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Abstract: Low-enthalpy geothermal energy can make a major contribution towards reducing CO2

emissions. However, the development of geothermal reservoirs is costly and time intensive. In
particular, high capital expenditures, data acquisition costs, and long periods of time from identifying
a geothermal resource to geothermal heat extraction make geothermal field developments challeng-
ing. Conventional geothermal field development planning follows a linear approach starting with
numerical model calibrations of the existing subsurface data, simulations of forecasts for geothermal
heat production, and cost estimations. Next, data acquisition actions are evaluated and performed,
and then the models are changed by integrating the new data before being finally used for forecasting
and economics. There are several challenges when using this approach and the duration of model
rebuilding with the availability of new data is time consuming. Furthermore, the approach does not
address sequential decision making under uncertainty as it focuses on individual data acquisition
actions. An artificial intelligence (AI)-centric approach to field development planning substantially
improves cycle times and the expected rewards from geothermal projects. The reason for this is
that various methods such as machine learning in data conditioning and distance-based generalized
sensitivity analysis assess the uncertainty and quantify its potential impact on the final value. The
use of AI for sequential decision making under uncertainty results in an optimized data acquisition
strategy, a recommendation of a specific development scenario, or advice against further investment.
This approach is illustrated by applying AI-centric geothermal field development planning to an
Austrian low-enthalpy geothermal case. The results show an increase in the expected value of over
27% and a reduction in data acquisition costs by more than 35% when compared with conventional
field development planning strategies. Furthermore, the results are used in systematic trade-off
assessments of various key performance indicators.

Keywords: geothermal field development planning; data acquisition strategies; decision making
under uncertainty; production forecasting under uncertainty

1. Introduction

Geothermal energy provides a continuous source of sustainable energy in addition
to fluctuating renewable energy such as photovoltaics or wind. The worldwide techni-
cal potential for geothermal energy is estimated to be at around 200 GW electric and
5000 GW thermal [1]. Geothermal energy can be used to decarbonize heating and cooling,
and in particular district heating [2]. Acksel et al. [3] identified Germany’s vast poten-
tial for low-enthalpy geothermal energy, exceeding 220 TWh/a and proposing a target of
300 TWh/a by 2040. In Austria, district heating currently relies on 0.2 TWh/a of geothermal
energy, with projections anticipating a surge to 6.4 TWh/a by 2050 [4]. Challenges such as
prolonged geothermal resource appraisal and high development costs need to be addressed
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to realize these ambitious targets [5,6]. The objective is to reduce project appraisal and
development duration by 30–50% [5].

To achieve this target, geothermal field development planning (FDP) needs to be
improved. Instead of planning singular injector–producer doublets, large-scale geothermal
heat extraction requires the drilling of a multitude of wells and the installation of large-
scale facilities. The historical focus on injector–producer doublets is reflected in early
models by the use of simplified subsurface descriptions. Then, the planning evolved to
consider vertical [7] and lateral reservoir heterogeneities in the subsurface [8–10]. As the
demand for low-enthalpy geothermal energy grew, well planning expanded to encompass
multiple doublets and their interactions in heterogeneous subsurface settings [11–14], and to
address multiple objectives [15]. Economic assessments play a vital role in evaluating well
spacing [16], conducting value of information (VOI) calculations [17], and assessing various
development options [18]. Geothermal resource classification challenges, recoverable heat
determination, and field development planning similar to hydrocarbon fields were also
explored [19–21]. However, similar challenges, as in hydrocarbon field development, are
observed in geothermal field development planning. Some major issues are biases in
production forecasts [22,23] and the VOI of sequential data acquisition [24,25] in particular
if data gathering costs of the various actions are different [26]. Despite these efforts, the
required time from geothermal field appraisal to heat extraction is 3–7 years [5] and the
economics of such projects are challenging [27]; in particular, if value erosion occurs owing
to the acquisition of too much data, wrong data, or high costs. Decision making under
uncertainty using AI has been comprehensively introduced by Russel and Norvig [28]
and was applied to various fields such as aircraft collision avoidance [29], breast cancer
screening [30], and energy management [31]. Recently, some aspects of AI were introduced
in field development planning for hydrocarbon reservoirs such as reinforcement learning
for well planning [32,33], but a systematic methodology including data acquisition and the
application to decision making in geothermal field development is missing.

In this paper, we integrate AI into field development planning to address the long
duration as well as improving the value of geothermal field developments. We show that
using AI outperforms humans in geothermal field development planning and substantially
decreases cycle times and costs. Our study not only outlines the systematic introduction of
AI-centric methodologies, but also provides a case study to illustrate the practical implica-
tions. The case study covers a field case in Austria in which low-enthalpy geothermal heat
will be used to decarbonize district heating.

This paper is organized as follows: First, we describe conventional field development
planning. Then, we introduce AI-centric field development planning. Finally, we cover a
case study of an Austrian geothermal project that illustrate the benefits of low-enthalpy
geothermal heat.

2. Conventional Field Development Planning

Identifying, assessing, and developing geothermal energy is a capital-intensive en-
deavour [34]. There is substantial uncertainty and risk involved in the development of
such resources [35]. Geothermal projects were separated by Gehringer and Loksha [34] into
eight phases: preliminary survey, exploration, test drilling, project review and planning,
field development, power plant construction, commissioning, and operation. The duration
from initial resource identification to the initiation of geothermal heat extraction spans
five to ten years [36]. In this article, we focus on the post-identification phases. In these
phases, methodologies similar to the ones applied in hydrocarbon development projects
are applied, where front-end loading is used to avoid costly missteps [37].

Because of historical tendencies toward overestimating hydrocarbon production by
project teams [38,39], a stage-gate process has been integrated into hydrocarbon develop-
ment projects. For multi-well geothermal projects, such a process is suggested as well [40].
Originating from new product development practices [41], a stage-gate process dissects
product evolution into distinct stages, with control gates ensuring quality assurance [41].
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Adapted by the hydrocarbon industry for field development purposes [42,43], the pro-
cess involves sequential phases (identify and assess, select, define, and execute) [44], as
delineated in Figure 1.
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The process (Figure 1) is a chronological series of events, with peer reviews for value
assurance, denoted by project reviews (PRs) at the conclusion of each phase [42,45]. The
conventional methodology involves sequentially calculating P10, P50, and P90 production
forecasts [46], followed by determining the associated costs and revenues [47,48].

Using the stage-gate process, as illustrated in Figure 1, presents some challenges.
Companies employing simplified subsurface models that inadequately account for all
uncertainties face the issue of frequent model updates with the acquisition of new data [49].
This iterative process introduces prolonged intervals between data acquisition and the sub-
sequent appraisal activities. The rigorous PRs conducted prior to decision gates contribute
to project execution delays, as these reviews often scrutinize fundamental assumptions,
hindering swift progress instead of solely ensuring decision quality at decision gates [50].
Furthermore, the traditional sequential workflow encompassing production modelling,
cost and revenue calculations, and subsequent revisions is identified as another bottleneck
in project timelines [51].

The next sections describe how we re-evaluate the methodologies to mitigate delays
and enhance the overall effectiveness of the stage-gate process.

3. Artificial Intelligence-Centric Field Development Planning

Various machine learning methods were used to address the uncertainty in geother-
mal energy production [52–54]. However, AI-centric approaches for sequential decision
making under uncertainty have not been covered. Geothermal field development planning
requires development teams to make a sequence of decisions amid inherent uncertainties.
These decisions include the choice of data acquisition, as well as which field develop-
ment they want to pursue and whether they want to walk away from the geothermal
opportunity. These challenges can be addressed by the deployment of intelligent decision-
making support systems that can be implemented into the software [55]. In the context of
field development planning, it is important to integrate these agents into the established
processes and workflows of companies, enabling them to efficiently assess and execute
field developments.

Conventional decision-making processes, characterized by the utilization of only a frac-
tion of the available information and heuristics, are susceptible to biases and errors [56,57].
To overcome these limitations, Figure 2 illustrates how AI can be integrated into the FDP
process. The FDP process is characterised by the interaction of a project team and a decision
board. A structured decision dialogue, as proposed by SPE [58] and Spetzler et al. [50],
ensures alignment between project objectives and corporate goals. Additionally, portfolio
considerations, such as evaluating the impact of the project on overall company risk [59–61],
play a crucial role. The FDP process is dissected into three phases: frame, evaluate, and
commit. Each phase is described in more detail in the subsequent sections.
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3.1. Framing

The framing phase is the first step in project development, aiming to establish compre-
hensive high-level boundaries that define the project’s scope and delivery parameters. This
includes business needs and objectives, aligning them with the specific goals of the project
and ensuring harmonization with broader company objectives [62,63]. Within the framing
phase, special attention is dedicated to addressing the probability of economic success (PES)
for the project. PES, denoting the likelihood of achieving a net present value (NPV) greater
than zero at the selected discount rate, is a critical factor in shaping the project’s trajectory.
Determining the required PES involves considering of the company’s risk attitude and the
project’s scale relative to the overall wealth of the company.

The impact of the required PES extends significantly to the data acquisition strategy.
A higher required PES corresponds to escalated acquisition costs and longer durations of
the evaluation phase, as a larger volume of data becomes necessary to mitigate the risk of
achieving negative NPVs. Importantly, a higher PES hurdle increases the probability of
invoking the walk-away option from a project.

3.2. Evaluation

The evaluation phase is dedicated to identifying the optimal development option,
while also considering the possibility of non-development (i.e., walking away from the
opportunity). At the core of this phase is the integration of AI, addressing key compo-
nents of effective decision making: logical reasoning, informed information gathering,
consideration of alternatives, and assessment of trade-offs [50,58].

In this phase, critical parameters of subsurface, surface, and economics must be
defined. Then, the ranges of these parameters need to be described. Dynamic and economic
parameter ranges have to avoid confidence bias and quality assurance has to be addressed.
Subsequently, the parameter ranges need to be conditioned to observed data using valid
statistical methods including recent machine learning methods. For new geothermal fields,
which are characterized by limited data availability (e.g., well tests, production data),
posterior parameter ranges reflect larger uncertainties when compared to fields already
in production.

Various development options are then assessed across the model ensemble, using
the posterior parameter distributions after data conditioning. Probabilistic economics are
integrated, resulting in economic forecasts used to calculate NPVs.

The next step is to formulate a data acquisition strategy. To focus on value-adding
data acquisition, first, a distance-based generalized sensitivity analysis of the parameters
on NPV is conducted. This analysis guides the definition of data acquisition actions, aimed
at reducing uncertainty for parameters with the highest sensitivity to decision making.

Results are further evaluated using partially observable Markov decision process
(POMDP) agents. The POMDP agent recommends the optimal field development policy,
including executing a specific development option, acquiring more data, or walking away.
If data acquisition is suggested as the first action of the optimum policy, the corresponding
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activities are implemented, leading to updated posterior parameter distributions. Then,
sensitivity analyses are conducted again to improve the understanding of the impact of
the updated parameter distributions on project value. Next, the updates are used by the
POMDP agent to suggest the next optimal action in field development. Ultimately, a
development option is chosen if the PES hurdle is met and further data acquisition is not
expected to increase the project’s expected value. Conversely, the walk-away option is
executed if the PES hurdle cannot be achieved, and residual risks remain prohibitively high
for project execution (an overview is shown in Figure A1 in Appendix A).

3.3. Commit

The commit phase ensues after the evaluation phase when no data acquisition action
can enhance the project’s expected value. In this phase, the decision is made to either walk
away from the opportunity or proceed with the selected development option.

3.4. General Aspects

The AI-centric evaluation phase introduces a dynamic approach to quantifying and
continually monitoring key performance indicators (KPIs) throughout the project lifecycle.
These indicators include metrics such as expected monetary value (EMV), expected ap-
praisal costs, expected loss, the probability of maturation (POM), and the array of potential
development scenarios under consideration. By leveraging AI, this phase facilitates the
real-time assessment of project progress and crucial decision-making factors.

The subsequent section provides an in-depth exploration of the AI-centric evaluation
phase within the context of a geothermal field development project.

4. Case Study

This section provides a demonstration of the application of AI-centric field devel-
opment planning during the evaluation phase, using an Austrian low-enthalpy geother-
mal project as an example. An overview of the evaluation phase workflow is given in
Appendix A. The following paragraphs detail the specific steps of the evaluation phase,
as shown in Figure 2. Sections “Project Set-Up” and “Geothermal Reservoir Setting” offer
insights into the overarching project settings, while the subsequent sections systematically
delineate the workflow, guiding the reader through each step of the process. Afterwards,
the results of the human-based data acquisition strategies are discussed and compared
with the AI-centric field development planning results.

4.1. Project Set-Up

To reduce CO2 emissions in Austria, the heat generation could be changed to sus-
tainable energy sources. Büchele et al. [64] summarized the Austrian potential of district
heating while Könighofer et al. [65] describes the potential of geothermal energy for district
heating and electricity generation in Austria. In this article, an Austrian project is described,
aiming at replacing district heating fuelled by fossil energy with sustainable low-enthalpy
geothermal energy. Substantial heat in place in a deep saline aquifer was identified as a
potential source for low-enthalpy geothermal energy production. Data of several wells
are available, confirming the presence of a potentially sufficient permeable conglomerate
layer. The scale of the replacement project requires the drilling of 24 to 79 wells, which is
dependent on the chosen development option. In addition, surface facilities need to be
constructed and flowlines need to be built to connect the wells to the facilities.

4.2. Geothermal Reservoir Setting

The reservoir setting is described by Bayerl et al. [14]: The geothermal reservoir
described here is a saline aquifer that is part of the Neogene succession of the Vienna
Basin [66]. It has been intensively studied and drilled for hydrocarbon exploration and
production [67,68]. The Vienna Basin formed in two discrete stages in the early Miocene
(~20 Ma) with the earliest sediments being incorporated in the alpine orogen in a piggy-back



Energies 2024, 17, 1887 6 of 22

position by N–NW-directed thrusting, which ceased in the Karpatian (~17 Ma) and a main
depositional phase (~6000 m sediment fill) in the mid Miocene (Badenian ~16 Ma) during
the pull-apart basin formation along N–NE-trending normal faults [67,68]. The reservoir
unit consists of moderately cemented to loose, massive, clast-supported conglomerates
composed of poorly to moderately rounded, medium to coarse gravel with frequent cobbles
(limestone, dolostone, and various crystalline components). Intercalations of fine sand
and silty marly clay are subordinate [66]. Weissenbäck [69] describes these conglomerates
as braided river deposits with numerous amalgamating channels and bars. These fluvial
deposits show limited marine influence only reported in distal parts.

4.3. Geological Reservoir Parameterisation

The numerical models consist of approximately 0.82 million cells and cover an area
of 8 km from south to north and 6 km from east to west. The average reservoir thickness
is approximately 200 m, with the uppermost layer of the reservoir at a depth of 1500 m
in the northern region, gradually deepening to 3800 m in the south [70]. The porosity
model is governed by well log interpretations, whereas the porosity and permeability
distribution is given by geostatistical methods in areas away from the wells. The generation
of the subsurface models is based on uniform distributions of the various parameters given
in Table A1 in Appendix A. Latin hypercube sampling (LHS) was used to sample from
the various parameters. Examples of the resulting porosity distributions are shown in
Figure 3. The diagrams show that there is a large variety of possible porosity distributions.
In addition, the faults could be sealing or not. The diagram shows a five-spot well pattern,
more development scenarios are covered in the Section 4.5.
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4.4. Dynamic Reservoir Parameterisation

Concerning the dynamic reservoir parameter ranges, the initial pressures and temper-
atures were derived from well measurements. Rock compressibility, thermal conductivity,
and heat capacity were taken from analogue data. The parameter ranges are given in
Table A2. Applying LHS from the geological (Table A1 in Appendix A) and reservoir
dynamic parameters (Table A2 in Appendix A), 250 subsurface models were generated. No
dynamic data such as pressure, production, or temperature observed data were available
for this case. Therefore, the data conditioning step shown in Figure 2 was not required.

4.5. Field Development Scenarios

Many different field development scenarios are possible for geothermal reservoirs.
Frequently, five-spot or line drive is used in field developments for which fluid injection
and production is required. The reason is that such patterns allow for the economically
efficient recovery of fluids or heat from the subsurface [71,72]. The field development
scenarios used here are given in Table 1. The wells were completed from top to bottom
except for development option 4, in which the wells were completed for the injectors in the
bottom half and the producers in the top half of the reservoir.

Table 1. Field development scenarios. LD—line drive; EW—east-west; NS—north-south.

Scenario Number Facility Type Pattern Type Well Spacing in m Number of Injectors Number of Producers

1 Large 5-spot 400 39 39
2 Large LD EW 400 37 42
3 Large LD NS 400 41 38
4 Large 5-spot 400 39 39
5 Medium 5-spot 450 29 29
6 Medium 5-spot 500 25 25
7 Small 5-spot 600 18 18
8 Small 5-spot 700 12 12
9 Medium LD EW 450 29 29

10 Medium LD NS 450 29 29
11 Medium LD EW 465 28 28

Without additional information about the reservoir, all these development scenar-
ios might lead to an economically attractive project. In this phase of field development
planning, many different development scenarios need to be considered and subsequently
applied to the simulation of forecasts using the ensemble of reservoir models.

4.6. Production Forecasts

For the development scenarios given in Table 1, the forecasts of liquid and energy pro-
duction as well as water and energy injection were performed for all of the 250 subsurface
models. Figure 4 shows energy production forecast for four of the development scenarios.

The cumulative net energy recovery of the various development scenarios is different.
For all of the development scenarios, a significant spread of the energy recovery can be ob-
served in Figure 4. The spread is the result of the various different parameter configurations
that were sampled using LHS from Tables A1 and A2 given in Appendix A.

The next step is to include the economic parameters and their ranges in the evaluation.
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4.7. Economic Parameters and Economic Analysis

The EMV of the geothermal field development depends on the net energy production
but also on operating expenditures (OPEXs), capital expenditure (CAPEXs), and the en-
ergy price. Table A3 in Appendix A gives the ranges of the various expenditures and the
energy prices used here. For each of the 250 forecasts generated from the 250 geomodels,
50 economic evaluations were performed using LHS from the economic parameters
(Tables A3 and A4 in Appendix A). The workflow ensured the allocation of OPEX to
only active wells and the CAPEX costs dependent on the specified surface facilities. In
total, 12,500 NPVs were calculated for each development scenario as a combination of the
250 subsurface realisation and 50 economic parameter configurations. A discount factor of
10% was used. The results of the economic calculations are given in Table 2.

Table 2. Results of the economic analyses for the various field development scenarios.

Option Number EMV in EUR M P10 NPV in EUR M P50 NPV in EUR M P90 NPV in EUR M PES as Fraction

1 −86.74 −488.28 −102.89 344.09 0.38
2 −40.48 −466.64 −57.73 417.19 0.44
3 3.81 −437.88 −12.75 472.34 0.49
4 −111.85 −604.72 −105.14 367.17 0.38
5 28.42 −333.13 15.58 411.85 0.52
6 81.63 −279.84 74.21 460.50 0.60
7 105.98 −201.51 106.19 423.01 0.65
8 −6.21 −236.42 −6.24 233.66 0.49
9 59.04 −324.04 48.01 464.37 0.56

10 105.07 −294.11 95.85 524.52 0.62
11 95.80 −291.37 85.10 504.01 0.61

The results reveal that the highest EMV is associated with development scenario 7,
closely followed by development scenario 10, with development scenarios 11 and 6 also
demonstrating substantial EMVs. However, the P10 NPV underscores a risk of negative NPVs
during project execution. None of the PES values exceed 0.65, indicating a 35% or greater
risk of unfavourable outcomes. In the context of our case study, a PES of 65% was deemed
insufficient given the company’s risk profile and the substantial expected investment.
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To address this, the next phase of evaluation delves into exploring various data ac-
quisition methods. In instances like the one illustrated in this case study, data acquisition
becomes imperative to either meet the risk (PES) hurdle [73,74], select the optimal de-
velopment option [75], or walk away. The challenge lies in identifying sequential data
acquisition actions capable of elevating PES and selecting the development option with the
highest expected reward. The data acquisition activities should not be too costly to avoid
value erosion.

For our case study, development option 10 employs a north-south line drive, de-
velopment option 11 adopts an east-west line drive, and development option 7 follows
a 5-spot pattern. The following question emerges: which sequence of data acquisition
actions will yield the highest expected reward and will inform us about which of the
development scenario to choose at the final investment decision (FID) or to walk away?
With ten geological uncertain parameters, six dynamic uncertain parameters, 13 economic
uncertain parameters, and 11 development scenarios, the subsequent section elaborates
on performing a sensitivity analysis and delineates the process for defining optimal data
acquisition actions.

4.8. Sensitivity Analysis and Data Acquisition Actions

To increase the expected reward, data acquisition needs to be observable, relevant,
material, and economic [76]. The distance-based generalized sensitivity analysis, as pro-
posed by Fenwick et al. [77], proves instrumental in showing the sensitivity of parameters,
including their interdependencies, on NPV.

Figure 5 visually represents the distance-based generalized sensitivity analysis out-
comes for development scenario 7 with respect to NPV.
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The energy price has the strongest impact on the NPV. However, for the case study,
we treat the energy price as residual uncertainty, i.e., an uncertainty that cannot be reduced.
The other parameters exerting substantial impact on NPV are economic factors followed by
geological parameters.
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To address these parameters, they need to be observable, meaning a measurement or
study needs to be performed which allows for a decrease in the uncertainty range of one or
more parameters. In this case study, the data acquisition actions detailed in Table 3 were
identified. Table 3 gives the data acquisition actions as well as the durations, the observed
variables, the costs, and the observation uncertainties for which uniform distributions were
applied. Note that the drilling of three wells informs several observed variables.

Table 3. Data acquisitions actions. The first eight actions are measurements, and the last eleven (the
economic data acquisition actions) are studies.

Name Cost in EUR M Duration in Years Observed Variables Observation
Uncertainty

Water compressibility −0.05 0.038 Water compressibility 5 × 10−5 1/bar

Initial reservoir pressure −0.01 0.058 Initial reservoir pressure 5 bar

Fault transmissibility multiplier −2 0.16 Fault transmissibility multiplier 0.015

Permeability ratio −0.05 0.082 Permeability ratio (vert/horiz) 367.17

Rock compressibility −0.05 0.082 Rock compressibility 411.85

Rock thermal conductivity −0.05 0.082 Rock thermal conductivity 460.50

Rock heat capacity −0.05 0.082 Rock heat capacity 423.01

Temperature gradient −0.1 0.058 Temperature gradient 233.66

Drill 3 wells −9 0.74

Porosity standard deviation
Porosity mean

Variogram anisotropy (major)
Variogram anisotropy (minor)

Variogram anisotropy (vertical)
Variogram azimuth
Surface trend Z max
Surface trend Z min

0.0025
0.025

1000 m
200 m
10 m
45 ◦

0.045
0.015

CAPEX injection well −1.2 0.082 CAPEX injection well EUR 0.3 M

CAPEX production well −1.2 0.082 CAPEX production well EUR 0.3 M

CAPEX surface facilities −10 0.16 CAPEX surface facilities EUR 18 M

CAPEX flowlines −10 0.16 CAPEX flowlines EUR 5.5 M

CAPEX production pump −0.03 0.082 CAPEX production pump EUR 0.0162 M

CAPEX injection pump −0.02 0.082 CAPEX injection pump EUR 0.01 M

OPEX fixed total −3.5 0.082 OPEX fixed total 1.0 M EUR/year

OPEX water −0.02 0.082 OPEX water 0.00975 EUR/m3/year

OPEX water injectors −0.02 0.082 OPEX water injectors 0.00975 EUR/m3/year

OPEX active producers −0.01 0.082 OPEX active producers 0.006 EUR/well/year

OPEX active water injectors −0.01 0.082 OPEX active water injectors 0.006 EUR/well/year

The table illustrates the difficulty of selecting a data acquisition program. While the
activity must yield informative results to enhance the PES and aid in the choice of a field
development option or to walk away, it is imperative that it remains cost-effective and does
not introduce delays to the project timeline. Preserving the efficiency of the data acquisition
process is crucial to prevent erosion of the time value of money. In the following section,
the use of agents is introduced to optimize field developments under uncertainty.

4.9. Partially Observable Markov Decision Process (POMDP)

In this section, first, we introduce the POMDP formulation and the agent. Then, we
describe the results of the POMDP agent and compare the results with conventional field
development planning.

4.9.1. Introduction of POMDP and Agent

Corso et al. [70] introduced a POMDP agent designed to address challenges in data
acquisition. Below, the POMDP and agent as developed by Corso et al. [70] is briefly described.
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The study employs a partially observable Markov decision process (POMDP) charac-
terized by the tuple (S, A, T, R, O, Z, γ), where S represents the set of states, A denotes the
set of actions, T defines the transition model between states, R signifies the reward function,
O represents the observation space, Z stands for the observation model, and γ indicates the
discount factor. A POMDP agent comprises two components: a belief updater and a policy
(refer to Figure 6). In each time step, the POMDP agent, situated in an environment with
state s, selects an action a, leading to a transition to a new state s′ with probability T(s′|s, a),
thereby yielding a reward r. Given that states are not directly observable, the agent infers
information about the state through a history of observations and actions. Beliefs, denoted
as b, are recursively computed by a belief updater using Bayes’ rule, incorporating the
action a taken and the observation o received. The policy π of a POMDP agent maps the
belief space B to the action set A. The optimal policy π* is one that maximizes the expected
discounted sum of future rewards.

Energies 2024, 17, x FOR PEER REVIEW 13 of 24 
 

 

 
Figure 6. POMDP agent [70]. 

The components of the POMDP for the geothermal data acquisition case are as 
follows [70]: 

States: the states consist of a fixed, discrete set of geological and economical models 
randomly sampled for the distributions given in Tables A1–A4 in Appendix A. 

Actions: there are 20 different data acquisition actions (Table 3), 11 development 
options, and the walk away option, hence the total 32 possible actions. 

Reward model: The reward (here negative reward, i.e., cost) of each data acquisition 
action is shown in Table 3. The reward for walking away is EUR 0, the reward for each 
development option is the EMV of the respective development option. 

Observations: observations are made based on the data acquisition action selected 
(Table 3). 

Observation model: the observation model defines the likelihood for the respective 
observation after executing an action. 

Transition model: here, the state does not change, hence T(s|s, a) = 1.  
We use the NativeSARSOP.jl 

(https://github.com/JuliaPOMDP/NativeSARSOP.jl/tree/main, 10 January 2024) 
implementation of the SARSOP algorithm [70].  

The solver underwent a single adjustment, allowing actions to have variable 
durations in computing the discount factor. Details of the solver parameters utilized can 
be found in Table 4 [70]. 

Table 4. SARSOP solver parameters. 

Parameter Value 
epsilon 0.5 

precision 1 × 10−3 
kappa 0.5 
delta 1 × 10−1 

max_time 10 
max_steps ∞ 
init_lower BlindLowerBound(bel_res = 1 × 10−2) 
init_upper FastInformedBound(bel_res = 1 × 10−2) 

prunethresh 0.1 

The POMDP agent was used to determine the approximately optimal data 
acquisition strategy. The results are given in the next section. 

4.9.2. Results of the POMDP Agent  
Applying the POMDP agent, one of the following three outcomes shown in Figure 2 

is suggested in the decision dialogue of the project team and decision board: to execute a 
development option, to walk away, or to perform a data acquisition activity. Which of the 

Figure 6. POMDP agent [70].

Corso et al. [70] used various methods to determine the near optimal policy. Here, we
cover the offline solver successive approximations of the reachable space under optimal
policies (SARSOP) [78] and the “Acquire all” approach used by Corso et al. [70]. The
SARSOP solver is a computationally efficient solver for a variety of POMDP tasks whereas
“Acquire all” assumes that all available data acquisition actions are performed before
choosing a development option.

The components of the POMDP for the geothermal data acquisition case are as fol-
lows [70]:

States: the states consist of a fixed, discrete set of geological and economical models
randomly sampled for the distributions given in Tables A1–A4 in Appendix A.

Actions: there are 20 different data acquisition actions (Table 3), 11 development
options, and the walk away option, hence the total 32 possible actions.

Reward model: The reward (here negative reward, i.e., cost) of each data acquisition
action is shown in Table 3. The reward for walking away is EUR 0, the reward for each
development option is the EMV of the respective development option.

Observations: observations are made based on the data acquisition action selected
(Table 3).

Observation model: the observation model defines the likelihood for the respective
observation after executing an action.

Transition model: here, the state does not change, hence T(s|s, a) = 1.
We use the NativeSARSOP.jl (https://github.com/JuliaPOMDP/NativeSARSOP.jl/

tree/main, 10 January 2024) implementation of the SARSOP algorithm [70].
The solver underwent a single adjustment, allowing actions to have variable durations

in computing the discount factor. Details of the solver parameters utilized can be found in
Table 4 [70].

https://github.com/JuliaPOMDP/NativeSARSOP.jl/tree/main
https://github.com/JuliaPOMDP/NativeSARSOP.jl/tree/main
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Table 4. SARSOP solver parameters.

Parameter Value

epsilon 0.5
precision 1 × 10−3

kappa 0.5
delta 1 × 10−1

max_time 10
max_steps ∞
init_lower BlindLowerBound(bel_res = 1 × 10−2)
init_upper FastInformedBound(bel_res = 1 × 10−2)

prunethresh 0.1

The POMDP agent was used to determine the approximately optimal data acquisition
strategy. The results are given in the next section.

4.9.2. Results of the POMDP Agent

Applying the POMDP agent, one of the following three outcomes shown in Figure 2
is suggested in the decision dialogue of the project team and decision board: to execute a
development option, to walk away, or to perform a data acquisition activity. Which of the
three activities should be performed depends on the risk attitude of the company as well as
the availability of funds for data acquisition. Figure 7 shows the POM as function of PES.
SARSOP refers to using the SARSOP policy whereas “Acquire all” assumes that all data is
gathered. Option 7 and option 10 show the cases in which no further data acquisition is
performed and the respective development option is executed; more results and details of
how the results were obtained are given in Corso et al. [70].
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Figure 7 illustrates the importance of defining the risk attitude in the framing part
of field development planning. A company requiring a PES of 61.6% or less could either
execute development option 7, option 10, perform the data acquisition strategy “Acquire
all”, or the suggested data acquisition of the SARSOP policy. For this case, the POM of a
project is larger for the SARSOP than for the “Acquire all” policy. For a PES requirement
61.6% < PES ≤ 66%, option 10 or data acquisition policy “Acquire all” or SARSOP could be
followed. For 66% < PES ≤ 82%, SARSOP has a higher POM than “Acquire all” whereas
for a PES hurdle of 82% or larger, “Acquire all” has a higher POM. The diagram (Figure 7)
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shows that the higher the required PES, the lower the POM. This has an implication for
selecting projects in the decision dialogue. Dependent on the project portfolio and company
strategy, projects with a larger POM might be required to achieve overarching production
or value targets. The POM derived by the agent is a quantitative measure of the chance of
executing a project. This is solving ambiguities in the concept of chance of development
which in current industry practice is based on expert judgement [79,80].

In addition to Figure 7, other KPIs need to be considered in the decision dialogue.
Table 5 gives several KPIs of the various policies.

Table 5. Comparison of KPIs of several policies.

Policy EMV in
EUR M

Correct
Go/No-Go

Correct Development
Scenario

Number of Data
Acquisition Actions

Expected Data Acquisition
Costs in EUR M

Scenario 7 106 0.66 0.18 0 0
Scenario 10 105 0.62 0.32 0 0
Acquire all 77 0.73 0.49 14.1 32
SARSOP 136 0.74 0.48 6.4 1.4

Correct go/no-go in Table 4 refers to the fraction of outcomes for which the correct
decision of executing a development scenario was taken. For scenario 7 and scenario 10,
this fraction equals the PES. Correct development scenario in Table 4 refers to the fraction
of outcomes that result in the correct development scenario. For example, scenario 7 should
have only chosen for 18% without data acquisition.

The selection of scenario 7, which has the highest EMV without data acquisition, does
not require any budget for data acquisition. However, the PES is 66%, i.e., in 34% of the
cases a negative NPV would be the result of the project. Also, this development scenario is
the correct development scenario for only 18% of the cases. The expected loss for this case
is EUR 51 M (Figure 8).
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Deciding on the next action in the decision dialogue (Figure 2) requires the considera-
tion of the trade-offs. While executing scenario 7 does not incur additional data acquisition
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costs, it will lead to the wrong development option in 82% of the cases. Choosing the
“Acquire all” policy reduces the chance of choosing the wrong development option to 51%;
however, it requires expected data acquisition costs of EUR 32 M and reduces the EMV
from EUR 106 M for scenario 7 to EUR 77 M. “Acquire all” results in higher maximum
expected losses (Figure 8) but reduces the P50 of the expected loss from EUR 51 M for
option 7 to EUR 25 M.

The SARSOP policy increases the EMV from EUR 106 M for scenario 7 to EUR 136 M,
reduces the data acquisition costs from EUR 32 M for “Acquire all” to EUR 1.4 M, has the
highest probability of choosing the correct go/no-go decision with 74%, and has a very
similar chance of choosing the correct development scenario as the “Acquire all” policy:
48% versus 49%. The expected loss cumulative distribution function (CDF) indicates a
lower maximum expected loss than the “Acquire all” policy; however, it has a higher P50
expected loss of EUR 33 M than the “Acquire all” policy (EUR 25 M).

In the case study, the company required a PES hurdle of 75%. For this case, considering
the EUR 1.4 M expected data acquisition costs, the SARSOP policy was chosen as it yields
the highest EMV, has the highest chance of resulting in the correct go/no-go decision and
has the highest chance to choose the correct development option. The most frequently
chosen first action in the SARSOP policy for this case is “Assess OPEX Active Water
Injectors”. This action will be executed first.

After performing the data acquisition action, the parameter distributions will be
updated, the sensitivity analysis will be performed, and the POMDP evaluation will be
performed. Dependent on the result, a development scenario will be chosen and the walk
away option or data acquisition step will be executed, as shown in Figure 2.

In the following section, we describe data acquisition strategies suggested by humans
for the case study.

4.10. Human Suggested Data Acquisitions Strategies

In addition to using k-fold cross validation to ensure that the POMDP solution is not
overestimated (for details see [70]), we compared the effectiveness of AI-centric geothermal
field development planning to traditional methods. We sought input from nine profes-
sionals with 6–28 years of experience in various field development projects. The results
are detailed in Table A5 in Appendix A and described in more detail in Corso et al. [70].
The variations among experts, both in the number and prioritization of suggested data
acquisition actions, highlight the complexity of the decision space that exceeds human
cognitive capacities.

The human experts differed substantially in the number of data acquisition actions
as well as which data acquisition to perform first. As the first data acquisition action,
six different actions were suggested by the nine experts. The number of data acquisition
actions ranged from 3 to 16. Comparing with the expert achieving the highest EMV, the
SARSOP algorithm increased the EMV by 27%, the correct go/no-go decision by 1.2%, and
reduced acquisition costs by 35%. The differences with the “average human” are even larger
(Table 6). It should also be noted the “best human” decision for EMV and data acquisition
costs was from human expert 6, whereas it was human expert 1 for the correct go/no-go
and correct development options. Human expert 6 chose data acquisition actions with
lower acquisition costs but the result was that the expert would have chosen the correct
development option only in 32% of cases (Table A5 in Appendix A). The “best human”
expert, human expert 1, achieved a slightly higher percentage for the correct development
option; however, it was at much higher acquisition costs and lower EMV than SARSOP
(Table A5 in Appendix A). Also, SARSOP suggests action 20 as the first data acquisition
(Table 3) which was not picked by any human expert as their first data acquisition action.
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Table 6. Comparison of the SARSOP policy with humans. The percentages refer to the difference in
percentage of SARSOP and the “best human” and the average of the outcomes of humans.

Policy EMV in EUR M Correct Go/No-Go
Decision

Correct Development
Scenario

Data Acquisition
Cost in EUR M

SARSOP 136 0.737 0.476 −1.4

Best human (EMV, data
acquisition): expert 6 107 0.66 0.32 −2.2

Best human (correct
go/no-go and correct dev

scen option): expert 1
75 0.728 0.5 −33.8

Average human 83 0.67 0.38 −24.7

4.11. Discussion of the Results of AI-Centric Evaluation Phase

Field development planning for low-enthalpy geothermal fields presents a challenge
due to the substantial CAPEX and OPEX involved. The inherent risk of negative NPVs
of the project and the necessity for numerous sequential decisions under uncertainty
further compound the complexity. Specifically, determining the optimal sequence for data
acquisition poses a significant challenge.

In hydrocarbon field developments, VOI was suggested as the evaluation method [81,82].
It was seen that determining the probabilities at the decision notes [83] and incorporating
the risk attitude of the decision makers (e.g., [84]), risk hurdles [85] and performing sequen-
tial appraisals [86] are particularly difficult. Geothermal field development planning has
thus far employed VOI mainly for individual costly data acquisition activities [87] or to
compare a limited number of scenarios [88]. These approaches fall short in comprehen-
sively comparing all potential data acquisition actions and addressing the sequential and
cascading impact of data acquisition on the initial action.

With no established methodology for sequential decision making, current field devel-
opment planning adheres to the stage-gate process (Figure 1), relying heavily on human
interactions within the project team. The results of comparing the human-suggested data
acquisition strategies with AI-centric selection indicate that quality decision making in
field development planning is substantially improved by using AI-centric approaches.
The reason is that even if group biases are avoided (e.g., [89,90]) the complexity of the
decision problem is too high to allow for finding the optimum data acquisition policy. It is
impossible for humans to incorporate information from future additional information gains,
use constraints such as PES, and capture the multitude of different parameters influencing
a decision in field development planning. None of the humans identified action 20 (Table 3)
as their first action, which was suggested by SARSOP.

Furthermore, the absence of a quantitative evaluation method in conventional field
development planning such as POMDP agents suggests potential shifts in outcomes during
team discussions in conventional field development planning. Also, trade-offs cannot be
quantified in conventional field development planning and are based on human experiences
and heuristics. This emphasizes the substantial impact and efficiency gains achievable
through AI-centric strategies in field development planning.

5. Conclusions and Recommendations

Geothermal field development planning is aimed at finding the best development
scenario (or walk-away), maximizing the expected reward under uncertainty. To identify
the best development scenario, additional data can be acquired if the data acquisition
increases the expected reward of the field development.

The conventional geothermal field development is starting with modelling, then cost
estimation, calculation of economics, and then focussing on an individual data acquisi-
tion action.

AI-centric geothermal field development planning utilizes various methods such as
machine learning-supported conditioning of model ensembles to data which are then used
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for forecasting uncertainty, distance-based generalized sensitivity analyses to assess the
impact of parameters on final values, and POMDP agents to determine the optimum policy
for data acquisition to select the highest value development scenario under uncertainty (or
walk away).

Applying AI-centric geothermal field development planning to an example low-
enthalpy case in Austria shows the strengths of the approach. The results show that the
AI-centric approach is outperforming conventional approaches by increasing the expected
reward by 27% and reducing acquisition costs by 35%. In addition, the approach provides
auditable KPIs which can be used to quantify trade-offs. Geothermal field developments
will be accelerated as only value-adding data will be acquired. Costs will be reduced and
trade-offs will be quantified using AI-centric geothermal field development planning.

This article covers the use of AI for a case of 32 actions including data acquisition, vari-
ous field developments, and executing the walk-away option. Future work should address
the optimization of field development under uncertainty. This will require researchers to
forecast thousands of development options. In order to forecast so many cases, surrogate
models will need to be developed.
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AI artificial intelligence
CAPEX capital expenditures
CDF cumulative distribution function
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LHS Latin hypercube sampling
NPV net present value
OPEX operating expenditures
P10, P50, P90 10%, 50%, 90% percentile
PES probability of economic success
POM probability of maturation
POMDP partially observable Markov decision process
PR project review
VOI value of information
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Appendix A

Figure A1 provides an overview of the suggested workflow within the “Evaluate”
phase. More details are given in Sections 4.4–4.8.

The first step is to determine prior ranges of geological, dynamic, and economic pa-
rameters. From these parameters, a model ensemble (in the case study 250 subsurface
models) is created. Field development options are defined and used to forecast production
from this model ensemble. Then, the economic parameters are sampled and economic cal-
culations are performed to determine KPIs. Afterwards, a sensitivity analysis is conducted
to understand which of the parameters have a high impact on the NPV. Guided by the
sensitivity analysis, data acquisition actions are suggested. All the information is then fed
to POMDP agents. The results of the POMDP agents lead to the POM versus PES.

Applying the selected PES (risk) hurdles, possible data acquisition strategies (including
walk away or executing a field development scenario) are selected. Then, the results of the
POMDP agents are used to understand trade-offs of the various KPIs. Finally, an action
is suggested, either to execute a specific field development option, to walk away or to
perform a data acquisition action. If a data acquisition action is performed, then posterior
distributions of the parameters are evaluated, this could be either geological, dynamic, or
economic parameters.

The posterior parameter ranges are then used to update the sensitivity analysis and the
KPIs. Again, the PES hurdle is applied, trade-offs evaluated, and an action selected (field
development, walk away, data acquisition). The process ends if either a field development
is selected or the walk-away option is executed if further data acquisition does not increase
the expected reward.
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The ranges of the parameters that were used to generate the geological models are
given in Table A1.
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Table A1. Ranges of the geological parameters that were used to generate the geological models.

Name Minimum Maximum Unit

Porosity standard deviation 0.01 0.02 fraction
Porosity mean of the normal distribution 0.065 0.135 fraction

Azimuth of the variogram 0 359 degree
Variogram anisotropy—major direction 200 5000 m
Variogram anisotropy—minor direction 200 1000 m

Variogram anisotropy range—vertical direction 10 100 m
Fault transmissibility multiplier 0 1 -

Permeability ratio vertical/horizontal 0.01 0.5 -
Surface trend Z value maximum 0.085 0.195 -
Surface trend Z value minimum 0.045 0.085 -

The ranges of the parameters that were used for the reservoir dynamics are given in
Table A2. Uniform distributions were applied.

Table A2. Ranges of the dynamic parameters that were used to generate the geological models.

Name Minimum Maximum Unit

Water compressibility 4.70 × 10−5 4.80 × 10−5 1/bar
Initial reservoir pressure 240 250 bar

Rock compressibility 3.0 × 10−5 8.0 × 10−5 1/bar
Rock thermal conductivity 238.7 292 KJ/(mx dx K)

Rock heat capacity 2303.5 3116.5 KJ/(m3x K)
Temperature gradient 0.025 0.035

Table A3 shows the ranges of the economic parameters used in the evaluation. Uniform
distributions were applied. Table A4 gives the details of the costs dependent on the size of
the surface facilities and development option.

Table A3. Ranges of the economic parameters.

Name Minimum Maximum Unit

Energy (heat) price 1.1 10−5 1.67 10−5 EUR/kJ
CAPEX injection well 4 8 EUR M

CAPEX production well 4 8 EUR M
CAPEX surface facilities See Table A4 See Table A4

CAPEX flowlines See Table A4 See Table A4
CAPEX production pump 0.25 0.4 EUR M

CAPEX injection pump 0.15 0.25 EUR M
OPEX fixed total See Table A4 See Table A4

OPEX surface facilities 4.5 6 % of Surface Facility CAPEX
OPEX water 0.17 0.22 EUR/(m3 year)

OPEX water injectors 0.17 0.22 EUR/(m3 year)
OPEX active producers 0.09 0.15 EUR/(well year)

OPEX active water injectors 0.09 0.15 EUR/(well year)

Table A5 gives the results of human experts with 6–28 years of experience in field
development planning for suggestions of the data acquisition strategy.
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Table A4. Cost ranges dependent on the development option and surface facility size.

Option Number Facility Type CAPEX Surface Facilities CAPEX Flowlines OPEX Fixed Total

1 Large EUR 300–500 M EUR 100–140 M EUR 27–39 M
2 Large EUR 300–500 M EUR 100–140 M EUR 29–42 M
3 Large EUR 300–500 M EUR 100–140 M EUR 26–38 M
4 Large EUR 300–500 M EUR 100–140 M EUR 27–39 M
5 Medium EUR 270–450 M EUR 90–126 M EUR 20–29 M
6 Medium EUR 270–450 M EUR 90–126 M EUR 17–25 M
7 Small EUR 255–425 M EUR 85–119 M EUR 12–18 M
8 Small EUR 255–425 M EUR 79–105 M EUR 8–12 M
9 Medium EUR 270–450 M EUR 90–126 M EUR 20–29 M
10 Medium EUR 270–450 M EUR 90–126 M EUR 20–29 M
11 Medium EUR 270–450 M EUR 90–126 M EUR 19–28 M

Table A5. Results of the data acquisition strategies suggested by human experts.

Human Expert Policy EMV in EUR M Number of Acquisition Actions Data Acquisitions Costs in EUR M

1 75 16 −34
2 76 6 −25
3 92 3 −12
4 84 9 −25
5 99 8 −14
6 107 5 −2
7 71 13 −37
8 71 10 −37
9 68 8 −37
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