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Abstract: Carbon capture and storage technologies play a crucial role in mitigating climate change
by capturing and storing carbon dioxide emissions underground. Saline aquifers, among other
geological formations, hold promise for long-term CO2 storage. However, accurately assessing
their storage capacity and CO2 behavior underground necessitates advanced numerical simulation
and modeling techniques. In this study, we introduce an approach based on a solubility thermo-
dynamic model that leverages cubic equations of state offline from the simulator. This approach
enables the precise prediction of CO2–brine equilibrium properties and facilitates the conversion
of compositional data into black oil PVT data suitable for black oil simulations. By incorporating
industry-scale saline aquifer properties, we simulate a carbon storage scheme using the black oil
model technique, significantly reducing computation time by at least four times while preserving the
essential physical phenomena observed in underground carbon storage operations. A comparative
analysis between black oil and compositional simulations reveals consistent results for reservoir
pressure, CO2 saturation distributions, and mass fraction of trapping mechanisms, with differences
of less than 4%. This validation underscores the reliability and efficiency of integrating the black
oil model technique into carbon storage simulations in saline aquifer formations, offering tangible
benefits to industry operators and regulators by striking a balance between accuracy and efficiency.
The capability of this approach to extend to temperatures of up to 300 ◦C and pressures of up to
600 bars broadens its applicability beyond conventional CCS applications, serving as a valuable tool
for optimizing decision-making processes in CCS projects, particularly in scenarios where profitability
may be marginal.

Keywords: carbon capture; utilization and storage (CCUS); carbon capture and storage (CCS);
reservoir simulation; fluid model; black oil simulation; compositional simulation

1. Introduction

Carbon capture and storage (CCS) encompasses a diverse range of technological in-
terventions strategically crafted to address climate change by mitigating carbon dioxide
(CO2) emissions [1]. The core principle of CCS involves capturing CO2 emissions and
securely storing them in subsurface formations, preventing their release into the atmo-
sphere [2–4]. Commonly known as CCUS, where the “U” denotes utilization, the primary
application involves enhanced oil recovery. Nevertheless, there are alternative uses in-
cluding direct applications of CO2, such as heat transfer fluids or yield boosters, as well
as its indirect utilization as fuels, chemicals, or building materials through biological and
chemical conversion processes [5,6]. While conversion processes are energy-intensive, and
global CO2 utilization represents approximately 1% of annual global energy-related carbon
emissions [7], the established CCUS technology predominantly focuses on the permanent
geological storage of captured CO2 in deep rock formations, constituting designated carbon
dioxide storage sites.
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Dedicated geological storage formations encompass deep saline aquifers [8] and de-
pleted oil or gas fields that are no longer economically viable for hydrocarbon production [9].
Saline aquifers stand out as particularly promising, boasting the highest storage poten-
tial, estimated globally between 400 and 10,000 gigatons of CO2 [10]. The technical and
commercial viability of CO2 storage in saline aquifers has been affirmed through various
large-scale commercial projects worldwide [11], including the Sleipner project in Norway
and the Gorgon project in Australia. Furthermore, ongoing major commercial scale projects
in Europe, such as the Northern Light CCS Project in Norway and the Prinos CCS Project in
Greece, with a potential storage capacity of around 200 million tons combined equivalent
to 1.5 million car emissions every year for the project duration, emphasize the significance
of saline aquifers in the effective pursuit of the mitigation of CO2 emissions.

The accurate assessment of a saline aquifer’s capacity for CO2 sequestration and the
dynamics of injected fluids throughout all phases of the CCUS project—ranging from
injection/operation to closure and post-closure—requires sophisticated numerical simula-
tions and modeling [12,13]. Leveraging Computational Fluid Dynamics (CFD), potentially
coupled with geochemical and geomechanical models, enables the comprehensive capture
of a CO2 plume’s behavior and destiny, encompassing potential leaks or migration to the
surrounding area or existing storage complex. Furthermore, this modeling framework
offers a means to comprehend both short-term (e.g., 25 years during the injection phase)
and long-term (post-closure spanning 100–1000 years) behavior of the in-situ CO2 injected,
as well as the impact of injection strategies on critical aspects of the field development plan
and subsurface, such as (1) the dynamic storage capacity of the field, (2) the CO2-entrapped
fraction governed by various trapping mechanisms at both microscopic and macroscopic
scales, (3) field and caprock integrity, and other important parameters that become trans-
parent through these simulations [14]. This comprehensive analysis of a carbon storage
plan is crucial for gaining a holistic understanding of its overall performance in terms of
storage effectiveness, containment, safety, and integrity.

Meanwhile, in the context of reservoir simulation for underground carbon storage
in saline aquifers, a key factor demanding precise attention is the accurate representation
of brine and CO2 fluid volumetric data, known as PVT (Pressure-Volume-Temperature)
data. This precision is vital for effective modeling, ensuring that simulations mirror the
real-world behavior of in-situ CO2/brine systems. For instance, when CO2 dissolves into
in-situ brine, the density of the brine phase slightly exceeds that of pure brine, triggering
convection mechanisms [15,16]. This, in turn, amplifies dissolution processes over larger
distances and shorter time scales compared to pure diffusive flow [17–19]. Therefore, an
accurate representation of the thermodynamic behavior of CO2 and brine is essential to
maintain precision in simulations and authentically replicate the interactions between
CO2 and in-situ brine. In the pursuit of an accurate representation of thermodynamic
behavior and phase properties, the conventional approach leans towards compositional
reservoir simulations [20]. However, these methods, while suitable for applications like
enhanced oil recovery with miscible injection, rely on intricate equations of state (EoSs) and
dissolution models. The inherent complexity and computational demand of these methods
often pose challenges, slowing down decision-making processes. Typically, a single trial
run in compositional fluid modeling, one of the hundreds required for a comprehensive
reservoir analysis, can consume numerous hours due to computational demands. This
is a considerable obstacle, particularly in the context of simulating carbon storage in
saline aquifers where extensive databases are not readily available. In scenarios where
multiple simulations are needed for tasks such as allocating well locations, determining
injection strategies, history matching, and optimization processes, the use of compositional
simulation may be considered excessive and financially burdensome. Therefore, striking
a balance between accuracy and efficiency is essential in optimizing decision-making
processes for carbon storage in saline aquifers [14].

In this study, we study an alternative fluid model approach by integrating a black
oil model (BoM) fluid model, commonly used in oil and gas production simulations, into
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carbon storage simulations in saline aquifers. This methodology incorporates a relatively
simple thermodynamic model capable of accurately predicting CO2–brine equilibrium
properties, thus reducing computational overheads. By leveraging the Equation of State
(EoS) for predicting compositional data offline, we generate precise Pressure-Volume-
Temperature (PVT) data essential for black oil model simulations. Our numerical flow
simulations of CO2 storage using both the black oil model and the compositional model
demonstrate a close match between the two fluid models (BoM and EoS), validating the
reliability of BoM application for carbon storage simulation. This advancement accelerates
simulation runs by reducing execution times to less than one-fourth of what compositional
models require, while maintaining comparable simulation accuracy.

The thermodynamic model utilized in this study builds upon previous work by
Spycher et al., (2003, 2005, and 2008) [21–23] and Duan and Sun (2003 and 2006) [24,25],
accommodating all types of salts encountered in saline brine formations beyond limitations
to NaCl. Operating within typical temperature and pressure ranges suitable for carbon
storage in saline aquifers (up to 100 ◦C and 600 bars), this model also extends to higher
temperature and pressure ranges (300 ◦C and 600 bars), finding applications in both
CO2–saline aquifers and Enhanced Geothermal Systems. In addition to introducing the
thermodynamic model, we generate black oil tables tailored for black oil simulations,
considering the properties and well injection schedules of industry-scale projects. We
analyze in full detail the outcomes of the BoM in terms of plume extension/migration,
average reservoir pressure, dissolution, and mobile mass profiles as they constitute crucial
components in assessing carbon storage security, containment, and site integrity over a
simulation period of 100 years. Finally, we compare the performance of the black oil model
to the compositional model, verifying its reliability for efficient decision-making in carbon
storage operations. When it comes to the plume extension, we observe minor deviations
in terms of one grid block (~150 m) in both x and y directions and magnitude differences
on the order of less than 4% for the average reservoir pressure, attributed mainly to grid
resolution itself rather than the fluid model.

The paper Is structured as follows: Section 2 describes the thermodynamic model used
in this study. Section 3 focuses on generating black oil PVT tables and their use in black
oil simulation for carbon storage. In Section 4, we perform a performance comparison of
black oil and compositional simulations. Finally, Section 5 summarizes our findings and
draws conclusions.

Overall, this work enhances access to efficient reservoir analyses, particularly bene-
fiting small to medium oil and gas/carbon storage operators and regulators. It provides
tools for making informed investment decisions and achieving CCS targets, even when
economic benefits may initially appear marginal.

2. Thermodynamic Model

The temperatures and pressures typically considered for geologic storage fall within
the range of <120 ◦C and 200–400 bars. Under these conditions, the mixing of CO2 with
water results in two immiscible phases: an H2O-rich liquid phase and a CO2-rich com-
pressed “dense” phase (supercritical fluid) that contains only small amounts of water
(typically < 2 mol%) [21]. At higher temperatures relevant to saline aquifers in hot basins
and CO2-based Enhanced Geothermal Systems (EGS), the same two-phase behavior per-
sists. However, the amount of water in the CO2-rich phase increases significantly, reaching
values of up to about 40–50 mol% at temperatures ~275 ◦C and pressures between 200 and
600 bars [26–28]. Eventually, at 300 ◦C, water and CO2 eventually become fully miscible at
pressures above ~567 bars [28]. While the accuracy of Pressure-Volume-Temperature (PVT)
data is critical for predicting the flow of water and CO2 in the subsurface using numerical
models, the phase-partitioning behavior needs to be computed reliably and efficiently.

Several models have been proposed to compute the aqueous solubility of CO2, with or
without the consideration of water solubility in the CO2 phase (see reviews by Hu et al. [29],
2007). However, most of these models are either too computationally intensive for in-
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corporation into efficient multiphase flow simulators or consider only the solubility of
CO2 in water. In this work, we adopted the model of Spycher et al. (2003) [21] and its
extension to account for electrolyte solutions in Spycher et al. (2005) [22], further extending
it to cover a higher temperature range (up to 300 ◦C), as seen in Spycher et al. (2010) [23].
The predictions of this model are verified against a large amount of experimental data on
the solubility of CO2 at different pressures, temperatures, and salinity concentrations, as
reported in the same studies demonstrating its efficacy in predicting CO2 solubility at both
low and high temperatures and pressure ranges.

Based on the above, in this Section, we discuss the adopted model in a “block wise”
manner. The first block focuses on the original model of Spycher et al. (2003) [21], aimed
at predicting CO2 solubility in pure water. The second block extends the original model
to account for the presence of salt in the aqueous phase, relevant to saline aquifers. Both
blocks target temperatures of up to 100 ◦C and pressures of up to 600 bars. In the third
block, we discuss the extension of the model to high-temperature saline aquifers and
CO2-EGS/CPG [30]. Finally, we conclude the Section by presenting the numerical imple-
mentation of the model in our work.

2.1. Equilibrium Definition

At equilibrium, the composition of gas–liquid mixtures is defined by equating the
chemical potentials of species in the liquid µl

i and gas µ
g
i phases as follows:

µl
i = µ

g
i (1)

where i refers to H2O and CO2; the individual chemical potentials for the liquid (µl
i) and

gas (µg
i ) phases are expressed as follows:

µl
i = µ0,l

i + RTln( f l
i /f 0,l

i ) (2)

µ
g
i = µ

0,g
i + RTln( f g

i /f 0,g
i ) (3)

Here, i represents each species at equilibrium, g and l refer to the gas and liquid
phases, respectively, f the fugacities, and µl

i and f 0 represent the chemical potentials and
fugacities at a specified reference standard state. Note that although the CO2-rich phase is
called a “gaseous” one, typically it corresponds to a supercritical, dense phase exhibiting
density and viscosity similar to that of a standard liquid and gas, respectively. Assuming
the reference state for both phases to be the standard state, Equations (1)–(3) simplify the
equating of fugacities as follows:

f l
i = f g

i (4)

f l
i = φixiP (5)

f g
i = φiyiP (6)

where φ denotes the fugacity coefficient, P is the total pressure, y is the mole fraction in the
gaseous phase, and x is the mole fraction in the liquid phase.

Spycher et al., (2003) [21] reformulated the equality of chemical potentials (Equation
(1)) using “true” equilibrium constants for the reactions between the phases, extendable to
account for nonideality in the liquid phase, such as the presence of salts:

H2O (l) ⇌ H2O (g) KH2O =
fH2O (g)

aH2O (l)
(7)

CO2(aq) ⇌ CO2(g) KCO2 =
fCO2 (g)

aCO2 (aq)
(8)

where a represents the activity of components in the liquid (aqueous) phase. Since K
parameters depend on pressure and temperature, a pressure correction is applied when
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pressure deviates from the reference pressure (standard state). This correction can be
approximated by the “Poynting” factor:

K(T,P) = K0
(T,P0)exp

((
P − P0)Vi

RT

)
(9)

where Vi is the average partial molar volume of the pure condensed component i over the
pressure intervals P0 to P, with P0 as the reference pressure (1 bar). Values for K0

H2O, K0
CO2

,
VH2O, and VCO2 are derived from the literature and/or fitted to experimental solubility
data (discussed below). When CO2 transitions from a gaseous to a liquid state, especially
at subcritical temperatures, extra free energy terms related to the phase transition are
considered in Equation (9). Spycher et al., 2003’s approach to tackle this problem aims of
defining another equilibrium constant: K0

CO2, (l), referring to liquid CO2, replaces K0
CO2, (g)

when the temperature is subcritical and the pressure is above the CO2 saturation pressure.
Note that K0

CO2, (g)= K0
CO2, (l) at critical temperature.

2.2. The Solubility Model: Mole Fractions of H2O in the Gas Phase and CO2 in the Liquid Phase

Following the definitions above, the mole fraction of water in the gas phase and
carbon dioxide in the liquid is defined here. Substituting fugacities from Equation (6) into
Equations (7) and (8) results in the following:

fH2O = φH2OyH2OPtot = KH2OaH2O (l) (10)

fCO2 = φCO2 yCO2 Ptot = KCO2 aCO2 (aq) (11)

Recasting Equation (10) to express the water mole fraction in the gas phase and
applying the pressure correction to KH2O using Equation (9) yields the following:

yH2O =
KH2OaH2O (l)

φH2OPtot
(12)

yH2O =
K0

H2OaH2O (l)

φH2OPtot
exp

((
P − P0)Vi

RT

)
(13)

Using Equation (13), water mole fractions in the CO2-rich phase can be computed. To
do so, two approaches are discussed for computing aH2O (l): the first aims at assuming it to
be at unity (a reasonable approximation within 10% deviation for the specified P-T range
up to 600 bars and a temperature of 100 ◦C); however, at high pressure the water activity
deviation from unity caused by dissolved CO2 should be taken into consideration. The
second approach involves adopting Raoult’s law since CO2 solubility is sufficiently small
at the specified P-T range, where aH2O (l) can be set equal to its mole fraction in the water
phase ( xH2O

)
. Therefore, for a system where H2O-CO2 are the only two components, xH2O

is directly calculated as (1− xCO2

)
.

On the other hand, the mole fraction of aqueous CO2 (xCO2) is computed from its
molality m (i.e., moles/kg) as follows:

xCO2 =
mCO2

mCO2 + mH2O pure
=

mCO2

mCO2 + 55.508
(14)

In turn, molality is calculated from Equation (11) by setting the following:

aCO2 (aq) = γmCO2 (15)
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where γ is the activity coefficient of dissolved CO2 where in the absence of salt:

γ =
1

1 + mCO2/55.508
(16)

Substituting in Equation (15), yields the following relationship:

xCO2 =
aCO2 (aq)

55.508
(17)

Further, substituting Equations (11) and (9) gives the mole fraction of aqueous CO2
(xCO2 ) expression:

xCO2 =
φCO2

(
1 − yH2O

)
Ptot

55.508K0
CO2 (g)

exp

(
−
(

P − P0)Vi

RT

)
(18)

Equations (13) and (18) represent the expressions for the mole fraction of water in the
gas phase and CO2 in the liquid phase. This is done by setting A and B to the following:

A =
K0

H2O

φH2OPtot
exp

((
P − P0)Vi

RT

)
(19)

B =
φCO2 Ptot

55.508K0
CO2 (g)

exp

(
−
(

P − P0)Vi

RT

)
(20)

Equations (13) and (18) can be expressed in a compact form:

yH2O = A
(
1 − xCO2

)
=

(1 − B)
(1/A − B)

(21)

xCO2 = B
(
1 − yH2O

)
(22)

2.3. Extended Solubility Model Considering Salinity

With the aim of efficiently computing the solubility of CO2 in the aqueous phase and
the solubility of H2O in the compressed gas phase in the presence of salt,
Spycher and Pruess (2005) [22] expanded upon their solubility model to encompass moder-
ately saline solutions up to 6 m of NaCl and 4 m of CaCl2.

The formulation of the basic model presented above in Section 2.2 is extended with the
addition of activity coefficient for aqueous CO2 and a correction to the activity of the water
to account for the effects of dissolved salts. As the dissolved salts are non-volatile in the
P-T range of 600 bars and temperature of 100 ◦C, the extended formulation barely changes
with the water mole fraction in the CO2-rich phase (yH2O) and the CO2 mole fraction in the
aqueous phase (xCO2), represented by Equations (13) and (18), are respectively expressed
for systems with an electrolyte solution as the following:

yH2O =
K0

H2OaH2O (l)

φH2OPtot
exp

((
P − P0)Vi

RT

)
(23)

xCO2 =
φCO2

(
1 − yH2O

)
Ptot

55.508γ′
CO2

K0
CO2 (g)

exp

(
−
(

P − P0)Vi

RT

)
(24)
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where γ′
CO2

is the activity coefficient for aqueous CO2. Equations (23) and (24) are solved
as previously done by setting A′ and B′ to the following:

A′ =
K0

H2O

φH2OPtot
exp

((
P − P0)Vi

RT

)
(25)

B′ =
φCO2 Ptot

55.508γ′
CO2

K0
CO2 (g)

exp

(
−
(

P − P0)Vi

RT

)
(26)

By further adopting Raoult’s law for the approximation of the activity of the water
component, (a H2O (l) = xH2O = 1 − xCO2 − xsalt

)
, Equations (23) and (24) can therefore be

rewritten as follows:

yH2O = A′(1 − xCO2 − xsalt
)
=

(1 − B′ − xsalt)

(1/A′ − B′)
(27)

xCO2 = B′(1 − yH2O
)

(28)

Equations (27) and (28) are therefore employed to compute the mole fraction of water
in the gas phase and CO2 in the liquid phase in the presence of salt.

2.4. Fugacity and Activity Coefficient Models

To solve Equations (25) and (26), or (19) and (20), the fugacity coefficient must
be computed and derived from the PVT properties of H2O and CO2, preferably using
an Equation of State (EoS). Additionally, the activity coefficient of CO2 in the aqueous
phase in Equation (26) must be determined. In this work, we adopted the approach of
Spycher et al., (2003) [21], using their tunned Redlich–Kwong equation of state (1949) [21],
(RK-EoS) to calculate component fugacities in the CO2-rich phase. In addition, the Duan
and Sun (2003) model is used to derive the activity coefficient of CO2. Meanwhile, although
Spycher and Pruess (2005) [22] treated xsalt as a variable in their model to account for
variations in salt concentration in equilibrium calculations, their finding indicated that xsalt
is fairly constant for the pressure and temperature range of CO2 storage in a saline aquifer,
as the solubility of CO2 in the aqueous phase is relatively low. Therefore, for the purpose
of generating black oil PVT data and simplification, xsalt is assumed constant in this work.

2.4.1. Fugacity Model and Equilibrium Constant

The fugacity of each component in the CO2-rich phase is computed by employing
the tunned RK EoS by Spycher et al., 2003. The decision of Spycher to use the Redlich–
Kwong EoS over other options (e.g., Peng Robinson) or other virial EoSs is grounded in
its successful representation of H2O-CO2 mixtures across various pressure–temperature
(P-T) ranges in numerous studies. Additionally, the RK EoS excels in representing the
properties of gases and their mixtures well over extended P-T ranges, particularly in the
vicinity of the critical point. In terms of computational effort and simplicity, mixing rules
for parameters of the RK EoS yield relatively simple expressions compared to other EoSs.
Compared to virial equations of state, which are expressed solely in terms of pressure and
temperature, making them easier to implement in numerical models, the treatment of gas
mixtures within virial expressions can be more complex. Especially beyond the second
virial coefficient, this limitation for gas mixtures degrades accuracy in the vicinity of the
critical point. Therefore, to compute the fugacity of each component in the CO2-rich phase,
the RK EoS is employed with Prausnitz et al., 1986’s [31] mixing rules as follows:

P =
RT

V − bmix
− amix

T0.5V(V + bmix)
(29)
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amix =
n

∑
i=1

n

∑
j=1

yiyjaij bmix =
n

∑
i=1

yibi (30)

where V is the molar volume of the CO2-rich phase (gas phase), P represents pressure, T
represents temperature, R represents the gas constant, and parameters a and b characterize
intermolecular attraction and repulsion. Furthermore, to compute the fugacity coefficient φk
of a component in mixtures with other components i, Prausnitz et al., 1986’s [31] expression
is used:

ln(φk ) = ln
(

V
V−bmix

)
+
(

bk
V−bmix

)
− (

2∑n
i=1 yiaik

RT1.5bmix
)ln (V+bmix

V )

+
( amix bk

RT1.5bmix
2

)[
ln
(

V+bk
V

)
−
(

bmix
V+bmix

)]
− ln ( PV

RT )
(31)

Taking into consideration Equation (31), in addition to pressure and temperature, the
fugacity coefficient of each component in the gas mixture depends on the mixture’s compo-
sition. Therefore, it could be said that Equations (31), (29), (27) and (28) should be solved in
an iterative scheme, which is a significant burden to be implemented in an already computa-
tionally expensive fluid model. By taking advantage of the work of King et al., 1992 [32] that
shows that at low temperatures (15 to 40 ◦C), infinite H2O dilution can be assumed in the
CO2-rich phase and extended further up to 100 ◦C, Spycher et al., 2003’s [21] assumption
aims to set yH2O = 0 and yCO2 = 1 in the mixing rules applied to the RK EoS. By doing so,
the fugacity coefficients φH2O and φCO2 can be computed in a direct non-iterative manner.
While considering the assumption discussed above, Spycher et al., 2003 [21] have tuned
the RK EoS to a system of H2O-CO2, deriving values for EoS parameters as well as for
equilibrium constants at a reference standard state presented in Tables 1 and 2:

Table 1. Redlich–Kwong EoS Parameters.

Parameter Value Units

aCO2

7.54 × 107− 4.02 × 104 × T (in ◦K)
Fitted T range: 280–380 ◦K bar cm6K0.5 mol−2

bCO2 27.86 cm3/mol

bH2O 18.10 cm3/mol

aH2O−CO2 7.89 × 107 bar cm6K0.5 mol−2

Note: the aH2O value is not needed in the equations due to the assumption that yH2O = 0 and yCO2 = 1.

Table 2. Equilibrium constants and average partial molar volume used in this work.

Regression Function
log (K0)T.1bar = a + bT + cT2 + dT3 + eT4 (T in ◦C)

¯
Vi

(cm3/mol)
Regression Coefficient

Species a b c d e

H2O −2.215 3.162 × 10−2 −1.294 × 10−4 4.187 × 10−7 −7.331 × 10−10 18.5

CO2 (g) 1.188 1.307 × 10−2 −5.445 × 10−5 0.0 0.0 32.1

CO2 (l) 1.168 1.361 × 10−2 −5.135 × 10−5 0.0 0.0 32.1

2.4.2. Activity Coefficient Model

Numerous studies have presented data and equations that allow for the derivation
of activity coefficients for aqueous CO2 in various electrolyte solutions, including NaCl.
While many of these studies highlight the temperature dependence of salting-out effects,
the work by Duan and Sun (2003 and 2006) [24,25] goes a step further by incorporating a
pressure dependence to accurately replicate experimental solubilities. Their comprehen-
sive investigation covers a broad range of conditions, encompassing temperature (up to
260 ◦C), pressure (up to 2000 bars), and different electrolyte concentrations (6.5 m NaCl
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and 3.9 m CaCl2). However, it is important to note that their model cannot be directly
applied to determine γ′CO2

in B′ (as per Equation (26)) due to the assumption of ideal
mixing that does not consider salt effects when expressing the partial pressure of H2O in
the gas phase, yet it is considered by other fit parameters in the model. Meanwhile, CO2
partial pressure remains the same over pure saline water. Based on this, their activity model
yields the quantity:

γ̌ =
mo

m
(32)

where mo is the CO2 molality in pure water and m is the molality in saline water (at the
same given P and T). Their coefficient formulation is implemented in the solubility model
by first applying Equation (14), then computing the CO2 solubility in saline solutions using
Equation (31) with γ̌ using the Pitzer formulation fitted to experimental data by Duan and
Sun (2003):

lnγ̌ = 2λ
(
mNa + mK+2mCa + 2mMg

)
+ξmCl

(
mNa + mK+mCa + mMg

)
− 0.07mSO4

(33)

with m being the molalities (valid for ionic strength up to 4.3 m with a max of 6 m NaCl
and 4 CaCl2), and λ and ξ being the interaction parameters calculated using the regression
fitted expressions:

Parameter (T, P) = z1 + z2T + z3T−1 + z4PT−1 + z5P (630 − T)−1 + z6Tln(P) (34)

where T is the temperature in K (valid between 273 and 533 K), P is the pressure in bar (up
to 2000 bars), and z1 to z6 are coefficients given in Table 3 below:

Table 3. Interaction parameter coefficients in Equation (34).

Coefficient λ ξ

z1 −0.411370585 3.36389723 × 10−4

z2 6.07632013 × 10−4 −1.98298980 × 10−5

z3 97.5347708 0

z4 −0.0237622469 2.12220830 × 10−3

z5 0.0170656236 −5.24873303 × 10−3

z6 1.41335834 × 10−5 0

2.5. Extended Solubility Model Considering Wider T (up to 300 ◦C)

Motivated by potential applications in CO2–Enhanced Geothermal Systems (CO2-EGS)
and CO2 geologic storage at higher temperatures, Spycher et al. (2010) [23] extended the
mutual solubility model. This extension covers temperatures up to 300 ◦C and includes the
formulation of the model, spanning from the pure water aqueous phase to the electrolyte
aqueous phase, expressed in Equations (19) and (20) (A and B) and reformulated in Equa-
tions (25) and (26) (A′ and B′). Further extending this to cover a broader temperature range
(up to 300 ◦C) while considering the saline solution, A′′ and B′′ are given by the following:

A′′ =
K0

H2O γH2O

φH2OPtot
exp

((
P − P0)Vi

RT

)
(35)

B′′ =
φCO2 Ptot

55.508γCO2 γ′
CO2

K0
CO2(g)

exp

(
−
(

P − P0)Vi

RT

)
(36)

In these expressions, the activity coefficient γH2O is added to A′ and γCO2 to B′,
resulting in A′′ and B′′. At a temperature of ≤100 ◦C and a pressure of interest (up to
600 bars), the solubility of CO2 in water is limited, and satisfactory accuracy is achieved
by assuming γH2O= 1 and γCO2 = 1. However, at higher temperatures, the CO2 solubility
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in water increases significantly, and a unit activity coefficient can no longer be assumed.
For applications at temperatures of >100 ◦C, an activity coefficient model needs to be
implemented. Spycher et al., 2008 used the Margules expression modified after Carlson and
Colburn (1942) [33] to yield unit activity coefficients for pure water ( γH2O

)
and (γ CO2

)
,

expressed as follows:
ln (γH2O) =

(
AM − 2AMxH2O

)
x2

CO2
(37)

ln (γCO2) = 2AMxCO2 x2
H2O (38)

where AM is the Margules parameter expressed as a function of temperature:

For T ≤ 100 ◦C AM = 0
(
γH2O & γCO2 = 1

)
(39)

For T > 100 ◦C AM = a( TK − 373.15) + b( TK − 373.15)2 (40)

Within the P–T range of interest (up to P = 600 bars, T = 300 ◦C), values of γH2O remain
close to 1; however, this is not the case for γCO2 at elevated CO2 concentrations. Moreover,
considering Equation (9), equilibrium constants are computed as functions of temperature
and pressure, where for T ≤ 100 ◦C the regression function and parameters defined in
Table 2 with Pre f = 1 bar are employed to compute K0. Meanwhile, for T > 100 ◦C, the
regression parameters defined in Table 2 do not produce satisfactory results. Therefore,
further tuning by Spycher et al., 2008 result in different regression parameters for the
system with T > 100 ◦C while using different Pre f than 1 bar, with an average partial molar
volume valid over the pressure interval Pre f to P.

Furthermore, the fugacity coefficients H2O and CO2 are computed using a modified
Redlich–Kwong equation of state that is unchanged from the model discussed above.
However, for applications at temperatures of >100 ◦C, the mixing rules (Equation (30)) are
applied to include asymmetric binary interaction parameters as follows:

aij=
√

aiiajj
(
1 − kij

)
(41)

kij = Kijyi + Kjiyj (42)

where parameters kii and Kii are always zero and Kij ̸= Kji; if set to 0, the mixing rules
revert back to their original form (Van der Waals mixing rules). Parameters aii, Kij, and Kji
are expressed as a function of temperature, F(TK) in the following form:

F(TK)= a + bTK (43)

Note, however, that in the low temperature model discussed above, the parameter aij
is not computed using Equation (41), but is directly obtained from Equation (43).

Moreover, as Duan and Sun’s model is not intended for temperatures above 260 ◦C,
leading to significant deviations at 300 ◦C, the Pitzer expression of Duan and Sun’s model
(Equation (33)), i reparametrized to yield values of γ′

CO2
suitable for Equation (36) and the

P–T range of interest. The Pitzer expression (Equation (36)) is converted to a (CO2-free)
mole fraction scale as follows:

lnγ̌ =

(
1 +

∑ mi ̸=CO2

55.508

)
exp

{
2λ
(
mNa + mK+2mCa + 2mMg

)
+

ξmCl
(
mNa + mK+mCa + mMg

)
– 0.07mSO4

}
(44)

The first term is the conversion factor from a molality to mole-fraction scale, with
parameters λ and ξ being computed as a function of temperature:

F(TK)= a + b/TK + c/TK
2 (45)

All model parameters are given in Table A1 in Appendix A.
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2.6. Numerical Implementation

The combined formulation above is utilized to calculate the concentrations of CO2
and water, thereby determining the equilibrium ratios necessary for generating black oil
PVT (provided the necessary formulation of the equations reported below) data for a
CO2–water mixture.

For systems with temperature T ≤ 100 ◦C, the fugacity coefficients of CO2 and H2O in
the gas mixture are calculated using Equation (31). This involves calculating the volume
of the mixture under T and pressure P conditions utilizing Equation (29). This equation is
transformed into a general cubic equation in terms of volume, where yH2O = 0 and yCO2 = 1
while employing Redlich–Kwong parameters from Table 2. Below the critical point, this
equation may yield multiple volume values, reflecting the liquid–gas phase transition. The
volume of the gas phase corresponds to the maximum root, while the volume of the liquid
phase is represented by the minimum root. Once the volume of the CO2-rich phase is
determined, it is substituted into Equation (31) to calculate fugacity coefficients. By setting,
yH2O = 0 and yCO2 = 1 into Equation (31) and the mixing rules, the fugacity coefficients of
CO2 and H2O in the gas mixture are computed independently.

Using the computed fugacity coefficients, Equations (19) and (20) (for pure water)
or Equations (25) and (26) (when salinity is considered) can be solved. For the case
of saline aquifers (Equations (25) and (26)), the process involves computing γ′

CO2
, the

activity coefficient for aqueous CO2 using the set of Equations (32)–(34). Subsequently,
Equations (21) and (22) (A and B for pure water) or Equations (27) and (28) (A′ and B′ when
salinity is considered) are used to compute the targeted mole fractions of H2O in the gas
phase and CO2 in the liquid phase. These phase compositions are essential for generating
the black oil PVT table (discussed below).

For systems with temperature T > 100 ◦C, the same model is applied but with the
high-temperature parameters provided in Appendix A, Table A1. Since infinite dilution
cannot be assumed, as discussed in Section 2.5, an iterative procedure is necessary to
compute Equations (21) and (22) (for pure water) and Equations (27) and (28) (when salinity
is considered), however by adopting A′′ and B′′ (Equations (35) and (36)) except for A, B and
A′, B′, respectively. This is achieved by using Equations (21) or (27) depending on if salts are
present; however, with A′′ and B′′ (Equations (35) and (36)) and simple back substitution,
a satisfactory convergence is achieved by assuming an initial yH2O = Psat (H2O)/P (ideal
mixing) and an initial xCO2 = 0.009 in a concentration of ~0.5 molal.

3. CO2–Brine Phase Behavior in Black Oil Simulation: Representation and Application

The injection of CO2 into geological formations initiates various trapping mechanisms,
each crucial for ensuring the security and stability of storage. These mechanisms encompass
physical, chemical, and dissolution processes, each carrying implications for the long-term
fate of stored CO2. Physical trapping manifests when CO2 is stored as a free gas or super-
critical fluid, categorized into static trapping within stratigraphic and structural traps, and
residual trapping within the pore space at an irreducible gas saturation. Additionally, CO2
can undergo solubility trapping through dissolution in subsurface fluids and may engage
in chemical reactions with the rock matrix, leading to mineral trapping. Solubility, residual,
and mineral trapping are considered safe mechanisms. Solubility trapping is secure as CO2
dissolved in brine remains unlikely to escape the solution unless subjected to significant
pressure drops at the storage site. Residual trapping is also deemed safe, representing
the swiftest method to extract CO2 from its free phase, with timescales ranging from a
few years to decades. Mineral trapping occurs when dissolved CO2 combines with metal
cations precipitating carbonate minerals. Although mineral trapping is the most stable and
secure mechanism, it is notably slow in typical sedimentary rocks, with timescales spanning
centuries or millennia. Over a typical operational injection period of 30 years, residual gas,
dissolution, and particularly mineral trapping mechanisms contribute relatively minimally
to underground CO2 storage compared to structural trapping.
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Over the long term, dissolution, mineralization, and residual trapping synergize
within the reservoir, complementing each other to maximize CO2 immobilization and
containment. After injection ceases, the CO2 plume within the reservoir evolves as it
interacts with the surrounding environment. A significant process is the migration of the
CO2 plume driven by pressure differentials and buoyancy forces. As the plume migrates,
it encounters fresh brine in different reservoir regions, enhancing dissolution into the
brine and increasing solubility and diffusion within the aqueous phase. Over time, this
dissolution process significantly contributes to the gradual immobilization of the CO2
plume within the reservoir. Moreover, mineralization has become increasingly prominent as
a long-term trapping mechanism. Through chemical reactions with minerals in the reservoir
rock, CO2 undergoes mineralization, forming stable carbonate compounds. This process
permanently sequesters CO2 within the rock matrix, effectively trapping it over geological
timescales. Consequently, accurate modeling of these effects is crucial for simulating
carbon storage operations, necessitating precise models to capture fluid behavior at both
operational scales (e.g., 25 years) and long-term storage performances (e.g., 1000 years).

The flow of oil, gas, and water in a porous medium is handled as a case of a diffusion-
type flow problem. The resulting differential equations are partial in space and time and
are formed by combining the fundamental principles of conservation of mass and Darcy’s
law (which acts as a conservation of momentum). To further consider multiphase flow,
such as that of supercritical CO2 and brine, Darcy’s single-phase fluid law is extended by
utilizing relative permeability curves as a function of phase saturation. Capillarity may
also be considered by incorporating capillary pressure curves so that the pressures of CO2
and brine may differ. Meanwhile, for the phase behavior phenomena concerned, two
primary methods are utilized to model fluid behavior in subsurface formations: black oil
simulation and compositional formulation. Black oil simulation, known for its simplicity
yet effectiveness, is commonly employed in conventional oil reservoirs. This approach
offers computational efficiency into primary recovery mechanisms as it operates on the
premise of representing multiphase flow behavior within reservoirs as a composite mixture
of oil, gas, and water functions of temperature and pressure rather than delving into the
granular details of individual components present in each phase and their interactions. In
contrast, compositional simulation provides a detailed representation by considering phase
components and their interactions, making it suitable for reservoirs with complex fluid
properties and unconventional resources. While compositional simulation offers accurate
phase behavior predictions and enhanced recovery processes, its computational demands
can be challenging, especially for large-scale modeling. In the context of saline aquifers
for carbon capture and storage, black oil simulation emerges as a pragmatic choice due
to its balance between accuracy and computational efficiency. While this simplification
is fundamental to the model’s approach, the aim of this work is to assess the suitability
of the assumption, and therefore the applicability of the black oil modeling technique
for simulating carbon storage in saline aquifer formation. In this Section, we present the
utilization of the black oil simulator by first introducing the representation of the PVT
CO2–brine equations necessary for a black oil simulator through the incorporation of the
solubility model presented in Section 2. Moreover, using the introduced equations, we
generate PVT data for a typical saline aquifer case and simulate carbon storage using a
modified version of the black oil model in the MRST simulator tailored for simulating
carbon storage. Furthermore, we compare the performance of black oil simulation and
compositional simulation for the same case in terms of result accuracy and computational
effort (CPU time) using different maximum allowed time steps.

3.1. The Representation of PVT CO2–Brine Equations in a Black Oil Simulator

To evaluate the feasibility of employing the black oil model technique for simulating
carbon storage in saline aquifer formations, the following factors must be considered:

1. Phases encountered underground
2. Thermodynamic mechanisms at play
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In saline aquifers, the primary phases consist of “gas” (supercritical CO2) and brine
with key underground thermodynamic mechanisms including the following:

1. Dissolution of CO2 into the brine. Under isothermal reservoir conditions, the disso-
lution is a function of a pressure change in the reservoir from the initial pressure to
maximum pressure (typically 90% of fracture pressure).

2. Change in volume of the brine solution (swelling or shrinking) due to dissolution
or the release of CO2 from the aqueous phase. Under isothermal condition, this
mechanism is also a function of pressure.

3. Compression and expansion of the CO2 free phase, which is also a function of pres-
sure changes.

4. Vaporization of brine into the gas phase which is ignored in this context due to its
negligible effect.

Since all described effects are solely functions of pressure (and temperature which,
however, is typically constant in aquifers), the viability for the adoption of the black oil
model is demonstrated. With only two components, CO2 and brine, experimental data are
not directly required, and accurate thermodynamic predictions can be made based on the
model discussed in Section 2. By adjusting the oil phase in the simulator to represent brine
and the gas phase to represent the CO2-rich phase, the required PVT inputs to the black oil
simulation are as follows:

1. Rs (solution gas–oil ratio or CO2–brine ratio) as a function of pressure, assessing the
dissolution effect of CO2 into brine while covering pressure levels anticipated in the
reservoir (Pinitial to Pclosure).

2. Brine formation volume factor (Bb) to account for the change in the volume of the
brine solution due to CO2 solubility and therefore swelling and/or shrinking in the
case of CO2 release from the solution as a function of the reservoir pressure state.

3. CO2 formation volume factor (Bg) to describe the compression and expansion of the
free CO2 phase volume with a pressure change at different stages of the CCS project
(injection/closure/post-closure monitoring).

Based on the above, the solution gas–oil ratio, altered to the CO2–brine ratio and the
oil formation volume factor altered to the brine FVF are defined as follows:

Rs =
Vsc

dCO2

Vsc
b

(46)

Bb =
Vres

b
Vsc

b
=

Vres
dCO2

+ Vres
b

Vsc
b

(47)

where Vsc
dCO2

and Vres
dCO2

are the volumes of dissolved CO2 in the formation brine at standard
and reservoir conditions (P and T), respectively, and Vsc

b and Vres
b are the formation brine vol-

umes at standard and reservoir conditions, respectively. Reforming Equations (46) and (47)
to be expressed in terms of phase composition/equilibrium properties obtained from the
thermodynamic model described in Section 2, the solution gas–oil ratio, herein CO2 solu-
bility, and the formation volume factor describing brine shrinkage/swelling due to CO2
release or dissolution are presented after Hassanzadeh et al., 2008 [34] as follows:

Rs =
Vsc

dCO2

Vsc
b

=
ρ sc

b xCO2

ρsc
CO2

(
1 − xCO2

) (48)

Bb =
Vres

b
Vsc

b
=

ρsc
b

ρres
b
(
1 − ωCO2

) (49)

Here, ρ sc
b and ρsc

CO2
are the formation brine and CO2 molar density at standard con-

ditions, xCO2 is the CO2 mole fraction in the aqueous phase, ρsc
b and ρsc

b are the formation
brine mass density at standard and reservoir conditions, respectively, and ωCO2 is the CO2
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mass fraction in the aqueous phase. With these equations and the thermodynamic model
(solubility model) presented in Section 2, the PVT data package includes the gas–oil ratio,
herein CO2 solubility (Rs ), and the formation volume factor of brine ( Bb) as a function
of pressure.

Furthermore, additional input parameters needed for a black oil simulation of carbon
storage in saline aquifers are computed using sampled data or correlations. For instance,
CO2 properties such as density, herein CO2 formation volume factor (Bg) as a function
of pressure, and viscosity are computed using built-in functions in the MATLAB Reser-
voir Simulation Toolbox (MRST) [35,36], specifically “CO2props”, which embeds several
member functions based on sampled data covering a pressure and temperature range
of 0.1 to 400 MPa and 278 to 524 K, respectively. On the other hand, other properties
needed for the brine phase, such as density and viscosity at standard conditions correlated
to brine salinity, are calculated using the Rowe and Chou (1970) [37] correlation and the
Kestin et al., (1981) [38] methods presented in Appendix B.

It should be noted that in cases of several-phase coexistence, such as carbon storage
in depleted oil fields, the presence of additional phases such as remaining and residual
oil and hydrocarbon gas necessitates a more comprehensive approach accounting for four
phases and their interactions. For instance, when the oil phase in the form of remaining
oil is included in the problem, the dissolution of CO2 should be accounted for in both
the formation brine and the already existing oil. In such scenarios, an extended black
oil model capable of accommodating all four phases (supercritical CO2, hydrocarbon
gas, brine, and oil) and their interactions may offer a more suitable solution. Such an
enhanced model would require additional PVT data inputs to accurately capture the
complex thermodynamic interactions that occur when multiple phases coexist.

3.2. Black Oil Simulation and Generation of PVT CO2–Brine Data: A Case Study of Typical Saline
Aquifer Conditions

Overall, temperature and pressure play significant roles in determining the phase
behavior of CO2 and brine within a reservoir. Changes in temperature and pressure can
alter the solubility of CO2 in brine, affecting the extent of dissolution and thus the overall
storage capacity of the reservoir. Salinity also influences the equilibrium properties by
affecting the density and composition of the brine, thereby impacting the solubility of CO2.
As the solubility of the CO2 decreases while brine salinity increases, an increase in brine
salinity decreases storage efficiency due to the reduced soluble mass of CO2 dissolved
in the aqueous phase. As saline aquifers used for carbon storage are of an isothermal
nature with homogeneous equilibrated salinity, pressure is typically considered to be the
key factor influencing carbon storage operations and therefore simulation outcomes in
carbon storage scenarios. In addition, pressure directly affects the phase behavior of CO2,
determining whether it remains in a supercritical state or transitions to a gaseous or liquid
phase. Additionally, pressure variations can influence the density and compressibility of
the brine, further affecting CO2 solubility and storage capacity.

The interplay between temperature, pressure, and salinity is complex and depends
on the specific geological conditions of the storage site. While pressure is commonly
regarded as the predominant driver of simulation outcomes, the combined effects of
temperature and salinity should also be carefully assessed to accurately predict CO2–brine
equilibrium properties in carbon storage simulations. The numerical black oil simulation in
this study is conducted using the open-source MATLAB 2023a Reservoir Simulation Toolbox
(MRST). The MRST provides the “CO2lab” model library tailored for carbon storage
simulations, which primarily focuses on vertical equilibrium, but lacks consideration for
dynamic flow processes such as fluid displacement and mixing. While efficient for assessing
CO2 migration, including the extension and migration of the CO2 plume (containment),
screening exercises, sensitivity analyses, and preliminary design decisions, it operates
under the assumption of quasi-steady-state conditions presuming that pressure and density
gradients stabilize relatively quickly. Therefore, for this study, the MRST black oil model
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originally designed for oil and gas production and full scale, fully dynamic simulation has
been chosen, with necessary modifications to suit the specific requirements of simulating
carbon storage in saline aquifers.

3.2.1. Black Oil Simulation: Characteristics and PVT Data

A simplified 3D Cartesian model is utilized to simulate the two-phase flow of CO2,
incorporating in-house collected characteristics observed in significant commercial projects
worldwide which offer a thorough representation of the current progress in CCS and are
summarized in Table 4. The simulated aquifer spans 2100 m in both length and width, with
a maximum observed thickness of 250 m. The grid resolution is set to 150 m in the x and y
directions and 5 m in the z direction, resulting in a grid configuration of 14 × 14 × 50 cells.
The reservoir exhibits Gaussian distributed heterogeneity, with porosity ranging from
13% to 37% and permeability ranging from 5 to 450 mD covering the spectrum observed
in large-scale commercial projects except for the Sleipner case, which features a specific
permeability of 5 Darcy. Figure 1 illustrates the distribution of these properties, offering
insights into reservoir heterogeneity.

Table 4. Summary of Key Characteristics of Large-Scale Commercial Projects.

Project
Name Location Inj. Start Aquifer Unit

(Lithology)
Average
Porosity

Average
Permeability Depth Thickness

(m)
Temperature

(ICI)
Pressure

(MPa)

Snohvit Barents Sea,
Norway 2008

Tubasen
Formation

(Sandstone)
13 450 2550 60 95 28.5

Sleipner North Sea,
Norway 1996

Utsira
Formation

(Sandstone)
37 5000 1000 250 37 10.3

In Salah Krechba,
Algeria 2004

Krechba
Formation

(Sandstone)
17 5 1850 29 90 17.9

Gorgon Barrow Island,
WA, Australia 2014

Dupuy
Formation

(Sandstone)
20 25 2300 N/A 100 22Energies 2024, 17, x FOR PEER REVIEW 15 of 31 
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The top reservoir is positioned at a depth of 1925 m derived from the weighted average
of all cases. The reservoir is assumed to be horizontally layered and therefore isothermal,
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with a maximum observed temperature of 100 ◦C. In addition, in the absence of publicly
available salinity data, a salinity of 150,000 ppm is adopted, referencing the L. Tuscaloosa
Sandstone Formation in the SECARB Mississippi Pilot project [39]. This results in a top
pressure of 206.1 bars, correlated to a brine standard density of 1092 kg/m³ and a reservoir
density of 1057 kg/m³. Additionally, the rock compressibility is assumed at 40 × 10−7

(1/psi), and relative permeabilities are produced using a connate water saturation of 0.27
and a residual CO2 saturation of 0.20, utilizing built-in functions of MRST.

The primary PVT data for black oil modeling, including the solution gas–oil ratio
altered to the CO2–brine ratio and the oil formation volume factor altered to brine, are pro-
duced as functions of pressure for the aquifer with the specified characteristics (T = 100 ◦C
and salinity of 150,000 ppm) using Equations (48) and (49), in combination with the solubil-
ity model discussed in Section 2. The brine density at standard conditions and reservoir
viscosity are determined from correlations discussed before, while the standard density,
reservoir viscosity as well as CO2 formation volume factor tables are determined using the
MRST CO2prop built-in functions. Figure 2 summarizes the main PVT data parameters
produced and utilized when simulating carbon storage in the described aquifer. Addition-
ally, Table 5 provides an overview of the standard input PVT parameters introduced and
the approximation of viscosity data.
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Table 5. PVT parameters introduced.

Parameter Value

Standard brine density 1092 kg/m3

Standard CO2 density 1.8 kg/m3

Average brine viscosity 0.393 cp

Average CO2 viscosity 0.06 cp

Two injection wells were situated on one side of the reservoir (XY: 1,1 and 1,14), while
two producers were positioned on the opposite side (XY: 14,1 and 14,14). Each injector
was set to be rate-controlled, injecting 0.5 million tons per annum (0.5 Mtpa) into the last
three layers (48:50), corresponding to a 15 m long perforation. A constraint was imposed
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on the bottom hole pressure of 500 bars, aligning with the maximum pressure buildup
allowed. Conversely, the producers were configured to extract brine to alleviate pressure
buildup, facilitating more efficient carbon injection and storage. Thus, they were set to
be rate controlled at 2550 stb/day each and perforated in the last three layers (15 m) to
minimize the production of CO2.

The simulation encompassed a typical injection period of 25 years, corresponding to
the standard duration for storage operation permits, followed by a 75-year post-closure
monitoring phase, resulting in a total simulation time of 100 years. During the operational
phase, the simulation employed a monthly time step to yield results, whereas during the
post-closure period, it utilized quarterly intervals thanks to the significantly lower pressure
and saturation change rate during equilibrium.

3.2.2. Black Oil Simulation: Results

To comprehensively evaluate the simulation outcomes, we conducted an exhaustive
analysis of a diverse array of datasets. Our primary focus was on tracking the extension of
the CO2 plume by examining free gas saturation, along with other parameters crucial for
understanding plume extension in carbon storage. This assessment is vital for ensuring
the containment of CO2 within the storage site and preventing migration to surrounding
areas. Additionally, we evaluated the pressure profile in conjunction with the dissolution
and free gas trapping profiles. Understanding these parameters is essential for assessing
site integrity, conducting safety evaluations, and performing long-term risk assessments
for potential CO2 leakage.

Figure 3 provides a detailed depiction of the key information used to monitor the
migration of the CO2 plume, pressure distribution, and dissolution phenomenon profile. It
also illustrates the overall simulation results in terms of CO2 mass entrapped in each form
(dissolved and free) at the conclusion of the operational phase (after 25 years of injection)
for the uppermost layer of the reservoir. Due to reservoir heterogeneity and maximum
capped pressure, the two corner wells inject differently, resulting in the formation of two
separate plumes that mimic real-world gas distribution among different reservoir regions.
This visualization offers a clear picture into how CO2 behaved within this layer over time,
enhancing our understanding of the effectiveness of the black oil simulation technique
in capturing its distribution, movement, and potential impact on the storage site and
surrounding environment. In Figure 3, the saturation distribution (3a) at the conclusion of
the injection phase in both plumes reveals a predominant saturation of free gas (CO2 “gas
cap”), with a saturation value exceeding 0.70. This is complemented by a saturation value
of 0.27 representing the connate/irreducible water saturation. As we progress through
the tails and intermediate regions, the prevalence of free gas saturation persists, gradually
transitioning towards the plume interface and forefront. A notable decline in saturation is
observed in both plumes, ranging from 0.05 to 0.6, signifying the forefront of the plume’s
migration. Within this observation, it is clear that the black oil simulation effectively
captures the buoyancy effect, the gradual transition of free gas saturation along the plume
interface, and the forefront. These aspects are interconnected with the solubility effect and
convection mechanisms occurring in underground carbon storage.

On top of the observed distribution of saturation, the pressure distribution (3b) within
the reservoir layer exhibits a distinct pattern, revealing a smooth transition in pressure
correlated with slight variations in free gas saturation. In the topmost layer saturated with
free gas CO2 (referred to as the “CO2 gas cap”), the pressure is relatively high near the
injectors (tail of the CO2 plume) due to the accumulation of CO2 gas in its supercritical
state, with a saturation of approximately 0.73. Meanwhile, a gradual transition in pressure
is correlated with slight variations in the saturation of free gas (ranging from 0.70 to 0.73).
Conversely, in regions where the saturation of CO2 decreases, such as at the forefront
interface of the plume, the pressure is lower compared to the gas-saturated areas. This
decrease is attributed to the dissolution of CO2 into the brine phase, resulting in a reduction
in gas volume and consequently a pressure reduction, with the lowest pressure observed
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around the producers. Overall, the pressure distribution obtained using the black oil model,
which is closely correlated to formation volume factors input tables, reflects the dynamic
interplay between gas saturation, dissolution effects, and the movement of the CO2 plume
within the reservoir.
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When examining the distribution of Rs (3c), or the gas–brine ratio within the reservoir,
an expected gradient correlated with pressure is observed. In the topmost layer, where
the pressure variation is minimal, Rs (the solubility parameter) demonstrates a coherent
distribution, with values approximately around 20 sm3/m3 in the tail and intermediate
regions of the CO2 plume. Moreover, the Rs values accurately portray the solubility in
blocks already contacted with CO2, mirroring the block pressure. In blocks where no CO2
has been contacted but the pressure is relatively similar or close enough, Rs accurately
depicts a value of 0, indicating a precise correlation to both phases and pressures. Within
the forefront interface blocks of both plumes (e.g., blocks: 1,6; 2,6 and 8,4; 14,9, etc.), the Rs
values reach their maximum, while free gas saturation varies. This observation indicates an
accurate representation of the plume’s evolution: as CO2 contacts fresh brine, it undergoes
dissolution, and after full brine saturation with CO2, the free gas phase begins to form.
Additionally, focusing on blocks like 6,1 (interface of both plumes), 5,1; 14,9; 13,9; 12,9, etc.,
different Rs values are evident with a gas saturation equal to 0. This suggests that CO2
has reached these blocks; however, “first & multiple contact solubility” took place with
different solubility values correlated to the amount of CO2 reached in each block, with no
free gas formed. Observations of Rs signify the dynamic interaction between solubility,
gas saturation, and pressure within the reservoir, providing insights into the capability
of black oil simulation to accurately mimic various in-situ phenomena and behaviors of
injected CO2.

On the other hand, analyzing the output value projection regarding CO2 mass dis-
solved (3d), free (3e), and total CO2 stored in the reservoir (3f) unveils a significant variation
in the trapped CO2 between dissolution and free gas across different blocks in the upper-
most layer. The contrast in the magnitude of trapped CO2 is striking, with dissolved CO2
being on the order of magnitude of 105, while free gas is approximately 107, confirming
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the expectation of relatively low dissolution trapping compared to free gas. Moreover, the
consistent variation in trapped mass among different blocks arises from a combination of
factors. Primarily, inherent rock properties play a crucial role, including heterogeneity in
permeability and porosity. This heterogeneity leads to a variation in void volumes available,
alterations in the mass of connate water, and creates different “thief” paths for CO2 to flow.
Additionally, slight variations in PVT properties among the blocks, such as Rs, contribute
minimally to the observed differences.

A similar interpretation and analysis can be extended to Figure 4, illustrating sim-
ilar key information, monitoring the migration of a continuous CO2 plume (the segre-
gation/integration of the two plumes), the dissolution phenomenon, and the overall
simulation results over 100 years (25 years of injection with 75 years of post-closure moni-
toring). Notably, the black oil simulation demonstrates the expected equilibrated pressure
propagation among the top layer at the end of the simulation time (100 years), despite the
two plumes separately exhibiting distinct pressure profiles at the end of the injection as
shown in Figure 3.
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Evaluating the second set of data, which includes the pressure profile along with
the dissolution and free gas trapping profiles, is essential for assessing the capability of
the black oil model technique as a representative tool in the assessment of site integrity
through accurate pressure prediction (thereby mitigating pressure buildup and potential
geomechanical complications) and relatively short-term risk assessment (e.g., 25 years
injection). In addition, long-term risk assessments for potential CO2 leakage from the
storage site are closely correlated to the amount of CO2 stored in mobile form, which is
more prone to leak than any other form. Therefore, the capability of the black oil model
in accurately representing and distinguishing carbon stored within low-risk mechanisms
such as dissolution versus relatively higher-risk mechanisms such as mobile CO2 plumes is
crucial from both operational and regulatory perspectives.

Figure 5 illustrates the average reservoir pressure over the injection and monitoring
phases. When examining the average reservoir pressure profile depicted in Figure 5, three
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distinct patterns emerge. The first pattern corresponds to the injection period, spanning
approximately from year 0 to 2 years, while the second pattern covers the interval from 2
to 25 years. The third pattern represents the overall monitoring phase from 25 to 100 years.
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Figure 5. Average reservoir pressure over injection and monitoring phases.

In the initial period (0–2 years), the reservoir continues to “inflate” as expected,
attributed to the higher downhole volume of the injected fluid compared to the withdrawn
brine. By approximately 2 years, the bottom hole pressure constraints of the injectors are
activated, leading to a reduction in injection rates and a constant pressure for the remainder
of the injection period (2–25 years). Figure 6 accurately depicts this constraint, showcasing
the adjustment of injection rates to meet constraints imposed on the injectors’ bottom
hole pressure, ensuring it does not exceed the specified value (500 bars). The disparity in
observed injection rates between Injector 1 and Injector 2 is attributed to the asymmetry in
the petrophysics of the reservoir regions where each injector is situated, including variations
in porosity and permeability.

Starting at the 25-year mark and extending beyond (up to 100 years), a continuous
decline in average reservoir pressure is evident. This decrease is associated with the ex-
tended expansion of the CO2 plume within the reservoir and the attainment of equilibrium
over the very long term (e.g., 1000 years). As the plume traverses the reservoir, additional
dissolution of CO2 occurs upon contact with “fresh” undersaturated brine. This ongoing
movement of CO2 results in further dissolution, leading to a reduction in the presence
of the free gas phase (free gas/dense phase saturation). Figure 7 illustrates that after the
cessation of injection at the 25-year mark, free gas CO2 diminishes, while the reservoir
concurrently experiences a proportional increase, adhering to mass conservation princi-
ples. This trend supports the observed decrease in average reservoir pressure during the
post-closure monitoring phase.

Overall, based on the results observed during both the injection and monitoring
phases, it can be concluded that the black oil model technique effectively captures the
movement of the CO2 plume during post-closure monitoring, where no dynamic injection
takes place. It accurately represents the dissolution of CO2 in undersaturated brine, further
reducing the presence of the dense mobile phase in the reservoir.
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4. Performance Comparison between Black Oil Model and Compositional Model

In this Section, our objective is to bolster the credibility of the black oil model as a
reliable tool for simulating carbon storage by comparing its results to those of a conven-
tional compositional model. By utilizing the compositional model as a benchmark, we
assess the outcomes of the black oil model presented in Section 3. Similar to the previous
Section, we analyze the free gas saturation (plume expansion) in the topmost layer of
the reservoir generated by both the black oil simulation (BoM) and the compositional
model (EoS). The significance of examining plume extension stems from its crucial role in
evaluating the safety and efficiency of carbon storage operations. This includes containing
the mobile CO2 injected within the storage site/formation to prevent any leakage into the
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surrounding environments, such as storage complexes, and managing the primary risks
and challenges associated with potential leakage through open fractures and conduits that
could be encountered in the storage formation. To achieve this, we employ the Eclipse E300
compositional [40] commercial simulator to simulate the same case discussed previously.
Figure 8 illustrates the results of the free CO2 plume in the topmost aquifer layer (layer
number 1) and compares the outcomes obtained using the BoM developed in this work
with those obtained using Eclipse E300 model.

Energies 2024, 17, x FOR PEER REVIEW 22 of 31 
 

 

E300 compositional [40] commercial simulator to simulate the same case discussed previ-
ously. Figure 8 illustrates the results of the free CO2 plume in the topmost aquifer layer 
(layer number 1) and compares the outcomes obtained using the BoM developed in this 
work with those obtained using Eclipse E300 model. 

 
Figure 8. The comparison of plume extensions between the black oil and compositional model at 
the top grid layer. 

Figure 8. The comparison of plume extensions between the black oil and compositional model at the
top grid layer.



Energies 2024, 17, 1914 23 of 30

At simulation time T = 10 years, the results indicate that the BoM (8a) slightly under-
estimates the expansion of the plume compared to the EoS results (8f). However, when
it comes to the extent of the plume, the discrepancy between the black oil model and
the compositional one averages about one block (~150 m) in both directions x and y. To
further assess this difference, the left-hand side plume forefront interface is examined. It
is observed that in the x direction, the EoS model shows the plume forefront interface
reaching block 4,1, whereas the black oil model simulation indicates that the interface is still
at block 3,1. Similarly, in the y direction, the BoM plume reaches block 1,3 while the EoS
one reaches block 1,4. Furthermore, similar results are obtained by the end of the injection
time (T = 25), further confirming that the spatial difference between BoM and EoS analyses
in capturing the extent of the plume in the reservoir is on the order of 150 m. During the
monitoring phase (post-closure, T = 50 (8c), 75 (8d), and 100 years (8e)), the consistency
between the results of both techniques (BoM and EoS) is also similar to the operational
period results. Whereas during the injection period, a discrepancy of one block or 150 m
is depicted between both models, and the same applies for the monitoring phase where a
similar minor discrepancy is noticed.

The pattern of difference observed between the black oil model and the compositional
model can be attributed to several factors. During the injection/operational period, where
the black oil model shows a discrepancy of one block (150 m) compared to the EoS model
results are obtained by T = 10 and 25 years (8a and 8b, respectively), this difference is
likely due to the highly buoyant nature of CO2 during injection. The pressure plume/drive
mechanisms generated from the continuous injection of CO2, coupled with the relatively
rapid phase equilibrium changes at the plume interface, are better captured by the compo-
sitional model due to its inherent ability to calculate phase equilibrium and track phase
composition accurately. Additionally, when such a pattern is still observed in the monitor-
ing phase where no such high buoyancy and drive mechanism is expected, particularly
at 100 years, the black oil model continues to show a similar difference to the one seen in
the results of the operation/injection period (10 and 25 years). Therefore, it can be said
that such a difference cannot only be attributed to the modeling technique itself, but also
to the discretization/block size, indicating the need for a finer grid in both the x and y
directions when employing black oil model technique, as will be explored in a later part of
this study, to accurately capture the plume extent. In addition to the above, the sensitivity
of the black oil model input parameters produced in this work using solubility models
and representative equations (Sections 2 and 3), except case-specific lab data, could also
contribute to very minor discrepancies between the black oil model and the compositional
model results.

Overall, for evaluating the extent of the plume and assessing the safety of carbon
storage operations within a specific formation or site, the black oil model proves to be a
reliable tool that serves the intended purpose effectively.

To further evaluate the capability of the BoM technique in simulating carbon storage
operations, we assess the average pressure and dissolution/free rates of both fluid modeling
techniques over the entire simulation period of 100 years. Reservoir pressure is a critical
parameter for assessing the risk of pressure buildup in the formation and caprock, which
could lead to the fracturing of both carbon storage elements if the pressure exceeds certain
thresholds (e.g., fracture pressure). Additionally, security assessments of storage in terms of
the mass fraction of carbon stored in dissolution and free gas forms are crucial in assessing
long-term containment. Figure 9 illustrates the average reservoir pressure profile as well
as the dissolution and free mass fraction rates over the total simulation time of 100 years
(25 years of injection and 75 years of post-closure monitoring). The fraction rate corresponds
to the mass of CO2 stored in the form of a corresponding mechanism (e.g., dissolution)
over the total CO2 mass stored at each time step.

Considering the results of the average pressure profile obtained from both the BoM
and compositional techniques, it is observed that the BoM approach tends to slightly
overestimate the average pressure in the reservoir during the injection period and for
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some parts of the monitoring phase. While the EoS model predicts an average pressure
of approximately 490 bars, the BoM prediction is slightly higher at 500 bars, reflecting
a relative difference of approximately 2% up to 60 years of simulation. However, as the
reservoir begins to equilibrate after 25 years, the average reservoir pressure starts to decline,
eventually converging to that of the EoS model by the end of the 100-year simulation period.
This behavior is attributed to the high buoyancy and pressure plume during the injection
period, which is better captured through compositional phase equilibria, albeit with higher
computational demand and complexity. Overall, the average absolute relative difference in
average reservoir pressure using the BoM technique is approximately 3.85% over the entire
simulation time, representing a minor deviation. This further strengthens the employment
of the black oil fluid modeling technique as a viable option to simulate carbon storage, even
though it slightly overestimates the average pressure in the reservoir.
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Figure 9. Average reservoir pressure and dissolution/free gas mass over 100 years of carbon storage
simulation.

On the other hand, when considering the dissolution and free gas rates or the mass
fraction, it is noticed that the black oil simulation slightly underestimates the dissolution
rate or the mass fraction, with the complementary factor being the free CO2/mobile CO2.
The difference of both fluid modeling techniques shows a consistent gap trend of difference.
This is consistent with the average since a higher dissolution effect against the free gas
plume implies lower pressure due to the higher density of the dissolved CO2 compared
to that of the supercritical free phase. Additionally, such minor differences should be
partially attributed to the block size itself, suggesting that a further decrease in the block
size (possibly in the x and y direction) to less than 150 m could show a higher consistency
(possibly < 4% difference), further strengthening the capability of the BoM technique in
simulating carbon storage operations.

5. Discussion

The integration of black oil modeling into carbon storage simulations marks a sig-
nificant advancement in carbon mitigation strategies. Leveraging techniques from the
oil and gas industry, particularly the black oil model (BoM), our study introduced an
alternative approach to simulating carbon storage in saline aquifers and achieving efficient
decision-making. This methodology tackled key challenges in CCS, such as computational
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complexity, while ensuring accuracy and reliability. We incorporated a solubility thermo-
dynamic model capable of predicting CO2–brine equilibrium properties offline, reducing
computational overhead. This enhanced model can accommodate various salts up to a
concentration of 4.3 m and extends to pressure and temperature ranges suitable for both
carbon storage in saline aquifers in moderate and “hot” basins, thus finding application in
Enhanced Geothermal Systems.

In our work, we developed and tested the solubility model for a saline aquifer with
specific characteristics. PVT data generated using this model were then introduced into the
simulator, and carbon storage simulations using the BoM technique were conducted. The
results aligned with expectations. When compared to compositional modeling, the BoM
showed strong agreement with minor differences in plume extent and average reservoir
pressure, reducing CPU time to at least one-fourth of that of a compositional model.
However, further analyses suggested that these differences were likely attributed to grid
block size/dimension rather than the model itself.

Moving forward, several avenues for further research emerge. Firstly, the applicability
of the black oil model when taking into consideration different geological setting (e.g.,
a depleted oil field) should be further assessed in further research. In addition, while
the aim of this work is to lay the foundation for the application of the black oil model in
the CCS domain, this study did not explicitly address grid discretization and resolution
effects and their implications on simulation outcomes such as grid shape, resolution, and
orientation which can significantly influence the shapes and extents of free CO2 plumes.
For instance, coarse vertical discretization of a reservoir may hinder gravity override,
potentially underestimating the maximum plume size. Therefore, future research should
address the impact of grid discretization and resolution in all three directions (x, y, and z) on
result accuracy when applying the BoM. Additionally, comparing the BoM’s performance
with Vertical Equilibrium simulations could elucidate the additional computational costs
incurred when applying full dynamic modeling, assessing trade-off between accuracy and
computational cost. The authors intend to address these aspects in a future extension of this
work, alongside the application of optimization techniques for well allocation and strategies
while employing the BoM. Lastly, exploring the application of the solubility model in
geothermal systems is another area of research interest, aiming to accurately model the
density and solubility phenomena involved in CO2 Plume Geothermal (CPG) applications.

Overall, this research demonstrates the potential of the BoM technique in carbon
storage simulations and lays the groundwork for further investigations into its application
and optimization. By addressing these research gaps, we aim to enhance the efficiency and
effectiveness of carbon storage strategies, contributing to global efforts to mitigate CO2
emissions and combat climate change.
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BoM showed strong agreement with minor differences in plume extent and average res-
ervoir pressure, reducing CPU time to at least one-fourth of that of a compositional model. 
However, further analyses suggested that these differences were likely attributed to grid 
block size/dimension rather than the model itself.  

Moving forward, several avenues for further research emerge. Firstly, the applicabil-
ity of the black oil model when taking into consideration different geological setting (e.g., 
a depleted oil field) should be further assessed in further research. In addition, while the 
aim of this work is to lay the foundation for the application of the black oil model in the 
CCS domain, this study did not explicitly address grid discretization and resolution ef-
fects and their implications on simulation outcomes such as grid shape, resolution, and 
orientation which can significantly influence the shapes and extents of free CO2 plumes. 
For instance, coarse vertical discretization of a reservoir may hinder gravity override, po-
tentially underestimating the maximum plume size. Therefore, future research should ad-
dress the impact of grid discretization and resolution in all three directions (x, y, and z) 
on result accuracy when applying the BoM. Additionally, comparing the BoM’s perfor-
mance with Vertical Equilibrium simulations could elucidate the additional computa-
tional costs incurred when applying full dynamic modeling, assessing trade-off between 
accuracy and computational cost. The authors intend to address these aspects in a future 
extension of this work, alongside the application of optimization techniques for well allo-
cation and strategies while employing the BoM. Lastly, exploring the application of the 
solubility model in geothermal systems is another area of research interest, aiming to ac-
curately model the density and solubility phenomena involved in CO2 Plume Geothermal 
(CPG) applications. 

Overall, this research demonstrates the potential of the BoM technique in carbon stor-
age simulations and lays the groundwork for further investigations into its application 
and optimization. By addressing these research gaps, we aim to enhance the efficiency 
and effectiveness of carbon storage strategies, contributing to global efforts to mitigate 
CO2 emissions and combat climate change. 
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Appendix A

Table A1. The parameters for the CO2-H2O mutual solubility model.

Low-temperature parameters: 12–109 ◦C, 1–600 bar (Spycher et al., 2003) [21]

Parameter Parameter units Regression coefficients

a b c d e

aCO2 bar cm6 K0.5 mol−2 7.54 × 107 −4.13 × 104

aH2O
a bar cm6 K0.5 mol−2 0.0 0.0

aCO2−H2O bar cm6 K0.5 mol−2 7.89 × 107 0.0

bCO2 cm3 mol−1 27.80

bH2O cm3 mol−1 18.18

log ( K0
H2O ) bar −2.209 3.097 × 10−2 −1.089 × 10−4 2.048 × 10−7 0.0

log ( K0
CO2

) (L) b bar mol−1 1.169 1.368 × 10−2 −5.380 × 10−5 0.0 0.0

log ( K0
CO2

) bar mol−1 1.189 1.304 × 10−2 −5.446 × 10−5 0.0 0.0

VCO2 cm3 mol−1 32.6 0.0

VH2O cm3 mol−1 18.1 0.0

AM N/A 0.0 0.0

Pre f bar 1.0 0.0 0.0 0.0 0.0

High-temperature parameters: 99–300 ◦C, 1–600 bar (Spycher et al., 2010) [23]

aCO2 bar cm6 K0.5 mol−2 8.008 × 107 −4.984 × 104 0.0 0.0 0.0

aH2O bar cm6 K0.5 mol−2 1.337 × 108 −1.4 × 104 0.0 0.0 0.0

aCO2−H2O bar cm6 K0.5 mol−2 Computed from KH2O−CO2 and KCO2−H2O below

KH2O−CO2 NA 1.427 × 10−2 −4.037 × 10−4

KCO2−H2O NA 0.4228 −7.422 × 10−4

bCO2 cm3 mol−1 28.25

bH2O cm3 mol−1 15.70

log ( K0
H2O ) bar −2.1077 2.8127 × 10−2 −8.4298 × 10−5 −1.4969 × 10−7 −1.1812 × 10−10
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Table A1. Cont.

log ( K0
CO2

) bar mol−1 1.668 3.992 × 10−3 −1.156 × 10−5 1.593 × 10−9 0.0

VCO2 cm3 mol−1 32.6 3.413 × 10−2

VH2O cm3 mol−1 18.1 3.137 × 10−2

AM NA −3.0840 × 10−2 1.927 × 10−5

Pre f (T ≤ 100 ◦C) bar 1.0 0.0 0.0 0.0 0.0

Pre f (T > 100 ◦C) c bar 1.9906 × 10−1 2.0471 × 10−3 1.0152 × 10−4 −1.4234 × 10−6 1.4168 × 10−8

CO2 activity coefficient for salt effects: ~20–305 ◦ C

λ NA 2.217 × 10−4 1.074 2648

ξ NA 1.30 × 10−5 −20.12 5259
a—The value of aH2O is not needed because of the assumption that yH2O = 0 in mixing rules; b—fliquid CO2 below 31 ◦C and above CO2 saturation pressures; c—water saturation pressure.
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Appendix B

Appendix B.1. Brine Density and Compressibility

Using the Rowe and Chou correlation (1970) [37], the brine density is calculated in
this work as follows:

α1 = 5.916365 − 0.01035794T + 0.9270048 × 10−5T2 − 1127.522
T

+
100674.1

T2 (A1)

α2 = 0.520491 × 10−2 − 0.10482101 × 10−4T + 0.8328532 × 10−8T2 − 1.1702939
T

+
102.2783

T2 (A2)

α3 = 0.118547 × 10−7 − 0.6599143 × 10−10T (A3)

α4 = −2.5166 + 0.0111766 T − 0.170522 × 10−4T2 (A4)

α5 = 2.84851 − 0.0154305T + 0.223982 × 10−4T2 (A5)

α6 = −0.0014814 + 0.829639 × 10−5T − 0.12469 × 10−7T2 (A6)

α7 = 0.0027141 + 0.15391 × 10−4T − 0.22655 × 10−7T2 (A7)

α8 = 0.62158 × 10−6 − 0.40075 × 10−8T + 0.65972 × 10−11T2 (A8)

1
ρ
= (α1 − πα2 − π2α3 + α4S + a5S2 − πα6S − πa7S2 − 0.5πα8S)× 10−3 (A9)

cb(p) =
ρp − ρr

ρp(p − pr)
(A10)

where cb is in 1/kPa; T is in K; π is the pressure in kgf/cm2; ρ is in kg/m3 at pressure p; S
is the salt mass fraction; p is the pressure in kPa; and ρr is the brine density in kg/m3 at the
reference pressure (pr = 101.325 kPa).

Appendix B.2. Brine Viscosity

Kestin et al., (1981) [38] presented a correlation for aqueous NaCl solution viscosity as
a function of temperature, pressure, and brine salinity.

µb = µ0(θ, m) +

[
1 +

π

109

4

∑
i=0

βimi

]
(A11)

log
(

µ0(θ, m)

µ0
w(θ)

)
=

3

∑
i=1

ai mi +
3

∑
i=1

bimi

{
1

96 + θ

4

∑
i=1

ci(θ − 20)

}
(A12)

β(T, m) =

{
0.545 + 2.8 × 10−3 −

4

∑
i=0

βimi

}{
3

∑
ι=1

β∗
i

(
m
ms

)}
+

4

∑
i=0

βimi (A13)

ms =
2

∑
i=0

diTi (A14)

µb is in µPa s, θ is in ◦C, π is in Pa, m is the salt molality, and µ0 is at 20 ◦C = 1002.0 µPa s.
Various constants in the above equation are given in table below (Table A2).

Table A2. Various constants needed for calculation of brine viscosities.

Constant 0 1 2 3 4 5

ai 3.324 × 10−2 3.624 × 10−2 −1.879 × 10−4

bi −3.96 × 10−2 1.02 × 10−2 7.02 × 10−4

ci 1.2378 −1.303 × 10−3 3.06 × 10−6 2.55 × 10−8
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Table A2. Cont.

Constant 0 1 2 3 4 5

di 6.044 2.8 × 10−3 3.6 × 10−5

β I −1.279 5.74 × 10−2 −6.97 × 10−4 4.47 × 10−6 −1.05 × 10−8

β∗ι 2.5 −2.0 0.5
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