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Abstract: This study investigated the impact of information and communication technology (ICT) on
electricity intensity, incorporating electricity prices, financial development, and population growth
in Korea from 1990 to 2020, using the ARDL (autoregressive distributed lag) model. Three cases
were considered, each relating to a different ICT proxy: Internet use, mobile cellular phone use, and
exports of ICT-related products. The results varied depending on the proxy used to represent ICT.
An increase in mobile cellular phone use leads to an increase in electricity intensity in the long run;
however, the short-run effects of this change are unclear. An increase in Internet use also leads to
an increase in electricity intensity in the long run but induces a decrease in electricity intensity in
the short run. Increments in the exports of ICT-related products lead to an increase in electricity
intensity in the short run; however, this effect is negligible in the long run. Electricity prices do not
affect electricity intensity in all cases, and financial development reduces the intensity of electricity
in the cases of the use of both mobile cellular phones and the Internet as proxies for ICT, whereas
population growth increases electricity intensity in all cases.

Keywords: ICT; autoregressive distributed lag; electricity intensity; Internet use; mobile cellular
phone use; exports of ICT-related products

1. Introduction

Studies on the relationship between information and communication technology (ICT)
and energy consumption first began to appear in the 1950s, a notable one being Thirring’s
study [1]. However, this topic did not receive significant attention until the early 1980s
(Walker, [2,3]). Since the 1990s, the development of the Internet and wireless communica-
tion technology has brought about the rapid proliferation of smartphones and computers,
as well as the rapid development of hardware (such as data centers and communication
networks) and related software technologies. According to the World Bank’s World De-
velopment Indicators (WDIs) Database [4], only 0.023% of the total population of Korea
(The Republic of Korea) used the Internet in 1990. However, this figure had increased to
97.57% by 2021. Additionally, the number of mobile cellular subscriptions (per 100 people)
was only 0.18 in 1990; this figure has since risen to 140.57 as of 2021. Electricity is used in the
ICT sector to power users’ devices (such as laptops and smartphones) and the infrastructure
underpinning them (i.e., communication networks and data centers). Cardoso et al. [5]
reported that data centers were responsible for 1% of the global electricity demand in 2018.
However, these are expected to account for more than 20% of it by 2030. Conversely, despite
increases in energy consumption due to ICT systems, energy efficiency can be optimized
by ICT (Bastida et al. [6]). The electricity efficiency of ICT equipment has also increased
rapidly due to the implementation of energy-saving technologies within ICT-related de-
vices and trends such as cloud computing. Therefore, the development of ICT represents
an opportunity to decrease both electricity demand and electricity intensity.

Previous studies have attempted to glean whether the proliferation of ICT devices
and the development of related technologies have resulted in an increase in electricity de-
mand. Most previous studies have focused on the direct relationship between ICT use and
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electricity consumption, which can be classified either as panel analyses targeting multiple
countries or studies targeting specific countries. Panel studies targeting multiple countries
can then be further divided into analyses focused on developed and developing countries.

Examples of panel analyses targeting developed countries include those by
Salahuddin et al. [7] and Magazzino et al. [8]. Salahuddin et al. [7] estimated the effects of ICT
use on electricity consumption in OECD countries from 1985 to 2012, and Magazzino et al. [8]
investigated the relationship between the diffusion of ICT, electricity consumption, economic
growth, and environmental pollution in 16 EU countries from 1990 to 2017 using pooled mean
group (PMG) estimation and the Dumitrescu–Hurlin causality test. The results of Salahuddin
et al. [7] showed that ICT use caused electricity consumption and increased electricity con-
sumption in both the short and long run. Magazzino et al. [8] showed a one-way causality
running from ICT use to electricity consumption using Dumitrescu–Hurlin panel causality
tests. However, the results of panel mean group regression evinced that the use of ICT did not
affect energy consumption. Analysis of developed countries has yielded different research
results depending on their target countries and periods.

Examples of panel analyses that target developing countries include those of Sadorsky [9],
Afzel and Gow [10], Saidi et al. [11], Saidi et al. [12], and Zhao et al. [13]. Sadorsky [9] examined
the impact of ICT on electricity consumption using GMM estimation in emerging economies
from 1993 to 2008, and they observed a positive and statistically significant relationship
between ICT and electricity consumption. Afzel and Gow [10] investigated the influence
of ICT on electricity consumption using mean group (MG) and PMG estimation in the next
eleven (N-11) emerging economies from 1990 to 2014 and observed a positive and statistically
significant relationship between ICT and electricity consumption. Saidi et al. [11] investigated
the impact of ICT and economic growth on electricity consumption using GMM estimation
in 67 countries from 1990 to 2012 and discovered that ICT had a positive and statistically
significant effect on electricity consumption. Saidi et al. [12] examined the relationship
between energy consumption, ICT, foreign direct investment, and economic growth using
the Granger causality test in 13 MENA countries from 1990 to 2012 and did not find a causal
relationship between ICT use and energy consumption. Zhao [13] investigated the effects of
ICT on energy efficiency and environmental sustainability using autoregressive distributed
lag (ARDL) pooled mean group estimation in emerging Asian economies from 1990 to 2019.
The results showed that Internet and mobile use increased energy efficiency in the long run.
While Sadorsky [9], Afzel and Gow [10], and Saidi et al. [11] showed that an increase in ICT
usage increased power consumption, other studies have not confirmed these results.

Examples of studies targeting specific countries include those by Collard et al. [14],
Ishida [15], Shehzad et al. [16], and Solarin et al. [17]. Collard et al. [14] examined how
the diffusion of ICT-related capital goods affected electricity usage in the French service
sector from 1978 to 1999 using a non-linear least squares method and observed that the
growth of ICT-related capital goods decreased electricity intensity in the service sector.
However, the intensity of electricity has been shown to vary depending on the ICT proxy,
where the intensity of electricity usage increased with the use of computers and software
but decreased with the adoption of communication devices. Ishida [15] investigated the
relationship between ICT and energy consumption in Japan from 1980 to 2010 using the
ARDL bounds test and found that ICT investment contributed to a moderate reduction in
energy consumption. Shehzad et al. [16] investigated the relationship between ICT and
electricity consumption in the United Arab Emirates from 1975 to 2011 using a vector
error correction model. They found that ICT increased electricity demand and observed,
additionally, an inverted U-shaped relationship between ICT and electricity consumption.
Solarin et al. [17] investigated the effects of ICT on electricity consumption in Malaysia from
1990 to 2015 using a Toda–Yamamoto Granger causality approach, and they observed that
ICT had a positive impact on electricity consumption. The impact of ICT use on electricity
consumption in specific countries varies from country to country. In some countries, the
use of ICT has been shown to improve electricity efficiency, thereby causing a decrease in
electricity consumption. However, in other countries, the use of ICT has proven to increase
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electricity consumption. Observing various country-specific research results, ICT has
improved electricity consumption efficiency in France and Japan, but it has also increased
overall electricity consumption in Malaysia and the United Arab Emirates.

This study analyzes the effects of various proxies for ICT on electricity intensity,
incorporating electricity prices, financial development, and population growth in Korea
from 1990 to 2020. To the best of our knowledge, this is the first study to investigate this
topic in Korea. This study is differentiated from previous studies in the following ways:

Firstly, while most studies have analyzed the direct relationship between ICT and
electricity consumption, this study analyzes the relationship between ICT and electricity
intensity. Here, electricity intensity is defined as the ratio of electricity consumption to GDP.
Therefore, electricity intensity is affected not only by an increase in electricity consumption
but also by an increase in GDP. In other words, the effects of ICT on electricity consumption
and GDP can be considered simultaneously through the metric of electricity intensity.

Secondly, this study focuses on Korea. Although Korea has been included in some
previous panel analyses on these topics, no analysis has focused solely on Korea. South
Korea has undergone rapid development in terms of ICT over the past 30 years, with the
spread of the Internet and mobile cellular devices. Figure 1 shows the trends in various
proxies for ICT in Korea; (a) and (b) represent Internet use and mobile cellular phone
use, respectively, and data that show similar trends. However, the export of ICT goods
(c) shows a quite different trend. One consistent observation is that Korea’s ICT sector
has developed rapidly due to the spread of the Internet and mobile cellular devices. This
development, in turn, is assumed to have led to changes in electricity consumption, which
in turn affects electricity intensity. Specifically, the ARDL model is used to examine the
short- and long-run effects of ICT on electricity intensity.

Energies 2024, 17, x FOR PEER REVIEW 4 of 18 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Trends in proxies for ICT: (a) Mobile cellular subscriptions per 100 people; (b) Internet 
users per 100 people; (c) exports of ICT-related products (in millions of USD). 
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Thirdly, this study utilized three proxies for ICT: Internet users per 100 people, mobile
cellular subscriptions per 100 people, and exports of ICT-related products. This approach
provides a more comprehensive understanding of how different proxies for ICT affect
electricity intensity. Most previous studies have used the Internet and mobile cellular
phones as proxies for ICT. This study includes exports of ICT-related products as a new
proxy for ICT. However, these proxy data are only available from 1996 onwards.

Fourthly, if the impact of ICT on electricity intensity is confirmed, it could have
implications for the energy policies and strategies being implemented in order to reduce
carbon emissions. This study aims to provide implications for energy-related policies and
climate change mitigation strategies in Korea.

The theoretical research methodology and related materials will be explained in the
following chapter. Section 3 will present the results of the empirical analysis, and Section 4
will provide conclusions and policy implications.

2. Materials and Methods

In this study, we utilized the ARDL methods introduced by Pesaran and Pesaran [18],
Pesaran and Shin [19], and Pesaran et al. [20] to evaluate short- and long-run cointegration
among variables. The ARDL approach is used to explore long-run relationships between
variables and to analyze how these relationships evolve over time. This model allows for
the analysis of short-run changes and shocks and how they affect long-run relationships.
This can help in understanding the short-term effects of policy changes or external shocks
on economic indicators. Utilizing the ARDL model, it is possible to test whether different
variables maintain a long-run equilibrium relationship, known as a relationship of cointe-
gration. This implies that the variables move together in the long run and maintain a certain
state of equilibrium. Once a long-run relationship is established, the ARDL model can be
restructured into an error correction model, which allows the analysis of how variables
adjust in the short run to return to their long-run equilibrium.

The ARDL cointegration method is considered more effective than the Johansen
cointegration method developed by Engle and Granger [21] because it is valid even for
short and finite sample data sets and provides effective results regardless of whether the
variables are integrated at I(0), I(1), or jointly cointegrated (Pesaran et al. [20]). The ARDL
method also provides valid estimators in the presence of endogeneity and autocorrelation
in the model, as shown in previous studies by Armi [22] and Shehzad et al. [16], which
focused on a single country.

Synthesizing the models used in previous studies such as Sadorsky [9], Salahuddin et al. [7],
Saidi et al. [11], Zhao et al. [13], Shahbaz et al. [16], and Solarin et al. [17], the following equa-
tion can be used to specify the long-run empirical model that reflects the effect of exogenous
variables, including ICT, on electricity intensity:

ln EEt = β0 + β1 ln EPt + β2 ln ICTt + β3 ln FDt + β4 ln POt + εt, (1)

where ln is the natural logarithm and EE represents electricity intensity, which is calculated
by dividing electricity consumption by GDP. EP represents electricity prices. ICT represents
information and communication technology. FD represents financial development, which
is measured according to the share of domestic credit in the private sector in GDP (%), and
PO represents the population. The error term is denoted as εt. Subscript t represents the
time dimension. The expected signs of the independent variables could be either positive or
negative. Generally, higher electricity prices are expected to reduce electricity consumption
due to the law of demand (Salahuddin et al. [7], Shahbaz et al. [16]). Therefore, it is expected
that the price of electricity will have a negative effect on electricity intensity. Previous
research has indicated that financial development also affects electricity consumption. This
variable was included in the study of Saidi et al. [11] and Solarin et al. [17]. Therefore,
financial development is also expected to affect electricity intensity. Population growth has
also been found to affect electricity consumption in many studies by Saidi et al. [11] and
Zhao et al. [13]. Population growth has been shown to increase electricity consumption
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in most studies. Therefore, we expected population growth to have a negative impact on
electricity intensity. As shown in Table 1, ICT can have both positive and negative effects on
electricity consumption. The effects are expected to vary depending on the characteristics
of the country.

Table 1. Previous studies on ICT’s effect on electricity consumption or electricity intensity.

Subjects Regions Periods Methods Main Results

Afzel and Gow [10] The effect of ICT on
electricity consumption

Eleven emerging
economics (1) 1990–2014 Mean group and

pooled mean group

There is a positive and statistically
significant relationship between ICT
and electricity consumption.

Collard et al. [14]
The effect of ICT on
electricity consumption in
the service sector

France 1978–1999 Non-linear least
squares method

ICT capital increased electricity
efficiency and contributed to a
reduction in electricity intensity in
the service sector.

Ishida [15]
The effect of ICT
development on
energy consumption

Japan 1980–2010 ARDL bounds test

The long-term elasticity of the effect
of ICT investment
on energy consumption was 0.155,
while ICT investment moderately
reduced energy consumption.

Magazzino et al. [8]

The links between ICT,
electricity consumption, air
pollution, and economic
growth in EU countries

16 EU countries 1990–2017
Dumitrescu–Hurlin panel
causality tests, panel
mean-group regression

There is a one-way causality
running from ICT usage to
electricity consumption.

Sadorsky [9]
The impact of ICT on
electricity consumption in
emerging economies

Emerging economies (2) 1993–2008 GMM estimation
There is a positive and statistically
significant relationship between ICT
and electricity consumption.

Saidi et al. [11]
Impact of ICT
and economic growth on
electricity consumption

67 countries 1990–2012 GMM, AR (2)
ICT exerts a positive and statistically
significant effect on electricity
consumption.

Saidi et al. [12]
Causal dynamics between
energy consumption, ICT,
FDI and economic growth

13 MENA countries (3) 1990–2012 Granger causality test

There is a bidirectional relationship
between energy consumption and
economic growth and between ICT
and economic growth.

Salahuddin et al. [7]

The short- and long-run
effects of ICT use and
economic growth on
electricity consumption

OECD countries 1985–2012
PMG estimation and
Dumitrescu–Hurlin
causality test.

ICT stimulates electricity
consumption in both the short and
long term; mobile and Internet use
cause an increase in electricity
consumption.

Shahbaz et al. [16] The role of ICT in electricity
demand: UAE 1975–2011 VECM

ICT increased electricity demand.
ICT and electricity price granger
cause electricity demand.

Solarin et al. [17]

The impact of ICT, financial
development and economic
growth on electricity
consumption

Malaysia 1990–2015 Toda–Yamamoto Granger
causality approach

ICT has a positive effect on
electricity consumption; financial
development increases electricity
consumption.

Zhao et al. [13]
The effect of ICT on energy
efficiency and
environmental sustainability

Asian economies 1990–2019 ARDL–PMG
Use of the Internet and mobile
phones increases energy efficiency in
the long run.

(1) Bangladesh, Egypt, Indonesia, Iran, Mexico, Nigeria, Pakistan, the Philippines, Turkey, South Korea, and
Vietnam. (2) Brazil, Colombia, Mexico, Peru, the Czech Republic, Egypt, Hungary, Morocco, Poland, Russia,
and South Africa. (3) Algeria, Egypt, Iran, Jordan, Kuwait, Morocco, Oman, Saudi Arabia, Sudan, Syria, Tunisia,
Turkey, and the United Arab Emirates.

Three different cases were considered, each using a different proxy for ICT, with
MO denoting mobile cellular subscriptions (per 100 people), INT denoting the number
of Internet users (per 100 people), and EX denoting the amount of exports of ICT-related
products. MO, INT, and EX as proxies for ICT are named Case 1, 2, and 3, respectively.

(Case 1) ln EEt = β0 + β1 ln EPt + β2 ln MOt + β3 ln FDt + β4 ln POt + εt,
(Case 2) ln EEt = β0 + β1 ln EPt + β2 ln INTt + β3 ln FDt + β4 ln POt + εt,
(Case 3) ln EEt = β0 + β1 ln EPt + β2 ln EXt + β3 ln FDt + β4 ln POt + εt.

(2)

The estimation of the ARDL models involves three steps. The first step is to perform
an ARDL bounds test to determine whether a long-run cointegration relationship exists



Energies 2024, 17, 1906 6 of 17

between the variables. Once this is established, the conditional error correction model can
be formulated using the following equation:

∆ ln EEt = α0 +
p
∑

k=1
α1k∆ ln EEt−k +

q1

∑
k=0

α2k∆ ln EPt−k +
q2

∑
k=0

α3k∆ ln ICTt−k

+
q3

∑
k=0

α4k∆ ln FDt−k +
q4

∑
k=0

α5k∆ ln POt−k + α6 ln EEt−1+

α7 ln EPt−1 + α8 ln ICTt−1 + α9 ln FDt−1 + α10 ln POt−1 + ut,

(3)

Equation (3) includes the first difference operator, denoted by ∆, and the long-term
coefficients α6 to α10. The optimal lag length, represented by p and q1 to q4, is determined
using the Akaike information criterion (AIC).

If the first step confirms the existence of a cointegration relationship, the second step
estimates the augmented ARDL model using the following equation:

ln EEt = γ0 +
p
∑

k=1
γ1k ln EEt−k +

q1

∑
k=0

γ2k ln EPt−k +
q2

∑
k=0

γ3k ln ICTt−k+

q3

∑
k=0

γ4k ln FDt−k +
q4

∑
k=0

γ5k ln POt−k + vt

(4)

The long-run coefficients in this ARDL model are estimated using Equation (4):

ln EEt = λγ0 + λ
q1

∑
k=0

γ2k ln EPt−k + λ
q2

∑
k=0

γ3k ln ICTt−k

+λ
q3

∑
k=0

γ4k ln FDt−k + λ
q4

∑
k=0

γ5k ln POt−k + λvt

(5)

where
λ =

1
1 − ∑

p
k=1 γ1k

.

The third step involves identifying the short-run dynamics using the ARDL error
correction model (ARDL-ECM) presented below:

∆ ln EEt = δ0 +
p
∑

k=1
δ1k∆ ln EEt−k +

q1

∑
k=0

δ2k∆ ln EPt−k +
q2

∑
k=0

δ3k∆ ln ICTt−k

+
q3

∑
k=0

δ4k∆ ln FDt−k +
q4

∑
k=0

δ5k∆ ln POt−k + δ6ECTt−1 + ρt.

(6)

where ρ is the error term, and ECTt−1 represents the error correction term. When the
coefficients of ECTt−1 (δ6) are negative and statistically significant, the associated variables
will converge to the long-run equilibrium.

The stability of the ARDL model is tested using the cumulative sum of the recursive
residual test (CUSUM) and the cumulative sum of squares of the recursive residual test
(CUSUMSQ). The E-views package was used to estimate this ARDL model.

The specific data and sources are listed in Table 2. The time range of the data, except
for EX, is 1990 to 2020. Data for EX are only available from 1996 onward, as there were no
data prior to 1996. MO, INT, FD, and PO were obtained from the DataBank of the World
Bank [4], and EE and EP were obtained from the Korea Energy Statistical Information
System (KESIS) of the Korea Energy Economics Institute (KEEI) [23]. EX was obtained from
the Korean Statistical Information Service (KOSIS) of Statistics Korea [24]. Table 3 shows
the descriptive statistics of individual variables.
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Table 2. Data Sources.

Variables Unit Sources

EE Electricity consumption (MWh)/GDP (constant 2015 USD) KEEI, KESIS
EP Electricity price (won/kWh) KEEI, KESIS
MO Mobile cellular subscriptions (per 100 people) World Bank, DataBank
INT Individuals using the Internet (% of the population) World Bank, DataBank
EX Exports of ICT-related products (in millions of USD) Statistics Korea, KOSIS
FD Domestic credit to private sector (% of GDP) World Bank, DataBank
PO Population World Bank, DataBank

Table 3. Descriptive statistics.

EE EP MO INT EX FD PO

Mean 0.000307 81.82 70.33 55.46 122,463 103.04 48,046,696
Median 0.000318 76.43 78.73 73.50 130,098 112.65 48,184,561

Maximum 0.000348 111.57 137.54 96.51 220,340 164.78 51,780,579
Minimum 0.000235 52.94 0.19 0.02 38,888 48.61 42,869,283
Std. dev. 3.32 × 10−5 19.42629 47.06264 38.27662 55,764.7 38.46759 2,690,337
Skewness −0.8657 0.3468 −0.3308 −0.5426 −0.1290 −0.3415 −0.3227
Kurtosis 2.6936 1.8100 1.7167 1.5653 1.7312 1.5571 1.9975

Jarque–Bera 3.9934 2.4507 2.6925 4.1802 1.7464 3.2919 1.8363
(0.1358) 1 (0.2937) (0.2602) (0.1237) (0.4176) (0.1928) (0.3992)

Observations 31 31 31 31 25 31 31
1 Parentheses indicate the provability of Jarque–Bera statistics.

3. Results
3.1. Unit Root Test

Whether the variables are I(0) or I(1) should first be checked using a unit root test
to evaluate the long-run relationships of cointegration among the variables using the
ARDL approach. We adopted the augmented Dickey–Fuller test (Dickey and Fuller [25])
to test whether each variable was stationary. Table 4 shows the results of the ADF test
at the variable level, and Table 5 shows the results of the first difference in the variables.
According to these results, lnEP, lnFD, and lnEX had unit roots at the level but not at the
first difference. Therefore, these variables were integrated at I(1). lnEE, lnPO, and lnMO
did not have unit roots at this level, indicating that these variables were integrated at I(0).

Table 4. Unit root test (level).

ADF-Test, t Statistics p-Value

ln EE −3.9445 *** 0.0052

ln EP −1.1763 0.6707

ln PO −8.4852 *** 0.0000

ln FD −0.7233 0.8258

ln MO −8.1974 *** 0.0000

ln INT −2.9903 * 0.0496

ln EX −1.5422 0.4956
*** (p-value < 0.01), * (p-value < 0.1).

Because all the variables are integrated at I(0) or I(1), the ARDL cointegration method
can be applied to this study. The ARDL cointegration method is also valid, even if the vari-
ables have a mixed order of integration. All variables are either I(0) or I(1), which satisfies
the requirement of the ARDL model using a bound testing approach (Pesaran et al. [20]).
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Table 5. Unit root test (first difference).

ADF-Test, t Statistics p-Value

∆ ln EE −2.7576 0.0769

∆ ln EP −3.6994 *** 0.0095

∆ ln PO −1.3913 0.5726

∆ ln FD −3.6684 *** 0.0103

∆ ln MO −6.2354 *** 0.0000

∆ ln INT −2.7849 0.0767

∆ ln EX −5.1682 *** 0.0004
*** (p-value < 0.01).

3.2. Model Selection Criterion and ARDL Bounds Test

An appropriate lag length was chosen to avoid erroneous estimates and consequent
low model reliability. The Akaike information criterion (AIC) criteria was used to select the
appropriate lag length. The AIC measure is widely used in statistics for model selection
among a set of models. The AIC provides a relative estimate of the information lost when a
given model is used to represent the process of generating the data. In simpler terms, the
AIC helps to quantify how well a model fits the data while penalizing for the number of
parameters used, thus encouraging parsimony.

Figures A1–A3 presents the top 20 ARDL models for each case, differing according
to the chosen proxy for ICT. Figure A1 shows the models determined for mobile cellular
phone use as a proxy for ICT; the ARDL (1,1,2,2,1) model shows the lowest AIC value.
Therefore, the appropriate lag lengths for each variable, lnEE, lnEP, lnMO, lnFD, and lnPO,
correspond to p = 1, q1 = 1, q2 = 2, q3 = 2, and q4 = 1, respectively. Figure A2 shows the
models for Internet use as a proxy for ICT; the ARDL (1,2,1,2,2) model indicates the lowest
AIC value. Therefore, the appropriate lag lengths for lnEE, lnEP, lnINT, lnFD, and lnPO
correspond to p = 1, q1 = 2, q2 = 1, q3 = 2, and q4 = 2, respectively. Figure A3 shows the
models for exports of ICT-related products as a proxy for ICT; the ARDL (1,2,1,2,2) model
has the lowest AIC value. Therefore, the appropriate lag lengths for lnEE, lnEP, lnEX, lnFD,
and lnPO correspond to p = 1, q1 = 2, q2 = 1, q3 = 2, and q4 = 2, respectively.

ARDL bounds tests were conducted to determine whether a long-run cointegration
relationship existed among the variables. The results of the bounds test for the selected
ARDL models are presented in Table 6. The null hypothesis of the F-statistic bounds test
was that there was no cointegration among the variables. As the sample size was relatively
small, the critical bound values provided by Narayan [26] were used to identify a long-run
cointegrating relationship.

Table 6. ARDL F-bounds test.

Case 1:
ARDL (1,1,2,2,1)

Case 2:
ARDL (1,2,1,2,2)

Case 3:
ARDL (1,2,1,2,2)

F-Statistic 8.177 *** 7.936 *** 5.317 ***

I(0) I(1) I(0) I(1) I(0) I(1)

10% 1.9 3.01 2.52 3.56 3.43 4.62

5% 2.26 3.48 3.06 4.22 4.15 5.54

1% 3.07 4.44 4.28 5.84 5.86 7.58
*** (p-value < 0.01).

According to Table 6, the calculated F-statistics of the selected ARDL (1,1,2,2,1) for Case
1, with lnEE as the dependent variable and lnEP, lnMO, lnFD, and lnPO as independent
variables, are 8.177. This value is greater than the upper bound of 4.44 at the 1% significance
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level, indicating the existence of a long-run cointegrating relationship among the variables.
The calculated F-statistic of the selected ARDL (1,2,1,2,2) for Case 2, with lnEE as the
dependent variable and lnEP, lnINT, lnFD, and lnPO as independent variables, is 7.936,
which is above the upper bound of 5.84 at the 1% significance level, thus confirming
the presence of a long-run cointegrating relationship among the variables. Finally, the
calculated F-statistic of the selected ARDL (1,2,1,2,2) for Case 3, with lnEE as the dependent
variable and lnEP, lnEX, lnFD, and lnPO as independent variables, is 5.317, which is above
the upper bound of 4.62 at the 10% significance level, indicating the existence of a long-run
cointegrating relationship among the variables.

3.3. Long-Run Equilibrium Relationship

The reduced equation, as shown in Equation (5), is presented in Table 7. In Case 1,
the long-run coefficients of lnMO and lnPO were statistically significant at the 1% level,
indicating that mobile cellular subscriptions (as a proxy for ICT) and population growth
contributed to an increase in electricity intensity in the long run. However, the coefficients of
lnEP and lnFD are not statistically significant, indicating that electricity price and financial
development do not have long-term effects on electricity intensity.

Table 7. Long-run equilibrium.

Case 1:
ARDL (1,1,2,2,1)

Case 2:
ARDL (1,2,1,2,2)

Case 3:
ARDL (1,2,1,2,2)

Coefficient Standard Error Coefficient Standard Error Coefficient Standard Error

ln EPt −0.405 0.136 −0.082 0.071 −0.153 0.195

ln MOt 0.041 *** 0.006

ln INTt 0.063 *** 0.008

ln EXt 0.001 0.119

ln FDt 0.110 0.062 0.039 0.063 0.315 * 0.169

ln POt 2.307 *** 0.877 −0.461 *** 0.022 −0.510 *** 0.124
*** (p-value < 0.01), * (p-value < 0.1).

In Case 2, the long-run coefficients of lnINT and lnPO were statistically significant at
the 1% level, indicating that mobile cellular subscriptions (as a proxy for ICT) contributed
to the increase in electricity intensity and population growth contributed to a decrease in
electricity intensity in the long run. However, the coefficients of lnEP and lnFD were not
statistically significant, indicating that electricity price and financial development did not
have a long-term effect on CO2 emissions.

In Case 3, the long-run coefficient of lnEX was not statistically significant, indicating
that exports of ICT-related products (as a proxy for ICT) did not affect electricity intensity.
The coefficient of lnPO was statistically significant at the 1% level, indicating that population
growth contributed to the decrease in electricity intensity in the long run. The coefficient of
lnFD was statistically significant at the 10% level, indicating that financial development
contributed to an increase in electricity intensity in the long run.

The effects of ICT on electricity intensity varied depending on the proxy for ICT being
used. While electricity intensity tended to deteriorate with an increase in the use of the
Internet and mobile devices, there appeared to be a minimal relationship between the export
of ICT-related products and electricity intensity. In the first two cases, the development
of ICT, namely the increased use of the Internet and mobile phones, was shown to have
led to an increase in electricity consumption in the long run, which has, in turn, led to an
increase in electricity intensity. This is consistent with the findings of most of the studies
presented in Table 1. In particular, Salahuddin [7] found in a study of the OECD that
an increase in the use of the Internet and mobile phones led to an increase in electricity
consumption. Korea is also one of the OECD member countries, and this study shows that
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the relationship between ICT and electricity consumption in Korea is consistent with that
in OECD member countries.

In all three cases, electricity prices did not affect electricity intensity. In expounding
upon Equation (1), we predicted that electricity prices would reduce electricity consumption
and thus reduce electricity intensity. However, the results show that electricity prices have
no effect on electricity intensity in the long run. These results are inconsistent with those of
previous studies that have examined other countries, such as the UAE (Shahbaz et al. [16]).
In the case of Korea, electricity prices have been subject to regulation and have, therefore,
remained stable and low compared with other countries. As a result, changes in the price of
electricity in Korea have not led to any significant changes in the consumption of electricity.

Financial development had no effect on electricity intensity in Cases 1 and 2, and its
effect was non-significant in Case 3. This result distinguishes our study from previous stud-
ies by Saidi et al. [11] and Solarin et al. [17]. In particular, Saidi et al. [11], which analyzed a
global panel of 67 countries, found significant results that financial development increased
electricity consumption in global, middle-income, and low-income panels. However, the
results from global analyses are not guaranteed to be applicable to individual countries.
In Korea, financial development does not seem to increase electricity consumption in
the long run.

The impact of population growth on power intensity in the long run showed mixed
results. In Case 1, population growth was found to worsen electricity intensity, but in
Cases 2 and 3, no clear relationship between population growth and electricity intensity
could be found. Previous studies by Solarin et al. [11] and Zhao et al. [13] found that
population growth increases electricity consumption in the long run. Of course, the former
study was based on the OECD, and the latter study was based on Malaysia. The difference
between these results is due to the difference in the model between the previous studies
and this study. In our model, population growth was accompanied by an increase in GDP,
which offsets the effect on electricity intensity.

3.4. Short-Run Dynamics

The short-run dynamics for Case 1 are shown in Table 8. The elasticity of electricity
price with respect to electricity intensity was not statistically significant in the short run,
indicating that electricity price does not affect electricity intensity in the short run. However,
an increase in the use of mobile phones was shown to increase electricity intensity in period
t and decrease it in period t − 1. In addition, as financial development progressed in the
short run, electricity intensity improved. Improvements in the financial system led to a
decrease in electricity intensity. Finally, population growth was found to increase electricity
intensity, which could be attributed to an increase in electricity demand. As expected, the
lagged error correction term in Case 1 was negative and statistically significant, supporting
cointegration among the variables (Bahmani-Oskooee and Nasir [27]). The estimated
coefficient of −0.4343 suggests that convergence to equilibrium takes slightly more than
two years.

The short-run dynamics for Case 2 are shown in Table 9. As in Case 1, the electricity
price had no effect on electricity intensity in the short run and had no effect on changes
in electricity consumption. However, an increase in Internet use decreased electricity
intensity in the short run. Similarly, financial development was found to decrease electricity
intensity, and population growth was found to increase electricity intensity in the short
run. As expected, the lagged error correction term in Case 2 was negative and statistically
significant. The estimated coefficient of −0.4582 suggests that convergence to equilibrium
takes slightly more than two years.

The short-run dynamics for Case 3 are shown in Table 10. It was found that an
increase in the export of ICT-related products increased electricity intensity in the short
run. This is because semiconductors, which are representative ICT-related products, are
electricity-intensive industries, and an increase in production due to an increase in the
export of these products is accompanied by an increase in electricity demand. However,
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financial development reduced electricity intensity after one period, and population growth
increased electricity intensity in the short run. As expected, the lagged error correction term
in Case 3 was negative and statistically significant. The estimated coefficient of −0.2479
suggests that the convergence to equilibrium takes about four years.

Table 8. Short-run dynamics of Case 1 based on ARDL (1,1,2,2,1).

Variable Coefficient Standard Error t-Statistics
[p-Value]

∆ ln EPt 0.1362 0.0674 2.0218 [0.0583]

∆ ln MOt 0.0644 *** 0.0189 3.3997 [0.0032]

∆ ln MOt−1 −0.0798 *** 0.0210 −3.7991 [0.0013]

∆ ln FD −0.0611 ** 0.0267 −2.2876 [0.0345]

∆ ln FDt−1 −0.0856 *** 0.0263 −3.2526 [0.0044]

∆ ln POt 4.4176 *** 0.7222 6.1165 [0.0000]

ECTt−1 −0.4343 *** 0.0614 −7.0689 [0.0000]

R-squared 0.8168

Adjusted R-squared 0.7669

Durbin–Watson statistics 2.1214

Serial correlation (χ − square) 0.5229 [0.4108]

Normality (χ − square) 0.6049 [0.7390]

Heteroskedasticity (χ − square) 0.0188 [0.4007]
*** (p-value < 0.01), ** (p-value < 0.05). Bracket represents probability values.

Table 9. Short-run dynamics of Case 2 based on ARDL (1,2,1,2,2).

Variable Coefficient Standard
Error

t-Statistics
[p-Value]

∆ ln EPt −0.0336 0.0599 −0.5607 [0.5828]

∆ ln EPt−1 0.1516 * 0.0759 1.9962 [0.0632]

∆ ln INTt −0.0297 *** 0.0078 −3.8303 [0.0015]

∆ ln FD −0.0972 *** 0.0252 −3.8554 [0.0014]

∆ ln FDt−1 −0.0742 *** 0.0246 −3.0172 [0.0082]

∆ ln POt 4.4426 *** 1.1776 3.7727 [0.0017]

∆ ln POt−1 2.6202 * 1.1706 2.2384 [0.0398]

ECTt−1 −0.4582 *** 0.0580 −7.9055 [0.0000]

R-squared 0.8637

Adjusted R-squared 0.8183

Durbin–Watson statistics 2.1607

Serial correlation (χ − square) 0.6241 [0.3051]

Normality (χ − square) 0.8553 [0.6520]

Heteroskedasticity (χ − square) 0.7038 [0.6143]
*** (p-value < 0.01), * (p-value < 0.1). Bracket represents probability values.

As shown in Tables 8–10, the three estimated ARDL models pass the tests for serial
correlation, normality, and heteroskedasticity.
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Table 10. Short-run dynamics of Case 3 based on ARDL (1,2,1,2,2).

Variable Coefficient Standard
Error

t-Statistics
[p-Value]

∆ ln EPt 0.0574 0.0826 0.6951 [0.5003]

∆ ln EPt−1 −0.1273 0.0718 1.7728 [0.1016]

∆ ln EXTt 0.0505 ** 0.0205 2.4664 [0.0297]

∆ ln FDt 0.0795 0.0368 2.1633 [0.0514]

∆ ln FDt−1 −0.1281 *** 0.0361 3.5495 [0.0040]

∆ ln POt 2.2597 1.5697 1.4396 [0.1756]

∆ ln POt−1 5.5582 *** 1.6339 3.4017 [0.0053]

ECTt−1 −0.2479 *** 0.0424 5.8470 [0.0001]

R-squared 0.7782

Adjusted R-squared 0.6812

Durbin–Watson statistics 2.3357

Serial correlation (χ − square) 1.4428 [0.0681]

Normality (χ − square) 0.5801 [0.7482]

Heteroskedasticity (χ − square) 0.7787 [0.5268]

*** (p-value < 0.01), ** (p-value < 0.05). Bracket represents probability values.

3.5. Model Stability

The stability of the coefficients in the estimated models was tested using the cumulative
sum (CUSUM) and the cumulative sum of squares (CUSUMSQ) of the recursive residuals
(Pesaran and Pesaran [18]). The cumulative sum test identifies systematic changes in the
regression coefficients, while the cumulative sum of squares test detects sudden changes in
the constancy of the regression coefficients.

Figures 2–4 illustrate the stability test results for each case, respectively. The graphs
demonstrate that the estimated parameters for all the models remained stable throughout
the sample period.
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4. Discussion and Conclusions

This study investigated the impact of ICT on electricity intensity by incorporating
electricity prices, financial development, and population growth in Korea from 1990 to 2020.
The main findings derived from the empirical analysis are as follows:

First, the results vary depending on the proxy for ICT incorporated as a variable.
When mobile phone use is used as a proxy for ICT, its increase leads to an increase in
electricity intensity in the long run. However, the short-term effects of mobile phone use
remain unclear. Second, when Internet use is used as a proxy for ICT, its increase leads
to an increase in electricity intensity in the long run. In the short run, however, Internet
use reduces electricity intensity. Third, when the export of ICT-related products is used
as a proxy for ICT, its increase leads to an increase in electricity intensity in the short
run; however, the long-run effects are negligible. As shown above, the impact of ICT
on electricity intensity varies depending on which proxy for ICT is being assessed. In
particular, the increases in the use of mobile phones and the Internet seem to increase
electricity demand in the long run, leading to an increase in electricity intensity. This
finding is similar to that of a previous study that used these same variables as proxies for
ICT. The effect of the exports of ICT-related products on electricity intensity remains unclear
because the increase in energy consumption due to an increase in exports of ICT-related
products is offset by a concurrent increase in GDP due to an increase in the production of
ICT-related goods.

Meanwhile, electricity prices do not affect electricity intensity in all cases. This is be-
cause electricity prices in Korea are regulated by the government and have been relatively
low for a considerable period of time compared with prices in other developed countries.
Accordingly, in the short run, financial development induced a decrease in electricity inten-
sity in cases of mobile phones and Internet use as proxies for ICT. Meanwhile, population
growth increased electricity intensity in all cases.

5. Policy Implications

In this study, we found that the growth in Internet and mobile phone use, commonly
used proxies for ICT, induced an increase in electricity intensity in Korea. Therefore, to
reduce electricity intensity, it is necessary to reduce electricity consumption through ICT.
Energy diagnosis and conservation technologies that utilize ICT have not yet been widely
implemented in Korea. Energy-saving companies using new ICT are emerging, but this is a
phenomenon of recent years. In the future, it will be necessary to promote the diffusion
of electricity-saving technologies using ICT. In particular, energy management system
technologies such as FEMS (factory energy management system) and BEMS (building
energy management system) should be more widely applied in manufacturing plants
and public and private buildings. Korea’s electricity prices have remained low compared
to those in other countries. Relative to those of its neighbor Japan, Korea’s electricity
prices are around 50% lower. Therefore, it is necessary to establish an effective system for
determining electricity prices based on fuel prices; this may incentivize consumers to save
their electricity consumption.

A limitation of this study is that the results vary depending on the proxy used to
measure ICT. Each ICT index represents the expansion of ICT and its influence in its own
way. However, it is difficult to conclude that an increase in ICT exports alone can reflect
the production capacity of the ICT hardware industry and the overall development of ICT
technology. Similarly, it is difficult to discern whether the use of mobile phones directly
represents a form of ICT. Although Internet use is a good indicator of ICT, it also has
limitations as an ICT index. Therefore, future studies should consider other proxy variables
that are representative of ICT.
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