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Abstract: Accurate well productivity prediction plays a significant role in formulating reservoir
development plans. However, traditional well productivity prediction methods lack accuracy in
tight gas reservoirs; therefore, this paper quantitatively evaluates the correlations between absolute
open flow and the critical parameters for Linxing tight gas reservoirs through statistical analysis.
Dominant control factors are obtained by considering reservoir engineering theories, and a novel
machine learning-based well productivity prediction method is proposed for tight gas reservoirs.
The adaptability of the productivity prediction model is assessed through machine learning and field
data analysis. Combined with the typical decline curve analysis, the estimated ultimate recovery
(EUR) of a single well in the tight gas reservoir is forecasted in an appropriate range. The results
of the study include 10 parameters (such as gas saturation) identified as the dominant controlling
factors for well productivity and geological factors that impact the productivity in this area compared
to fracturing parameters. According to the prediction results of the three models, the R2 of Support
Vector Regression (SVR), Back Propagation (BP), and Random Forest (RF) models are 0.72, 0.87, and
0.91, respectively. The results indicate that RF has a more accurate prediction. In addition, the RF
model is more suitable for medium and high-production wells based on the actual field data. Based on
this model, it is verified that the productivity of low-producing wells is affected by water production.
This study confirms the model’s reliability and application value by predicting recoverable reserves
for a single well.

Keywords: tight gas reservoirs; machine learning (ML); well productivity prediction; dominant
controlling factors; recoverable reserves

1. Introduction

Tight gas reservoirs are complex compared to conventional gas reservoirs, as they are
not controlled by tectonic traps, have no apparent water–gas contact, are highly heteroge-
neous, have rapid gas layer changes, have poor petrophysical properties, and have complex
gas–water relationships. Therefore, tight gas wells are characterized by low control reserves
and significant inter-well differences, resulting in productivity forecasting as a critical part
of reservoir development.

Currently, the typical methods of well productivity prediction mainly include ana-
lytical methods and numerical simulations, which are based on physics-based analytical
models and have some limitations in tight gas reservoirs.

Wu et al. [1] proposed a semi-analytical model that considers formation damage
induced by two-phase flow and fracturing fluids to predict gas production in tight gas
reservoirs. The model can simultaneously analyze the fracturing fluid-induced formation
damage (FFIFD) and production data. However, the model accuracy gradually decreases
over time. Rahman et al. [2]. incorporated inertia non-Darcy pressure losses into the
momentum balance equation of gas flow in tight gas reservoirs. The study extended the
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effects of hydraulic fracturing in transient and pseudo-steady-state (PSS) flow regimes.
These analytical models are based on ideal assumptions, which are difficult to apply to
heterogeneous tight gas reservoirs. In addition, it is challenging to develop reservoir models
to simulate the complex gas–water relationship in tight gas reservoirs, and numerical
simulations are complicated and time-consuming.

In recent years, some methods have been derived instead of the physical models
of oil and gas reservoirs [3,4]. An empirical analysis method has been applied in the
field, which can roughly forecast gas-well productivity using several basic parameters.
Although it cannot accurately agree with the actual production, it can provide insights into
the type of gas-well productivity and instruct well production. Nowadays, data-driven
machine learning methods are applied in the petroleum industry. The combination of
machine learning and the research of well productivity prediction satisfies the principle
of efficiency during actual field production [5,6]. The theoretical basis of this method is
more consummate than the empirical analysis method, overcoming the limitations of the
empirical analysis method, such as data quality, dimensionality, and prediction accuracy.
In addition, machine learning provides a new research approach for well productivity
prediction in tight gas reservoirs.

Wu et al. [7] established correlations between fracturing parameters and cumulative
oil production based on Decision Tree Regression, SVR, and Elastic Network Regression
models. The machine learning models were applied to fracturing parameter optimization
for tight oil wells in the Changqing Oilfield. The results indicated that SVR performs
better with small samples and nonlinear complex data. This research extends machine
learning applications into fracturing optimization and provides an evaluation method. Wu
et al. [8] predicted the specific productivity index using the least square support vector
machine method, and the prediction results are in good agreement with actual data. Aditya
Vyas [9] ingeniously linked the decline curve model with well-completion parameters using
ML. They proposed an evaluation standard through the combination of the best decline
curve and accurate EUR prediction with machine learning, providing a new approach for
well productivity prediction. Lulu Liao [10] used data mining to reveal the correlation
between the 12 months of cumulative oil production in Cadmium tight formation and
the highest influencing factors of productivity. On this basis, the random forest method
was optimized by multiple machine learning models. The cross-validation method was
utilized to prevent the over-fitting of the model and improve the quality of the model.
Dongkwon Han [11] used the random forest analysis method to quantitatively evaluate
the importance of productivity. They proposed a workflow to enhance the accuracy of
neural network prediction using the clustering method, which reduced the model loss by
10% compared to the traditional neural network prediction. Hou Xianmu [12] applied the
machine learning method to predict the porosity and permeability of carbonate reservoirs.
The study indicates that logging parameters have a significant impact on the prediction
results of porosity and permeability, and the best adaptive model can be selected based
on result analysis. Yunan Li [13] used the logistic growth model to retrieve the daily oil
rate from the reservoir simulation. The combination of sensitivity analysis and principal
component analysis was applied to select the factors that strongly correlate with well
productivity. The selected factors acted as the inputs of the neural network model to predict
the single-well recoverable reserves. Compared to reservoir numerical simulation, the
calculation efficiency of Li’s method was higher. Salma Amr [14] used the machine learning
method to train the well productivity of multiple blocks simultaneously. The monthly oil
production was assigned as the model’s dependent variable, promoting prediction accuracy
compared to previous studies. They improved the robustness of the model by increasing
the amount of data and investigated the influence of input variables on prediction accuracy.
Hamzeh Alimohammadi [15] predicted the production performance of oil wells based
on various recurrent neural network models. The study demonstrated that the length of
the training data impacted the prediction accuracy. Junzhe Wang [16] demonstrated the
applicability of four transformer-based deep learning prediction models in forecasting
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real-time drilling data of various lengths. Additionally, Junzhe Wang [17] also applied
the RNN-LSTM model effectively to real-time drilling data, demonstrating that composite
models outperform traditional models in prediction accuracy. However, the deep learning
model found it difficult to distinguish the production performance for oil wells at different
production stages. Therefore, further research is required to apply deep learning for well
productivity prediction.

The prediction accuracy of machine learning methods depends on the quantity and
quality of data [18–20]. Machine learning methods have various adaptabilities and sen-
sitivities to different research data [21]. Linxing tight gas reservoirs are characterized by
high heterogeneity, low pressure, and heterogeneous water saturation. There are nonlinear
relationships within the data. Therefore, the selected machine learning models must equip
adaptive nonlinear and high-dimensional data computing capabilities. This paper utilizes
the BP neural network, random forest regression, and support vector machine algorithm to
establish the correlation between the dominant controlling factors and absolute open flow.
BP is a well-developed machine learning model that can fit nonlinear data infinitely by
increasing the number of hidden layers [22]. Based on the joint decision-making for multi-
ple decision trees [23,24], RF efficiently processes multi-dimensional data and has a strong
ability for avoiding overfitting. SVR maps data into high-dimensional space through the
kernel function method [25], significantly improving the efficiency of processing nonlinear
data. In addition, this study uses an optimization algorithm to enhance the prediction
accuracy of the model. From the field application perspective, the best prediction model for
different well types is screened by analyzing the adaptability of the models. The single well
recoverable reserves are forecasted by considering the decline curve model. In addition,
this study provides a theoretical basis for formulating and revising the development plan
of Linxing tight gas reservoirs.

2. Materials and Methods
2.1. Data Sources

The data used in this study are obtained from the gas reservoirs in the Linxing Block
located on the eastern edge of the Erdos Basin, including the Upper and Lower Shihezi
Formations. The lithology of the formations includes green and gray–green gravelly coarse
sandstone, coarse sandstone, fine sandstone, miscellaneous colored mudstone with an
unequal thickness interlayer, and purple–red mudstone with sandstone. The thickness of
the formations is in the range of 160 m–230 m. This group of formations is characterized as
thick in the middle and thin on both sides.

It is more challenging to develop reservoir models for Linxing tight gas reservoirs due
to their weak formation energy and poor reservoir properties compared to the Danniudi
and Sulige gas reservoirs. The controlling factors that impact well productivity include
the following two major aspects: (1) the characteristic parameters of reservoirs, such as
reservoir depth, reservoir thickness, porosity, permeability, gas saturation, rock density,
etc.; and (2) fracturing and fracture parameters, such as fracturing fluid volume, flowback
fluid volume, etc. This paper studies the above two types of parameters to predict absolute
open flow. Since the fracture parameters of tight gas reservoirs are difficult to achieve,
proppant volume and sand ratio are utilized to represent fracture parameters. Reservoir
and fracturing parameters of wells are obtained from weighted averages according to the
thickness of the perforation layers. Finally, the data from 189 test wells are collated and
classified into three types of wells based on absolute open flow (as shown in Table 1).

Table 1. Classification of well types.

Well Type Absolute Open Flow (104 m3/d)

Low-producing well ≤1
Medium-producing well 1~5

High-producing well >5
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The training dataset includes 14 parameters for this machine learning application,
which are gas saturation, stratigraphic coefficient, flowback fluid volume, reservoir thick-
ness, permeability, porosity, gamma-ray, rock density, resistance, reservoir depth, liquid
nitrogen volume, sand ratio, fracturing fluid volume, and sand filling amount. The distribu-
tion of each parameter in the training dataset is shown in Figure 1. The red line represents
the trend of data distribution.
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2.2. Correlation Analysis

Pearson, Spearman, and Kendall coefficients are all evaluated by the correlation
coefficient as an indicator of the importance of factors, and their values are between −1 and
1. The variables have a positive correlation when the correlation coefficient is positive. The
closer the value of the coefficient to 1, the stronger the positive trend. As the correlation
coefficient is negative, the variables show a negative trend. The negative correlation is
intense, as the coefficient value is close to −1. However, there is no correlation between
the variables when the coefficient value equals 0. The equations of the three algorithms are
presented as follows:

r =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2

√
n
∑

i=1
(yi − y)2

, (1)

where xi is the variable corresponding to different values, x is the mean of the variables, yi
is the different values corresponding to the variables, y is the average value of the variables,
and n is the number of variables.

ρ = 1 −
6∑N

i=1 d2
i

N(N2 − 1)
, (2)
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where N is the number of factors, and d1, d2, · · · , dn are the differences in the rank of each
set of data.

Tau =
C − D

1
2 N(N − 1)

, (3)

where C is the pair of elements with consistency in the data set and D is the number of
elements with inconsistency in XY.

2.3. Machine Learning Model
2.3.1. Support Vector Regression

Support vector regression (SVR) is a machine learning algorithm proposed by Vapnik
et al. in the 1990s [26]. It has been extended to solve the complex linear indivisibility of data
and “dimensional catastrophe” problems. The core methodology of SVR is mapping the
sample data using the kernel function to a suitable high-dimensional characteristic space to
realize the nonlinear analysis for the original data and determine the optimal hyperplane
based on the mathematical derivation. Kernel functions are critical parameters of SVR,
showing different sensitivities for various data categories. The typical kernel methods
include linear, polynomial, Sigmoid, and radial [27]. In this paper, radial-based kernel
functions are used for the SVR algorithm.

2.3.2. Back Propagation Neural Network

The backpropagation (BP) neural network algorithm was first proposed by Rumelhart
and McClelland (1986) and employed to train multilayer perceptron feedforward neural
networks according to the error backpropagation algorithm [28].

The BP neural network first performs forward propagation. Input data is passed
through the input layer to the hidden layer, where it undergoes a series of weighted
summations and activation function processing to produce the output of the hidden layer.
This output is then transmitted to the output layer, where similar processing yields the
final predicted output. Simultaneously, the predicted output is compared to the actual
output, resulting in an error. The model then backpropagates this error, utilizing gradient
descent to adjust the weights and biases of each connection in the network. This iterative
process continues until reaching the maximum number of iterations or the error falls below
a predefined threshold. BP primarily consists of an input layer, hidden layer, and output
layer, which are fully connected. Nonlinear data infinitely fits when the hidden layer part
is more than three layers under the influence of the activation function. The activation
function is a non-linear function applied to the output of hidden layers in neural networks,
aiming to introduce non-linear features and enhance the network’s expressive capability. It
plays a crucial role in the performance and convergence speed of neural networks. ReLU
function is a commonly used choice, effectively alleviating issues like gradient vanishing
(it is used in this paper). In addition, the BP neural network has recently been gradually
employed in the field of well productivity prediction. Compared to traditional prediction
methods, it shows strong nonlinear mapping, universality, and fault tolerance capability.
The BP neural network is an efficient and straightforward productivity prediction method.

2.3.3. Random Forest Regression

Random forest (RF) regression is an integrated algorithm combined with the Bagging
method as the core and decision trees as the base learner. The RF model consists of
multiple regression decision trees [29]. The nodes of each regression decision tree are
divided by impurity-based features. A set of if-else structures is formed from the training
set. Consequently, the regression values are output through the leaves. The final results
are obtained by averaging the output results of all decision trees [30]. In addition, the
random forest algorithm has a strong advantage in dealing with high-dimensional data
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and is simple to operate, fast to compute, and resistant to overfitting. The random forest
algorithm is calculated using the following equations:

min
j,v

[min
c1

∑
xi∈G1(j,v)

(yi − c1)
2
+ min

c2
∑

xi∈G2(j,v)
(yi − c2)

2
], (4)

Gr =
{

x|xj > v
}

, (5)

Gr =
{

x|xj > v
}

, (6)

c1 =
1

M1
∑

xi∈Gl(j,v)
yi, (7)

c2 =
1

M2
∑

xi∈Gr(j,v)
yi, (8)

where yi is the data label value in the dataset, Gl , Gr are two subsets after splitting, C1, C2
are the average value of data labels in subsets, M1, M2 are the number of data in subsets, v
is the cut point feature variable value, and j is the order of characteristic sequence.

2.3.4. Grid Search Method

The grid search method is the most widely used technique to identify the optimal hy-
perparameter for a machine learning model. It determines the optimal value by calculating
all hyperparameter combinations of the model. Generally, a larger range and smaller step
size are used to determine the optimal global value, but it works only for numerical class
parameters, not for classification parameters (e.g., internal kernel, etc.).

2.3.5. K-Fold Cross-Validation

K-fold cross-validation is a commonly used model evaluation technique. It divides the
dataset into k mutually exclusive subsets, where one subset serves as the validation set and
the remaining k-1 subsets serve as the training set. Then, the model is trained on these k-1
training sets and evaluated on the withheld validation set. This process is repeated k times,
each time choosing a different validation set. Finally, the evaluation results from k iterations
are averaged to obtain the final model performance assessment. K-fold cross-validation
allows for more accurate model performance evaluation and reduces biases caused by
uneven data distribution or single partitioning.

2.3.6. Confidence Interval

The confidence interval provides a reasonable range of values for a population pa-
rameter, allowing us to quantify the uncertainty associated with our estimate. Instead of
providing a potentially misleading point estimate, confidence intervals give a range within
which the true parameter value is likely to fall.

[yi − σ, yi + σ], (9)

σ =

√
∑n

i=1 (yi − yi)

n
, (10)

The results of 10-fold cross-validation form a dataset, where yi represents each data
point in the dataset, σ denotes the standard deviation of the dataset, yi denotes the mean of
the dataset, and n represents the number of samples.

2.3.7. Summary of This Section

The above mentioned BP neural network adjusts the parameters of the neural network
through forward and backward propagation; Random Forest builds multiple decision
trees and integrates their prediction results; and Support Vector Machine finds the optimal
hyperplane through kernel function transformation and maximal margin maximization.
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These different computational perspectives endow these three models with unique charac-
teristics and applicability in handling data. This article aims to compare and select the best
production capacity prediction model among them.

3. Productivity Prediction of Tight Gas Wells

The research of the absolute open flow prediction models is carried out based on the
algorithm of machine learning models. The primary workflow includes the following:
(1) Pre-process data, and the dominant controlling factors as model input are screened
by correlation analysis. The data from 170 wells are assigned as a training set, and the
data from 19 wells are designated as the test set. (2) Based on the training set, BP, RF,
and SVR models are employed to construct the base model. The hyper-parameters of the
model are optimized by the grid-search method to achieve the best model training results.
(3) The universality and accuracy of the models are examined by the test training set. The
experimental flow chart is shown in Figure 2.
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3.1. Correlation Analysis Results

The dimensions of the selected dominant controlling factors are different among the
models, resulting in more considerable differences in the regression coefficients during the
regression task. Normalization refers to the induction and unification of the probability
distribution of the sample between zero and one [31]. The accuracy of the prediction model
is affected, reducing the overall universality; therefore, it is essential to normalize the data
before employing machine learning models. In this paper, the min–max normalization
method is used to process the field data, effectively improving the model prediction
accuracy. The equations related to the normalization process are presented below:

X1 =
X − Xmin

Xmax − Xmin
, (11)
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where X1 is standardized data, X is the original data, Xmin is the minimum value in the
original data, and Xmax is the maximum value of the original data.

Currently, the analysis methods of productivity influencing factors mainly include
experiments, numerical simulations, and analytical models [32–34]. The research is complex
and time-consuming, meaning it cannot fulfill the fast and efficient requirements of field
production. Therefore, Pearson, Spearman, Kendall, three methods of correlation analysis,
and mathematical statistics are systematically employed to analyze the correlations between
14 parameters and absolute open flow. The optimal productivity controlling factors are
screened under the constraint of gas reservoir engineering theories.

The results of correlation analysis using three algorithms are shown in Figure 3. The
Spearman and Kendall methods achieve similar results, but Pearson has different results
compared to the other methods. Since these algorithms possess various methodologies and
strengths, the final ranking of controlling factors selects the average ranking of all three
algorithms. The results are listed in Table 2.
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Figure 3. Correlation analysis results of Spearman, Pearson, and Kendall.

Table 2. Correlation ranking of influencing factors of production capacity.

Parameter
Correlation Ranking of Different Algorithms Comprehensive

RankSpearman Pearson Kendall

Gas saturation 1 1 1 1
Stratigraphic coefficient 2 2 2 2
Flowback fluid volume 3 5 3 3

Reservoir thickness 4 7 4 4
Permeability 5 4 5 5

Porosity 7 3 7 6
Gamma-ray 8 6 8 7
Rock density 6 9 6 8

Resistivity 10 10 10 9
Reservoir depth 12 8 12 10

Liquid nitrogen volume 9 11 9 11
Sand ratio 11 12 11 12

Fracturing fluid volume 13 14 13 13
Sand filling amount 14 13 14 14

From Table 2, reservoir characteristic parameters are more critical than fracturing
parameters concerning well productivity for all three methods. Sand ratio, fracturing fluid
volume, and proppant volume have a weak correlations with productivity. The highest
degree of importance for productivity is gas saturation. Reservoir parameters, such as
permeability and porosity, are more dominant than reservoir depth due to the complex
geological structure of the Linxing gas field. Linxing gas reservoirs are characterized by
high heterogeneity, severe gas seepage, and similar fracturing operations. It is essential
to enhance the reservoir description of the gas reservoirs, and sweet spot studies should
be carried out during the reservoir development stage. In addition, the results indicate
that there is a strong correlation between the flowback fluid volume and productivity. The
gas production decreases as flowback fluid volume increases, which can be used as a basis
for productivity determination. Flowback fluid volume cannot be used as an input to the
prediction model of this paper, as it is only obtained after the gas wells turn to production.
It is generally acknowledged that correlation coefficients between −0.1 and 0.1 indicate
no correlation. The article employs three methods for evaluation. Consequently, factors
for which all three methods yield results within a range from −0.1 to 0.1 are eliminated.
However, if one method yields a correlation result outside this range, the corresponding
feature is selected. Based on these principles, 10 parameters of gas saturation, stratigraphic
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coefficient, reservoir thickness, permeability, porosity, gamma ray, rock density, resistivity,
reservoir depth, and liquid nitrogen volume are selected as productivity prediction-related
parameters for gas wells in the block.

3.2. Model Building and Hyper-Parameter Optimization

In this paper, the Keras library and Sklearn library of Python are used to develop BP,
RF, and SVR models, and the grid-search method is employed to optimize hyperparameters
of models based on the training set. The ranges of experimental parameters are presented
in Table 3.

Table 3. Range of experimental parameters.

Model Name Parameter Name Parameter Range Parameter Step

RF

n_estimators (40, 500) 10

max_depth (3, 13) 1

max_features (0.1, 1) 0.1

SVR

kernel function (linear, poly, rbf) -

C (10, 100) 10

gamma (0.01, 0.1) 0.01

BP

hidden layer (1, 10) 1

hidden layer size (20, 120) 10

batch_size (20, 100) 10

epochs (100, 1000) 100

The grid search method optimizes the random forest model to determine the best
combination of parameters: n_estimators are 140, max_depth is 10, and max_features are
0.1. The BP neural network model is determined to have six hidden layers, and the hidden
unit sizes are 30, 50, 80, 120, 80, and 50, respectively. Epochs are 500 times, and the batch
size is 100. The best combination of hyper-parameters for SVR is kernel function rbf, C
50, and gamma 0.06. We use the training dataset considering RMSE, R2 and Error Rate(θ)
indexes to examine and screen the models.

RMSE =

√
1
m

m

∑
i=1

(yi −
∧
yi)

2
, (12)

R2 = 1 −
∑
i
(
∧
yi − yi)

2

∑
i
(yi − yi)

2 . (13)

θ =

∣∣∣∣ypred − ytrue

ytrue

∣∣∣∣. (14)

The R2 of the three models are 96.1%, 96%, and 90%, respectively. Although the
accuracy of the SVR is slightly worse, it still is in good agreement with actual data. The
fitting results are shown in Figure 4.
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3.3. K-Fold Cross-Validation

Based on the above hyperparameter settings, the article employs a k-fold cross-
validation method to assess the stability of the model, with k set to 10, as shown in
Figure 5.
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Figure 5. The k-fold cross-validation results of RF (a), SVR (b), and BP (c) models.

From Figure 6, it can be observed that the average R2 for RF is 87%, SVR is 63%, and BP
is 83%. Moreover, the stability of prediction accuracy for RF and BP is better compared to SVR.
Therefore, it is concluded that the RF model demonstrates the best predictive performance.
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3.4. Evaluation of Test Results
3.4.1. Comparative Analysis of Models

To prove the reliability of the prediction models and compare the adaptability and
sensitivity of the three models for gas well data in this block, the prediction results are
shown in Table 4 and Figure 7.

From the results of the three models, the RF model with RMSE of 3.98 and R2 of 0.91 has
the best adaptability from the perspective of machine learning. The prediction accuracy of the
BP model is slightly worse than that of the RF model. The prediction error of the SVR model
is the largest, in which the RMSE is 12.83 and R2 is 0.72. The prediction results of some wells
are even negative values, indicating that the stability of the model is extremely poor.

During the actual production process, gas wells can be classified into low-producing,
medium-producing, and high-producing wells, as various factors lead to differences in
productivity. The test results demonstrate that the three models significantly differ in
identifying various types of wells (as shown in Figure 7). The RF model entirely recognizes
(100%) medium and high-producing wells, while the prediction effects of SVR and BP
models are relatively insufficient. In addition, all three models inadequately distinguish
low-producing wells because the critical factors of low-producing wells are more complex.
It is challenging to effectively determine the productivity of low-producing wells from
geological and fracturing parameters.

Due to the limitation of models on low-producing wells, the prediction models are
re-verified using water production as an additional parameter. The results are presented
in Figure 8. As the average daily water production of the gas well increases, the R2 of the
RF prediction model is increased to 98.06%. The productivity prediction error of the low-
producing well is significantly reduced, indicating the suppression of water accumulation in
the wellbore on productivity. Therefore, the reliability of the prediction model is improved
by adding water production as a parameter.

Table 4. Errors of prediction results for three models.

Prediction Model RMSE R2

RF 3.98 0.91
SVR 12.83 0.72
BP 5.90 0.87
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3.4.2. Confidence Interval Validation

In this study, we utilize the results of k-fold cross-validation to compute the confidence
intervals for the test results of three models. The results are presented in Table 1.

From Table 5, it can be observed that only the prediction results of the SVR model in
Section 3.4.1 fall outside the confidence interval range. This indicates that the SVR model is
more sensitive to data variations compared to other models and has a weaker generalization
ability; therefore, the SVR model shows the poorest adaptability for this study.

Table 5. Confidence interval calculation results.

Model Average Value Standard Deviation Confidence Interval

RF 87 4.5 [82.5, 91.5]
SVR 63 6.7 [56.3, 69.7]
BP 83 4.9 [78.1, 87.9]

3.4.3. RF Model Validation

Based on the random forest regression model mentioned earlier in the text, the article
randomly selects two additional sets of data for result analysis. The outcomes are illustrated
in Figure 9.
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Figure 9. Prediction results for case 1,2.

From Figure 9, it can be observed that the R2 values for the predictions of the two
subsets by the RF model are 0.9 and 0.88, respectively. Additionally, the model demonstrates
significantly higher prediction accuracy for medium-producing and high-producing wells
compared to low-producing wells. Therefore, the random forest model is more suitable for
predicting production capacity in medium-producing and high-producing wells.
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3.5. Sensitivity Analysis

Based on the preferred random forest regression model mentioned above, a single-factor
sensitivity analysis of the influencing factors on tight gas well productivity was conducted.
Additionally, a physical consistency test method was employed to validate the model. Taking
the data of one well as an example, the reliability of the model was further verified.

(1) Reservoir thickness

The sensitivity of the reservoir thickness in the production forecasting model is il-
lustrated in Figure 10. Within a similar range, as the reservoir thickness increases, the
gas well production capacity also increases, showing a positive correlation overall. This
phenomenon indicates a greater reservoir thickness, with other parameters in the gas field
remaining constant.
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Figure 10. The sensitivity of reservoir thickness.

(2) Gas saturation

The sensitivity of the gas saturation in the production forecasting model is depicted in
Figure 11. Within a similar range, as the gas saturation increases, the gas well production
capacity also increases, exhibiting a positive correlation overall. This is primarily due to the
fact that, with other parameters in the gas field remaining constant, higher gas saturation
results in reduced flow resistance and improved flowability of gas within the reservoir,
thereby favoring an increase in gas well production capacity.
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(3) Stratigraphic coefficient

The sensitivity of the stratigraphic coefficient in the production forecasting model is
illustrated in Figure 12. Within a similar range, as the formation coefficient increases, the
gas well production capacity also increases, with a relatively large overall variation and
a positive correlation. This phenomenon suggests that, when other parameters remain
constant, a higher formation coefficient indicates a larger volume of gas stored in the
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reservoir and relatively less flow resistance within the reservoir, consequently leading to an
increased gas well production capacity.
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Figure 12. The sensitivity of stratigraphic coefficient.

(4) Porosity

The sensitivity of the porosity in the production forecasting model is depicted in
Figure 13. Within a similar range, as the porosity increases, the gas well production capacity
also increases, showing a positive correlation overall. Furthermore, the positive correlation
becomes more pronounced when the porosity exceeds 13. This phenomenon is primarily
attributed to the increase in reservoir porosity, which enlarges the pore volume within
the rock, allowing the reservoir to accommodate more gas and consequently increasing
the gas well production capacity. However, as the porosity reaches a certain threshold,
the rate of increase in gas well production capacity gradually diminishes because the rock
pores are saturated. Further increases in porosity have less pronounced effects on gas well
production capacity. Additionally, as porosity continues to increase to a certain extent,
the connectivity between pores in the rock significantly improves, resulting in smoother
pathways for gas flow and leading to a sudden increase in gas well production capacity.
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Figure 13. The sensitivity of porosity.

(5) Liquid nitrogen volume

The sensitivity of the liquid nitrogen volume in the production forecasting model is
illustrated in Figure 14. Within a similar range, as the liquid nitrogen volume increases, the
gas well production capacity gradually increases, showing an overall positive correlation.
However, when the liquid nitrogen volume reaches 17 m3, the production capacity stabi-
lizes. This is primarily because liquid nitrogen is employed as a production enhancement
measure to reduce bottomhole temperature, thereby reducing gas adhesion and conden-
sation. However, as the liquid nitrogen volume increases, it permeates into the reservoir,
leading to a decrease in reservoir permeability and restricting gas flow. Consequently, the
effectiveness of production enhancement gradually diminishes.
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(6) Rock density

The sensitivity of rock density in the production forecasting model is depicted in
Figure 15. Within a similar range, as the rock density increases, the gas well production
capacity gradually decreases, showing an overall negative correlation. This phenomenon
indicates that, with other parameters in the gas field remaining constant, a higher rock
density results in smaller reservoir porosity and a smaller pore throat radius, leading to
lower permeability of the reservoir. Consequently, the gas well production capacity is
relatively lower.
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(7) Permeability

The sensitivity of permeability in the production forecasting model is illustrated in
Figure 16. Within a similar range, as the permeability increases, the gas well production
capacity gradually increases, but the magnitude of change is relatively small. This phe-
nomenon is primarily due to the extremely low initial permeability of tight gas reservoirs.
Even with techniques such as hydraulic fracturing to increase permeability, the magnitude
of increase remains relatively small. Therefore, under the constant conditions of other
parameters, the impact of permeability on production capacity is not significant.
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(8) Resistivity

The sensitivity of resistivity in the production forecasting model is depicted in Figure 17.
Within a similar range, as the resistivity increases, the gas well production capacity increases,
showing a weak positive correlation overall, with fluctuations in the overall curve. This
phenomenon is primarily due to the complex relationship between resistivity and gas well
production capacity, which is not singular but may be influenced by multiple factors. Therefore,
it requires comprehensive consideration and analysis.
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(9) Gamma-ray

The sensitivity of the gamma-ray in the production forecasting model is illustrated
in Figure 18. From the graph, it can be observed that, within a similar range, the change
in production capacity is relatively small, showing an overall negative correlation. This
phenomenon suggests that there is no direct causal relationship between natural gamma
and gas well production capacity. Therefore, comprehensive analysis considering other
parameters is necessary.
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4. Model Application

Due to the highly heterogeneous gas reservoirs, the production systems and fractur-
ing conditions between gas wells are different, resulting in significant differences in the
recoverable reserves of gas wells in the Linxing field. Therefore, an effective method is
needed to improve the estimation accuracy of EUR for gas wells. Typically, the prediction
of single well recoverable reserves uses decline curve analysis combined with historical
production data. This method is challenging in regard to determining the initial production
for the unexplored area. In this study, a machine learning-based method is proposed for
estimating single well recoverable reserve predictions based on geological and fracturing
parameters in the early stages of gas well production.
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4.1. Decreasing Curve Prediction

The gas wells in this block of Linxing are mainly characterized by high initial produc-
tion and short stable production time. Typically, the Arps decline method is employed in
the field to predict the EUR of a single well. Decline curve analysis is a classic method for
predicting the production decline of oil and gas wells. The best-fitting model is selected
based on the historical production data of the field. A characteristic of gas production in
this block is a rapid production decline after a short period of constant production (control
flow rate) and a stable production state (slow production decline), which generally satisfies
the feature of hyperbolic decline. Therefore, the hyperbolic decline model is utilized to fit
the gas production in the Linxing gas field and determine the features of gas production in
this block.

Generally, the production potential for various gas wells is different, and the well type
and well productivity can be classified based on absolute open flow rates. Based on the
analysis of the decline rate of gas wells in the Linxing reservoirs, the original three types of
gas wells are re-classified into four categories according to absolute open flow rate. Among
them, the numbers of Type I, II, III, and IV wells are 42, 40, 30, and 15, respectively. The
selected gas wells produced gas for more than 12 months and normalized the production
during the decline stage. Then, the hyperbolic decline curve is used to fit the production of
four types of wells to obtain typical decline curves. The cumulative gas production is used
to evaluate the performance of curve fitting, as shown in Table 6 and Figure 19. Between
the two red lines is the gas well depletion period.

Table 6. Production parameters of classified gas wells.

Well Category Absolute Open Flow
(104 m3/d)

Ratio of Initial
Production and

Absolute Open Flow
Annual Decline Rate (%) b Value of

Decline Curve

I ≤1 0.71 37.4 0.36
II 1~3 0.36 25 0.76
III 3~5 0.31 32.7 0.68
IV >5 0.16 51.4 0.52
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The fitting results of the gas production decline curve are shown in Figure 20. The
production of Type I wells has the most significant fluctuation due to the rapid water
breakthrough. In addition, water accumulation occurs in the wellbore in the early testing
stage and repeatedly happens during the production stage. Foam drainage operation is a
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commonly used solution for resolving accumulated water in the wellbore problem, but the
operation causes considerable gas production fluctuations.
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I well hyperbolic decline fitting formula:

q = 5000 × (1 + 0.64 × 0.0015t)− 1/0.64. (15)

II well hyperbolic decline fitting formula:

q = 6600 × (1 + 0.76 × 0.0011t)− 1/0.76. (16)

III well hyperbolic decline fitting formula:

q = 13, 000 × (1 + 0.08 × 0.0011t)− 1/0.08. (17)

IV well hyperbolic decline fitting formula:

q = 15, 800 × (1 + 0.52 × 0.002t)− 1/0.52. (18)

Type II wells have the smallest decline rate, followed by Type III and Type I wells.
Type IV wells have the highest decline rate because the early production of these wells
is assigned very high, resulting in insufficient energy supplies and a rapid decline in gas
wells. Therefore, the ratio of the average open flow rate of each type of gas well to the initial
production of the typical decline curve provides a more reasonable initial co-production
basis for the site, as shown in Table 6.
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4.2. RF Model Prediction

The initial and cumulative production correlation is established using the RF model to
predict the cumulative production of the four wells at different stages (with two months as
a stage) during the first 12 months. The results were compared with the prediction results
of typical decline curves to evaluate the performance of machine learning in production
prediction. Figure 8 shows the predicted 12-month cumulative production errors of Type
I wells using the RF model, and the typical decline curve models are 0.07% and 1.12%,
respectively. The prediction effect of the RF model is significantly better than that of the
typical decline curve model. The errors of Type II wells for the two models are 1.17%
and 1.65%, respectively, and the prediction results of the RF model are better agreed with
the actual cumulative production trend. For Type III wells, errors are 3.2% and 10.08%,
respectively, and the prediction results of RF are more dominant in each stage. The errors
of Type IV wells for the two models are 3.8% and 7.9%, and the RF model is more accurate
than the decline curve method. Therefore, we conclude that the prediction accuracy of the
RF model is better than that of the typical decline curve model, which avoids the influence
of the initial production error on the cumulative prediction. During actual gas production,
various operations are often conducted in the field, resulting in output fluctuations during
production. The decline curve cannot eliminate this difference, significantly impacting
production forecasting. As shown in Figure 21, the prediction results of the machine
learning model are more in line with the actual production.
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4.3. EUR Prediction

The medium and high-producing wells (named Well−1, Well−3, and Well−5) are
randomly selected from the database to predict 20-year EUR using two methods. As shown
in Table 7, the absolute open flow rate of the gas well indicates the production potential of
the well. Combined with the typical decline curve of different types of wells, the EUR of a
single well can be predicted. The forecasted 20-year EUR for Well−1, Well−3, and Well−6 is
958.8 × 104 m3, 1819.9 × 104 m3, and 4109.8 × 104 m3, respectively. Compared with the
prediction results of OFM software (2014V2), the differences for the three wells are 9.9%,
13.7%, and 6.5%, respectively, and the differences are all within the acceptable range.

Table 7. Prediction results and initial production of selected wells.

Prediction
Results

Well Name
Well−1 (104 m3/d) Well−3 (104 m3/d) Well−5 (104 m3/d)

RF prediction results 1.58 3.68 25.56
True value 1.96 4.41 30.94

Initial Production (104 m3/d) 0.48 1.14 4.09
EUR prediction 958.8 1819.9 4109.8

EUR predicted by OFM 872.5 2106.6 4394.4



Energies 2024, 17, 1916 25 of 27

Oil Field Management (OFM) software predicts the recoverable reserves of a single well
based on the historical production of wells. The proposed machine learning-based model can
complete the prediction at the early stage of geological analysis. The method uses machine
learning models to reveal the correlation between productivity with geological and fracturing
parameters, as well as to predict the absolute open flow rate of gas wells. Combined with the
typical decline curve, the model can predict the recoverable reserves of a single well, which
provides an effective method for determining the productivity potential of gas wells and
planning new wells. In the process of economical cost, the overall work efficiency is improved.
As EUR prediction is completed before the production period, it provides insight into the
surface facility and piping design to improve the project’s economics.

5. Conclusions

(1) The statistical analysis method can quickly determine the dominant controlling
factors of well productivity and provide a quantitative evaluation. This study analyzes
the performance of 10 parameters, including gas saturation, reservoir thickness, etc., on
gas well productivity in this block. The results indicate that geological factors play a more
significant role than fracturing factors in well productivity prediction.

(2) The RF model can accurately predict the absolute open flow of gas wells and
distinguish the type of gas wells. Based on machine learning evaluation, the RF prediction
model with an RMSE of 3.98 and R2 of 0.91 has the highest prediction accuracy, followed
by the BP. The SVR model has the largest prediction error. From the practical application,
the RF model entirely (up to 100%) recognizes the medium- and high-production wells.
Therefore, the RF model is recommended for employment in productivity prediction in the
Linxing gas reservoirs.

(3) The research shows that the deviation of the initial production leads to inaccurate
prediction results regarding the typical decline curve. It is challenging for the typical
decline curve to capture the character of actual production for the wells that conducted
multiple operations. The 12-month cumulative production forecasting of the four wells
using the RF model is more accurate than the typical decline curve model, verifying the
applicability of machine learning in production prediction.
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Nomenclature

EUR Estimated Ultimate Recovery
SVR Support Vector Regression
RF Random Forest
BP Back Propagation
Pearson Pearson’s correlation coefficient method
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Spearman Spearman’s correlation coefficient method
Kendall Kendall’s correlation coefficient method
ρ Spearman coefficient value
r Pearson coefficient value
Tau Kendall coefficient value
C The penalty coefficient
Linear Linear Kernel
poly Polynomial Kernel
rbf Radial Basis Function
RMSE Root Mean Square Error
R2 Coefficient of Determination
OFM Oil Field Management
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