shown in Figure 2.
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Figure 2. Simulink operational diagram of the circuit model from Figure 1.

This diagram uses the possibility of implementing vector block operators. The connec-
tions shown in bold line refer to vectors of phase signals of the same type. The indices of the
vectors denote the magnitudes of the individual phases of the circuit, as can be seen in (3).

The linear part of Equation (2) was realised on an sDI summator, an Int integrator
and an R amplifier. The non-linearity defined by the signum function—Equation (1) led
to computational issues, resulting in system hang-ups when variable-step methods for
solving ordinary differential equations were employed. As a solution, the nonlinear load
system was represented by a saturation block with a high gain (104) for the linear portion
of the characteristic. Saturation levels were proportional to the amplitude of the non-linear
receiver voltages ua. Based on the signals, the voltage u0 is created as one-third of the
summed phase voltages of load. The voltage u0 is output of block labelled as sUa in
Figure 2. The outputs sUa and vector of ua voltages result in an equivalent load voltage
sUz. In such a system, the load characteristic in the form (1) is directly not observed. It
can be noted that when the load voltage is close to the supply voltage, the current is close
to zero. The reactive power of the load determined from this voltage can be misleading.
Therefore, the diagram of Figure 2 contains additional blocks modelling a non-linear load
whose characteristics are described by (1). Among these blocks is the DeZon (Dead Zone)
block. The parameters ro and ua for a balanced system are scalars.

In Figure 3, the time-domain plots depict the dimensionless variables of the supply
voltage, current derivative, current, and load voltage. These waveforms correspond to a
nonlinear load with a voltage amplitude of ua = 0.6 and a resistance r = 0.1.
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Figure 3. Waveforms of the circuit with non-linear load model for ua = 0.6, r = 0.1.

When either of the phase currents is close to zero, there are differences between the
voltages Uz and Uz_—Figure 3. These differences depend on the ODE solution method
used. Following an analysis of the current waveform across different solution methods,
the RK23 solver was ultimately applied. In the magnification, the near-zero current has
the character of a relaxation oscillation, while the voltage of the non-linear element at this
time section coincides with the supply voltage, i.e., the voltage drop across the inductance
and resistance is close to zero. In order to obtain a voltage corresponding to model (1), an
additional system for observing the load voltage was used, and its operation can be seen in
the diagram.

The operating diagram in Figure 2 facilitates the observation of the instantaneous
values of currents and voltages of the circuit in Figure 1. The steady-state uses the quantities
characterising these quantities averaged over a period. That analysis of the earlier pre-
sented circuit divides the procedure into two stages: analysing the higher harmonics and
subsequently analysing the fundamental harmonic. To execute this procedure numerically,
the sine and cosine components of the fundamental harmonic, along with the mean value
of the square of the instantaneous current, which equals the sum of the squares of the
amplitudes of all harmonics, are determined within the output system.

is =
1
π

∫ 2π
0 i(τ)· sin(τ)·dτ

ic =
1
π

∫ 2π
0 i(τ)· cos(τ)·dτ

(39)

i2ms =
1
π

∫ 2π

0
i(τ)2·dτ (40)

The time functions sin(τ) and cos(τ) used in these calculations are generated in a sepa-
rate block. An exemplary scheme for determining the sin/cos components of the variable
i(τ)—input In1 is shown in Figure 4. The functions sin(τ) and cos(τ) are input to vIn2.
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Figure 4. Operational diagram for determining the sine and cosine components of the output quantity
In1 of the circuit model.

At the output of the multiplication system, a vector of subintegral functions is obtained.
Further computations are conducted for consecutive intervals and are synchronised via the
sin(τ) signal (commencement of each period of the supply voltage) on integrators denoted
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as Int_1 and Int_2. Int_1 has to be configurated External reset as rising, Int_2 External
reset as rising and Initial condition source as external. The former integrates the output
signal (signal vector) derived from the multiplication system denoted as Pr_1, where inputs
are furnished with an instantaneous quantity (e.g., current) and a vector of sin(τ) and
cos(τ) waveforms. Before the start of a new period, the value of the Int_1 output integral is
remembered in the Mem block and in the new period, it is passed to Int_2, whose output
is divided by π and completes the averaging operation. The vector of sine and cosine
components of the current (as (39)) is obtained at the output (outport Out).

When identical signals are applied to the inputs of the multiplication system (such as in-
stantaneous current), the output yields the doubled average square of the root mean square
(RMS) value, effectively representing the sum of the squares of the harmonic amplitudes.

In this way, a system was modelled to measure the sine, cosine and double square of
the RMS value of the current, load and supply voltages. By subtracting the square of the
RMS value of the current from the square of the base harmonic amplitude, the sum of the
squares of the higher harmonic amplitudes is obtained, which is then called the square of
the higher harmonic amplitudes [24]:

iH
2 =

∞

∑
k=2

(ik
2) = ims

2 − is
2 − ic

2 (41)

The mentioned connections facilitate the calculation of ratios of harmonic content, the
active power of circuit voltages and currents, and the values of equivalent circuit compo-
nents. Consequently, this method allows for the computation of the supply voltage, voltage
and current of non-linear loads, as well as the active and reactive power of fundamental
harmonics and higher harmonics within the circuit.

5. Characteristics of a Model of a Three-Phase Balanced Circuit with a Non-Linear Load

The simulation experiment was managed through a MATLAB program. Computations
were conducted across 10 intervals of the supply voltage, where the voltage ua ranged from
0.1 to 0.8, with varying values of r set at 0.1, 0.2, and 0.3. The obtained results were related
to those of the single-phase circuit presented in [17]. On the basis of the current waveforms
for ua > 0.8, it was found that the amplitude of the dimensionless current is less than 5%,
and the tested circuit is not efficient. The characteristics of the amplitude of the higher
harmonics and the fundamental harmonic of the current are shown in Figure 5.
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Figure 5. Amplitudes of the fundamental harmonic and higher harmonics of the current as a function
of load voltage amplitude and resistance.

The graphs in Figure 5 show that the higher harmonic content of the current is approx.
3-fold lower for a three-phase circuit than for a single-phase circuit [17]. For ua ≈ 0.6, the
amplitude curves of the first harmonic have inflexion points, and as ua increases further,
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they converge and tend towards zero. The same is true for the higher harmonics. As a
result, an increase in the ratio of the higher harmonic content of the current in the circuit
under consideration is observed—Figure 6.
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Figure 6. Harmonic content coefficient of circuit current as a function of load voltage amplitude
and resistance.

Coefficient THDi is not specified in the IEEE 519 standard [15]. Instead, TDD (total
demand distortion) is introduced, which can be translated as total desired distortion. For
a fairly stiff power system (the rms value of the short-circuit current is greater than one
hundred rms values of the load current), in the band up to the 50th harmonic, the TDD
factor should be less than 12%. Assuming such a limitation for THDi, Figure 6 shows
that, for ua = 0.63, this ratio exceeds the value described in the IEEE 519 standard [15] and
increases quite rapidly with the value of ua. A slightly different character is found in the
frequency spectrum of the load voltage. The characteristics of the amplitudes of the higher
harmonics and the fundamental harmonic of this voltage are shown in Figure 7.
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Figure 7. Amplitudes of the first harmonic and higher harmonics of the load voltage as a function of
load voltage amplitude and resistance.

For ua < 0.6, the graphs in Figure 7 can be considered linear. This is due to the
constancy of the shape of the voltage waveform and its independence from the current.
For the single-phase model [9], the voltage limit is lower and is approximately 0.5. The
association between the higher harmonics and the fundamental harmonic of the load
voltage is established through THDu. This relationship is illustrated in Figure 8, where
THDu is depicted as a function of ua and r.
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Figure 8. Harmonic content coefficient of the load voltage as a function of load voltage amplitude
and resistance.

In this graph, the value of THDu for ua < ub is constant and independent of r. Only
when ua exceeds this value does THDu decrease by almost twice. The minimum THDu
occurs for ua ≈ 0.8.

The Total Harmonic Distortion (THD) coefficients solely establish the connection
between the amplitudes of currents and voltages within the fundamental harmonic circuit
and the higher harmonic circuit. Energy transmission occurs from the voltage source to the
resistance and non-linear load, primarily through the first harmonic of the current. The
intensity of the current is contingent upon the characteristics of the load as perceived by
the source. To identify this characteristic, it is crucial to ascertain the phase shift angle
(ϕui) between the current and voltage of the non-linear load. This angle is defined as the
variance between the phase angles of the first harmonics of the load’s voltage and current
concerning the voltage of the power source. Figure 9 illustrates a graph depicting the phase
shift of the load (ϕui).
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Figure 9. Phase shift angle of the first harmonics of the circuit current versus load voltage as a
function of load voltage amplitude and resistance.

The angle ϕui is negative and has a minimum value equal to about −0.15 radians
for ua = ub (38), for the maximum value of the load voltage amplitude at the load of the
uninterruptible current flow. For a single-phase system, the value is lower and equal to
approx. −0.24 radians. For uninterruptible current flow, the minimum value ϕui increases
slightly with the value of r. Associated with the negative phase shift is the inductance in
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the equivalent diagram of the non-linearity. The phase shift of the current with respect
to the load voltage for ua > ub tends to zero as ua increases. The values of the elements
of the equivalent diagram of the nonlinear load are also determined by the amplitude
of the fundamental harmonic of the current, which for ua > ub decreases quite rapidly
with ua. Therefore, the elements of the equivalent diagram (including the equivalent
inductance) were determined on the basis of this phase shift of the current with respect to
the supply voltage and the amplitudes of the fundamental harmonic of the current and the
supply voltage.

Considering that energy flow in the analysed circuit is associated with the fundamental
harmonic, the power factor is calculated as the cosine of the phase shift angle between the
fundamental harmonic of the current and the fundamental harmonic of the supply voltage.
A plot of the power factor of the circuit as a function of the non-linear load voltage and
resistance is shown in Figure 10.
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Figure 10. Power factor of the circuit with non-linear load as a function of load voltage amplitude
and resistance.

In the ua domain, the power factor diagrams show two distinct regions: a lower
interval characterised by uninterrupted current waveform and an upper interval where
interruptions in current flow occur alongside a rapid increase in the equivalent resistance
of the non-linear load. This distinction is also visible in Figure 10, where for ua > ub, a
noticeable decrease in the slope of the characteristic representing the phase shift angle
of the fundamental harmonic of the current relative to the fundamental harmonic of the
supply voltage can be observed.

The calculation of active power in the circuit involves averaging the product of current
and voltage over time, following the configuration outlined in Figure 4. This calculation
considers both the supply voltage and the load voltage. Figure 11 illustrates the phase
powers associated with these voltages, varying with the load voltage amplitude and
resistance (r).

p =
1

kT

τ+kT∫
τ

u·i·dt =
P
Sr

, Sr =
Es

2

ωLs
(42)

The three-phase circuit powers presented in dimensionless form are related to 3Sr.
It should be noted that the maximum power value occurs for uninterruptible current

flow for ua ≈ 0.48. This finding is important for the efficiency of power transfer in the
circuit. Obviously, as the resistance r increases, the efficiency of the circuit decreases.
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By analogy, the dimensionless reactive powers of the load and the entire circuit were
estimated—Figure 12. These powers of the circuit were also related to 3Sr.
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Following previous analyses [17], the concept of reactive power was defined as the
result of multiplying voltage by the rate of change of current over time. This interpretation
enables the calculation of reactive power’s instantaneous values and aligns with one of the
formulations outlined in IEEE 1459-2010 [24] (p. 4).

Q =
1

ω·kT

θ+kT∫
θ

u· di
dτ

·dτ =
1

2π

∮
u·di (43)

The variable θ, which marks the onset of the averaging period, needs to be synchro-
nised with the initiation of the supply voltage cycle. The latter part of this relationship
serves as a rationale for a significant phenomenon. According to the adopted definition,
the total reactive power of a non-linear load characterised by (1) equals zero, regardless of
the load magnitude and circuit resistance. In other words, the combined reactive power
of the fundamental harmonic and the higher harmonics equals zero, implying that the
reactive power of the higher harmonics is equivalent to the negative reactive power of the
fundamental harmonic, which is positive. This indicates that the non-linear load acts as the
source of reactive power for the higher harmonics, allowing for the summation of reactive
powers defined for both fundamental and higher harmonics.
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This statement can be extended to non-linearities whose current-voltage characteristics
are described by an odd function and are unambiguous (without hysteresis). The statement
does not apply to reactive power calculated according to the IEEE algorithm.

The reactive power (43) may be presented in dimensionless form as follows:

q =
1

kT

θ+kT∫
θ

u· di
dτ

·dτ =
Q
Sr

(44)

For the adopted definition of reactive power, an important phenomenon was observed
for both single-phase [17] and three-phase systems [23]. The total reactive power of a non-
linear load with unambiguous qN characteristics was very close to zero, but the reactive
power calculated for the first harmonic qN1 of this load was positive, different from zero. In
contrast, the reactive power of the higher harmonics qNH is negative; that is, the non-linear
load is a source of the reactive power of the higher harmonics. The total reactive power of
the circuit is denoted qS.

In the circuit where higher harmonic currents flow, there exists nonlinearity—acting as
the source of these higher harmonics—along with inductance and resistance. The voltage
source supplying the fundamental harmonic behaves like a short circuit for the higher
harmonics. Consequently, the reactive power associated with the higher harmonics is
equivalent to the negative reactive power of the fundamental harmonic, which is positive.
Thus, the non-linear load serves as the origin of reactive power for the higher harmonics.
The reactive power of the non-linearity is taken from the power source and converted into
reactive power of the higher harmonics, which is transferred to the inductance Ls of the
circuit. Consequently, within the fundamental harmonic circuit, there’s an evident rise in
the circuit’s inductance, denoted as Lc, ascertainable through the following correlation:

Lc
Ls

=
|e|
|i1|

· sin(−ϕei) = − 1
|i1|

· sin(ϕei) (45)

This inductance is shown as a function of load voltage amplitude in Figure 13.
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For ua < 0.3, the equivalent inductance of the circuit closely approximates the induc-
tance L, whereas for ua ≈ 0.7, it reaches a value of 2Ls. This phenomenon of increasing
circuit inductance was similarly observed for a non-linear load within a three-phase circuit
in [16] and was experimentally verified by S. Köhle [26], who conducted measurements of
arc furnace circuit parameters.
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6. Conclusions

The analysed three-phase circuit with a load described by the signum function of the
current is a rather special case in the power system [27,28]. But, as presented in section three,
in a steady state, it is possible to solve the equations of this circuit symbolically (analytically),
taking into account all higher harmonics. The analysis of this solution was used to verify
the results of the circuit simulation (section four). Dimensionless variables made it possible
to reduce and simplify the complexity of the system analysis and simulation of its model.

The load is also special. For continuous current flow, the phase load voltage is a
rectangular wave, and its harmonic content is constant, depending only on the amplitude
of this voltage. This makes it easier to analyse the distribution of active and reactive power
in a circuit and to track the power of higher harmonics. Furthermore, it can be used to
estimate the parameters (resistance and reactance) of a system feeding a non-linear load.

It should be emphasised that the characteristics of this circuit were determined sym-
bolically and numerically with MATLAB-Simulink R2021b using vector operations. The
results of both analysis methods are consistent.

For the considered load for ua < 0.646 (r0 = 0), the phase currents flows are continuous.
For the considered condition, the harmonic content factor THDu in the load voltage is
constant. It can be seen in Figure 8 that the smallest THDu occurs for ua > 0.646 and
ua < 0.8. This finding has practical implications for choosing the circuit’s inductance, as it
helps to reduce the adverse effects of the non-linear load on system performance and its
impact on the power supply network.

Harmonic balance analysis in this study involved separate consideration of the fun-
damental harmonic circuit and the higher harmonic circuit, aligning with the principles
outlined in the IEEE 1459 standard. This waveform analysis methodology, employed in
this paper, draws upon techniques previously utilised in the measurement system de-
scribed in [29]. It’s worth noting that the analysis methodology advocated by IEEE 1459
holds significant utility, serving purposes ranging from system analysis to the design of
measurement systems or power quality monitoring tools.

From the analysis of the dependence of the active power on the load voltage amplitude
of a non-linear load, it follows that the maximum value of the load active power occurs for
ua ≈ 0.5—Figure 11.

An important phenomenon is observed in the applied definition of reactive
power—Figure 12. The total reactive power of the non-linear load is equal to zero. Such a
result can be obtained from symbolic analysis. Such a phenomenon will occur for loads
with odd current-voltage characteristics. This does not mean that the reactive power of
the fundamental harmonic is zero. The reactive power associated with the fundamental
harmonic is positively non-zero and is precisely equivalent to the negative power of the
higher harmonics. The negative sign of the reactive power of the higher harmonics means
that the non-linear load is the source of the higher harmonics. In the circuit under consider-
ation, this power is being released in the inductance of the circuit. Hence, an important
conclusion follows that the reactive power of the circuit calculated for the fundamental
harmonic is equal to the reactive power of the circuit calculated, taking into account the
higher harmonics. This phenomenon also occurs for active power. This means that the
apparent power calculated from active and reactive power in both cases is also the same.
But this is not valid for apparent power calculated from rms values of current and voltage.

The algorithm used in the work to determine reactive power as the product of the volt-
age and current time derivative simplifies the energy accounting process. It allows reactive
energy to be measured in accordance with the requirements set out in the standard [30]. A
reactive energy meter, according to this standard, should measure the reactive energy of
the fundamental harmonic with minimal harmonic influence. The definition of reactive
power utilised in the article, represented as the product of voltage and the time derivative
of current fulfils this criterion.

The inductance of the circuit, as seen from the terminals of the power source, includes
the inductive component of the circuit and the equivalent inductance of the nonlinear load
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for the fundamental harmonic. As the voltage amplitude of the nonlinear load increases,
a significant increase in the phase circuit inductance for the fundamental harmonic is
observed. For ua = 0.7, it is a twofold increase, and for ua = 0.8, an increase of up to five
times. This increase in inductance is due to the non-linearity of the load. This increase also
causes an increase in the fundamental harmonic of the reactive power of the circuit. This
means that the non-linearity of the load causes an increase in reactive power.

Only selected characteristics of the analysed circuit are presented in this paper. The
algorithms for determining the individual quantities can be used in real measurement
systems [29]. Of course, they were implemented digitally.

The circuit considered in this paper may be a model of a three-phase arc furnace circuit
during the beginning of melting.
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Rozprawy, Dysertacje, M22; Politechnika Świętokrzyska: Kielce, Poland, 2011. (In Polish)
24. IEEE Std 1459-2010; Definitions for the Measurement of Electric Quantities under Sinusoidal, Nonsinusoidal, Balanced and

Unbalanced Conditions. IEEE: Piscataway, NJ, USA, 2010.
25. Korn, G.A.; Korn, T.M. Mathematical Handbook; McGraw-Hill: London, UK, 1968.
26. Köhle, S. Lineares Elektrisches Ersatzschaldbild von Drehstrom-Lichtbogenöfen. Elektrowärme Int. 1985, 43, B16–B25.
27. Pasko, M.; Debowski, K. New approach to the optimisation of three-phase three-wire systems with sinusoidal voltage sources

and nonlinear loads. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2003, 22, 356–371.
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