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Abstract: The investigation of the ignition delay of hydrocarbon fuel is highly valuable for enhancing
combustion efficiency, optimizing fuel thermal efficiency, and mitigating pollutant emissions. This
paper has developed a BP-MRPSO neural network model for studying hydrocarbon fuel ignition and
clarified the novelty of this model compared to the traditional BP and ANN models from the literature.
The model integrates the particle swarm optimization (PSO) algorithm with MapReduce-based
parallel processing technology. This integration improves the prediction accuracy and processing
efficiency of the model. Compared to the traditional BP model, the BP-MRPSO model can increase the
average correlation coefficient, from 0.9745 to 0.9896. The R2 value for predicting fire characteristics
using this model can exceed 90%. Meanwhile, when the two hidden layers of both the BP and
BP-MRPSO models consist of 9 and 8 neurons, respectively, the accuracy of the BP-MRPSO model is
increased by 38.89% compared to the BP model. This proved that the new BP-MRPSO model has
the capacity to handle large datasets while achieving great precision and efficiency. The findings
could provide a new perspective for examining the properties of fuel ignition, which is expected to
contribute to the development and assessment of aviation fuel ignition characteristics in the future.

Keywords: ignition delay time; BP-MRPSO algorithm; BP neural network; equivalence ratio;
hydrocarbon fuel

1. Introduction

The proper usage of various energy sources remains an issue of concern amidst
the rapid development of the economy and society. The ignition delay time (IDT) of
hydrocarbon fuels is crucial in characterizing fuel combustion. It dramatically affects the
emission of pollutants and combustion efficiency, including unburned hydrocarbons (UHC),
carbon monoxide (CO), and carbon smoke. An enhanced understanding and precisely
forecasting the IDT properties are expected to aid in analyzing combustion of hydrocarbon
fuels in an aeroengine, which thus helps to improve the modeling of the chemical reaction
kinetics of aviation fuels [1].

The current study primarily employs shock tube experimental equipment to investi-
gate the ignition delay time (IDT) of various hydrocarbon fuels. Liu et al. [2] demonstrated
a linear relationship between the logarithm of the IDT of alternative fuels and the reciprocal
of the ignition temperature. Wei et al. [3] explored the relationship between IDT and
factors such as pressure, fuel/air mass ratio, and temperature. Bui et al. [4] studied the
relationship between IDT and factors including temperature, pressure, and the composition

Energies 2024, 17, 2072. https://doi.org/10.3390/en17092072 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17092072
https://doi.org/10.3390/en17092072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-5299-0462
https://doi.org/10.3390/en17092072
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17092072?type=check_update&version=2


Energies 2024, 17, 2072 2 of 16

of fuel/air mixtures. Zhang et al. [5] investigated ignition delay characteristics under dif-
ferent equivalence ratios, pressures, and temperatures by measuring the pressure rise and
OH* chemiluminescence signals during the ignition process in a shock tube. Ma et al. [6]
provided the relationship between IDT and the fuel concentration and equivalence ratio.
Wang et al. [7] studied the OH radicals, reactive particles, through sensitivity analysis and
modification of the reaction mechanism, revealing that the addition of reactive particles
significantly shortened the ignition delay time of n-decane aviation kerosene. To ensure the
gaseous state of the fuel, Zhukov et al. [8] used a heated shock tube to study the ignition
delay time, measuring the IDT of Jet-A/air mixtures under different pressures, equivalence
ratios, and temperatures, with experimental errors around 20%.

The fuels generated and used in real life are often mixtures of hydrocarbon fuels with
different carbon numbers, and their IDT characteristics are extremely complex, making
systematic analysis and research difficult. Therefore, other means are needed to study
and analyze the ignition delay characteristics. Neural networks, with their high nonlinear
modeling capability [9], can effectively identify and simulate complex chemical reactions
and have been widely applied in object recognition, trend prediction, fault diagnosis,
and other fields [10–12]. Using genetic algorithms to optimize the backward BP neural
network [13], predicted the ignition delay time of n-butane/hydrogen mixtures. Compared
with interpolation data prediction, the average correlation coefficient for extrapolation
data prediction decreased from 0.9890 to 0.9763, and the corresponding average mean
square error increased from 1.06 to 13.37, indicating that the genetic algorithm-optimized
BP neural network has a slow convergence speed, is prone to falling into local optima, and
is inefficient in processing large-scale data. In contrast, the BP-MRPSO model combines
the particle swarm optimization algorithm and MapReduce parallel processing technology,
effectively improving prediction accuracy and processing efficiency. By constructing an
ANN neural network model, Huang et al. [14], Bounaceur et al. [15] predicted the ignition
delay time of hydrocarbon mixtures. Data-driven surrogate models based on artificial
neural networks (ANN) have limitations in capturing the full complexity of the aviation
fuel ignition process, with maximum local relative errors of up to 10%, indicating poor
predictive performance of data-driven surrogate models under certain conditions, especially
when the IDT is short. Moreover, due to the long-tail distribution of the IDT database,
outliers among these data points have a significant impact on the loss function, making
it difficult to optimize the prediction of the data-driven surrogate model for low IDT
data points. Addressing the limitations of data-driven surrogate models, especially under
specific conditions where the IDT is short, the BP-MRPSO model can adjust parameters
based on individual and collective historical experience, thereby searching for the optimal
solution in the solution space, effectively avoiding falling into local optima. This global
search strategy allows the BP-MRPSO model to find more suitable network parameters in
complex tasks, avoiding the problem of traditional BP models and data-driven surrogate
models falling into local optima.

As shown in Table 1, the systematic errors from previous studies [6,13,16,17] provide a
context for understanding the improvements in measurement accuracy in current models.

Table 1. Systematic errors in experimental data from references.

Reference Ma et al. [6] Tang et al. [17] Cui et al. [13] Liang et al. [16]

Systematic Error 4% 0.42% 1.06% 10%

In general, the neural network models are currently being used to study and predict
the flammability characteristics of hydrocarbon fuels with substantial advantages. This
research presents a developed optimized BP-MRPOS neural network model to examine the
IDT characteristics of hydrocarbon fuels with different carbon atomic weights. Through
comparison to the BP model, the superiority and accuracy of the BP-MRPSO model in pre-
dicting the ignition characteristics of hydrocarbon fuels are verified.Compare the predicted
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IDT of the BP-MRPSO model with experimental values under different pressures, fuels,
and equivalence ratios to verify the effectiveness of the established model.

2. Methodology
2.1. Acquisition of Data

The data included in this work are partially obtained from experiments conducted
within our research group, while the remaining portions are derived from existing litera-
ture [6,8,16–18]. The experiment was conducted at the State Key Laboratory of Two-Phase
Flow of Xi’an Jiaotong University with a chemical-pressure-stabilizing tube.

2.2. Creation of Data Sets

The experimental data settings for studying the effect of fuel on the IDT are collected
and presented in Table 2.

Table 2. Initial condition range for different aviation fuels.

Feature Range Division Value

Equivalent ratio (-) 0.5–1.5 0.1
Pressure (MPa) 1–18 0.01

Temperature (K) 715.0–1671.0 0.1
Fuel concentration (%) 0.25–1.25 0.001

Oxygen concentration (%) 3.8–23.25 0.001
Nitrogen concentration (%) 0–0.1 0.001

Argon concentration (%) 76.0–95.875 0.001

The long-tailed distribution of the IDT dataset used in this paper is shown in Figure 1.
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Figure 1. Long tail distribution of IDT values.

The data for the IDT of several aviation fuels was obtained within the temperature
range of 715.0 K to 1671.0 K using chemical excitation tube tests. An investigation was
conducted to examine the effects of various pressures, oxygen concentrations, equivalence
ratios, and fuel mole fractions on the ignition delay. Figure 1 demonstrates a high occurrence
of shorter ignition delay periods, with a quick reduction in frequency as the IDT grows.

Figure 2 shows the distribution of IDT for various fuels.
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Figure 2. Distribution of IDT for different fuels.

Figure 2 shows the distribution of IDT for different fuels under the experimental
conditions detailed in Table 2. The violin graphs demonstrate the distribution of the IDT
for several fuel types, such as kerosene, Jet-A, JP-8, MCH, and JP-10. A white dot in the
center in this figure represents the median, while a box indicates the interquartile range.
The lines represent the range of the data, usually encompassing the most prominent value
within 1.5 times the interquartile range and the minimum values. The graph illustrates that
the IDTs for several fuel types display distinct shapes and widths, suggesting variations in
the combustion characteristics of these fuels. The graph demonstrates the comprehensive
properties of this study by comparing the ignition delays of various fuels under identical
test settings. We analyzed traditional aviation fuels, such as Jet-A and JP-8, experimental
mixtures like MCH, and high-energy fuels like JP-10. In this study, various fuel types are
allowed for a comprehensive assessment and examination of the crucial factor of ignition
delay. Multiple intricate factors influence the behavior of fuel ignition, and the correlation
between these factors is not always linear. Neural networks excel at capturing and modeling
the nonlinear relationship within data. They can automatically extract significant features
from complex data and enhance the robustness of the dataset through training by handling
outliers and noise. This reduces the adverse effects of high IDT values on prediction
performance. Once thoroughly trained, neural networks can make precise predictions.

2.3. BP Neural Networks

The BP neural network model structure is shown in Figure 3.
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In the graph, there are two hidden layers and one output layer in the neural network;
xj is the input quantity, subscript j corresponds to the number of the node in the input
layer; ym is the output quantity, subscript m corresponds to the number of the node in the
output layer; θi is the threshold introduced in the first hidden layer, subscript i corresponds
to the number of the node in the hidden layer; ak is the threshold introduced in the second
hidden layer, subscript k corresponds to the number of the node in the hidden layer; bm
is the threshold introduced in the output layer, subscript m corresponds to the number of
the node in the output layer. The input zi and output pi of the ith node of the hidden layer
during forward propagation are calculated as follows ( f is the activation function):

zi = ∑m
j=1 wijxj + θi (1)

pi = f
(
∑m

j=1 wijxj + θi

)
(2)

The input zik and output pik of the kth node of the implicit layer during forward
propagation are calculated as follows (g is the activation function):

zik = ∑m
i=1 wki pi + ak (3)

pik = g
(
∑m

i=1 wki pi + ak

)
(4)

The input zkm and output pkm of the mth node of the output layer during forward
propagation are calculated as follows (h is the activation function):

zkm =
m

∑
k=1

wpk + bm (5)

pkm = h
(
∑m

k=1 wmk pk + bm

)
(6)

Error function for the nth sample En.
In neural networks, the error function En for the nth sample is often used to measure

the difference between the predicted output and the actual output for that sample. A
common form of the error function is the mean square error function, which is computed
as follows:

En =
1
2 ∑m

(
outm,n − targetm,n

)2
(7)

Let outm,n represent the anticipated output of the network for the nth sample at the
mth output node, and let targetm,n represent the actual target value for the nth sample at
the mth output node. The error function En quantifies the precision of the neural network’s
prediction for each individual sample. The objective of training a neural network is to
minimize the cumulative total of the error functions across all training samples.

The total error E for n training samples is:

E = ∑N
n=1 En = ∑N

n=1
1
2 ∑m

(
outm,n − targetm,n

)2
(8)

In the feedback process, the amount of weight correction and threshold correction in
the implicit and output layers can be written, respectively, as:

∆wij = −η
∂E

∂wij
∆θi = −η

∂E
∂θi

(9)

∆wki = −η
∂E

∂wki
∆ak = −η

∂E
∂ak

(10)
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∆wmk = −η
∂E

∂wmk
∆bm = −η

∂E
∂bm

(11)

where η is the learning rate (η = 0.0001); E is the error function; and wij, wki, wmk are the
weights to be updated. θi, ak, bm are the thresholds or biases to be updated.

3. Improvement of the BP Algorithm
3.1. MapReduce-Based Parallel Processing Optimization

As a robust parallel processing programming paradigm, the primary benefit of MapRe-
duce lies in its ability to successfully manage extensive data sets beyond the full processing
capacity of a single server. This paradigm can significantly improve the speed and effi-
ciency of data processing by splitting complex data processing tasks into smaller, more
manageable activities that can be processed. More precisely, during the map phase, the
model dissects the unprocessed data into discrete and autonomous data blocks and handles
each block simultaneously. Next, in the reduction phase, the processed data is combined
and condensed to produce the outcome [19]. Applying MapReduce to BP neural network
training for tasks like hydrocarbon fuel ignition characterization, accelerates data process-
ing through distributed computing, effectively handling the high data and computational
demands [13]. During this process, MapReduce is employed as a distributed computing
solution. The MapReduce process initially preprocesses and partitions extensive datasets
during the map stage, and then analyzes and summarizes these datasets during the Re-
duce stage. This approach significantly enhances the speed of data processing and the
performance and precision of the BP neural network when dealing with intricate datasets.
The parallel processing mechanism of the MapReduce model enables the simultaneous
execution of numerous data computations and network training on multiple compute
nodes. This feature is particularly beneficial for analysis that requires precise and complex
calculations, such as the ignition characteristics of hydrocarbon fuels. By implementing
this approach, the burden on an individual compute node can be significantly reduced, and
the overall efficiency of the network training process can be improved. Especially in the
presence of a large amount of data, this approach can guarantee the efficient utilization of
computational resources and optimize the speed of data processing.

3.2. Particle Swarm Optimization (PSO) Algorithm Integration

Particle swarm optimization (PSO) is an optimization algorithm based on swarm
intelligence inspired by the foraging behavior of bird flocks. In PSO, each particle represents
a potential solution and is adjusted based on individual and group historical experience
to find the optimal solution [20]. In PSO, each particle has a position xi and speed vi,
representing the potential solution and its search direction and velocity in the solution
space. The speed of the particle will be updated according to the following equation:

v(t+1)
i = w · v(t)i + c1·r1 ·

(
pbest − x(t)i

)
+ c2 · r2 ·

(
gbest − x(t)i

)
(12)

Among them: v(t+1)
i is the speed of the particle i at the time t + 1, and w is the inertial

weights, the c1 and c2 are the learning factors (c1 = c2 = 2.0), the r1 and r2 are the random
numbers, and pbest is the individual historical optimal position of the particle, gbest is the
global optimal position of the population, and x(t)i is the current position. The particle
updates its position based on its own experience (individual optimum) and the experience
of other group members (global optimum).

The update of the position follows the formula.

x(t+1)
i = x(t)i + v(t+1)

i (13)

Among them, x(t+1)
i is the position of the particle i at the time t + 1.
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The method is iterated until an optimal solution is attained or a termination criterion
is satisfied. The crux of the particle swarm optimization technique lies in disseminating
information among the particles, enabling the entire population to converge toward the
best solution swiftly. The movement of each particle is impacted not only by its own
experiences but also by the optimal position within the population. This collective behavior
of the group makes PSO well-suited for solving large neural networks by optimizing the
weights and thresholds. PSO improves the efficiency and precision of neural networks by
adjusting these parameters to discover the optimal network configuration. This integrated
strategy utilizes the global search capabilities of the PSO algorithm to prevent the BP
neural network from becoming trapped in a local optimum and instead discovers network
parameters that are more suited for a specific challenge. When working on intricate tasks
like characterizing the ignition of hydrocarbon fuel, the position of each particle represents
a range of potential combinations of network weights and thresholds. By assessing the
network’s performance (e.g., error rate) for each particle position, the PSO algorithm directs
the particle towards a position that offers improved performance. The PSO algorithm
first creates a collection of particles, each representing a specific combination of weights
and thresholds for the BP neural network. Then, it utilizes hydrocarbon fuel data to
conduct forward propagation in the neural network, determining various network outputs
such as ignition point and combustion rate. The algorithm evaluates the performance of
each particle, measurement error rate, and other factors. Based on the performance of
each particle and the best performance within the group, it modifies the position of the
particles and explicitly updates the weights and thresholds of the neural network. The
procedure of forward propagation, performance evaluation, and particle location updating
is iterated until the optimal performance is attained or the specified number of iterations is
reached [19]. This approach enhances network training efficiency and avoids the prevalent
issue of local optimization by employing global search. It dramatically enhances the
accuracy of predictions and the efficiency of learning in BP neural networks, offering robust
assistance in tackling intricate challenges.

3.3. BP-MRPSO Neural Network Modeling

The optimized BP model based on MapReduce and PSO is called the BP-MRPSO
neural network model. The architecture of the BP neural network, which incorporates
MapReduce and PSO co-optimization, together with the data processing flow, is illustrated
in Figure 4.

The dataset, consisting of 24,850 data points, undergoes initial processing using the
MapReduce technique. Subsequently, the processed dataset is partitioned using a random
sampling method. Based on random indices, the dataset is split into two distinct subsets:
the training set and the test set. The dataset is divided into a training set comprising 80%
(19,880 data points) of the data and a testing set comprising the remaining 20% (4970 data
points) of the data. The data is partitioned and then standardized using the Z-score
approach. Subsequently, the model is trained and predicted using a BP neural network
optimized using the PSO algorithm.

To further enhance the model’s generalizability and effectively prevent overfitting,
this paper introduces L2 regularization technology [21]. Regularization is implemented by
adding an extra regularization term to the model’s loss function, which imposes constraints
on the size of the model’s weights. In each iteration of loss calculation, in addition to the
original error term, a proportion of the sum of squares of all network weights (controlled
by the regularization coefficient λ, λ = 0.01) is also included as a penalty term, encouraging
the model to learn smaller and more dispersed weight values during the training process,
thus reducing the model’s sensitivity to noise in the training data. Moreover, to avoid
overfitting, this paper sets a target error rate of 1; training will stop prematurely when the
error during the model training process drops below this value.
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Figure 4 illustrates the utilization of the MapReduce parallel processing technique
and the PSO [22] to optimize BP neural networks’ ability to ensure that all input data are
standardized before entering the training process. Regularization, as part of the model
training, works in conjunction with the particle swarm optimization (PSO) algorithm.
MapReduce greatly improves the velocity and efficiency of data processing by breaking
down data into smaller entities for processing tasks and executing them simultaneously on
numerous nodes [23]. The PSO method has efficiently directed the entire swarm towards
the global optimal solution. This is achieved by modeling the foraging behavior of a flock
of birds and altering each particle based on the individual and collective experience. This
global search strategy enables the BP neural network to avoid falling into the local optimum
during the parameter optimization process and find a better configuration of weights and
thresholds [24]. The regularization term imposes additional constraints on the rules for
updating weights, helping to prevent overfitting and enhance the stability and accuracy of
the model. The integrated method not only improves the accuracy of prediction but also
shortens the data processing time and substantially improves the computational efficiency
and the ability of the BP neural network to deal with complex and high-dimensional
datasets, which enhances the generalization performance of the model. The MapReduce
approach is partitioned into four distinct stages for data processing.

As shown in Table 3, as the phase of division and transformation, the splitting phase
divides the hydrocarbon fuel dataset based on specific parameters such as equivalence
ratio (φ), pressure (p/MPa), temperature (T/K), various fuel concentrations (Kerosene%,
Jet-A%, JP-8%, MCH%, JP-10%), oxygen percentage (O2%), nitrogen concentration (N2%),
and argon concentration (Ar%). The dataset is divided into various subsets, and each subset
is allocated to separate map jobs. Each map task is responsible for processing a specific
subset of the dataset and executing the first filtering and transformation operations. In the
shuffling phase, the output of the mapping task is reorganized and arranged in a specific

https://hadoop.apache.org/
https://hadoop.apache.org/
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order to guarantee that all pertinent data (such as the same fuel type or physical condition)
is directed to the corresponding reducing job. During the reducing phase, a comprehensive
statistical analysis is conducted to combine all data about each fuel type or particular
condition. The data processed using the MapReduce technique is normalized using the
Z-score approach, µ represents the mean, and σ represents the standard deviation. This
approach standardizes the data by adjusting it to mean zero and variance one. This process
guarantees that the various feature scales are consistent and enhances the effectiveness and
reliability of network training.

xstd =
x − µ

σ
(14)

Table 3. BP-MRPSO input and output parameters explanation.

Parameter Type Parameter Name Unit

Input ϕ -
Input p MPa+
Input T K
Input O2 %
Input N2 %
Input Ar %
Input Fuel Chemical Composition Variable

Output IDT µs

The Z-score approach is used to normalize the data, which is then inputted into a
PSO-optimized BP neural network to train and predict the IDT. The PSO based BP neural
network training process is shown in Figure 5.
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The PSO algorithm is used in the training process instead of the traditional gradient
descent method. The model is configured with 50 particles, with a maximum of 10,000 itera-
tions, and both the individual learning factor (c1) and social learning factor (c2) are set to 2.0.
The PSO particle positions represent the maximum and minimum values for adjusting the
neural network weights and thresholds, which are set to 1.0 and −1.0, respectively. Using
neural networks to evaluate the ability of each particle to predict fire characteristics. The
evaluation results indicate that the PSO algorithm utilizes rules to update the speed and
position of the particle swarm, while automatically adjusting the weights and thresholds
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of the neural network. This evaluation and updating process is iterated until the optimal
weights and thresholds are discovered. Empirically, the inertia weights gradually decrease
from 0.9 to 0.4, enabling precise analysis of the fuel ignition characteristics and validat-
ing the effectiveness of the model. The combination of MapReduce and PSO algorithms
offers a more efficient and accurate approach to analyzing the ignition characteristics of
hydrocarbon fuel. This co-optimization method is especially well-suited for handling
high-dimensional and complex data in the ignition characteristics of hydrocarbon fuels,
substantially enhancing prediction accuracy. Table 4 is a comparison of the structure of
the base BP neural network model and the optimized BP-MRPSO model, listing the layer
structure, the total number of parameters, the number of neurons per layer, the activation
function used, and the average prediction accuracy of the fire characteristics, R2, for both
models. The model includes an input layer, two hidden layers, and an output layer and
uses ReLU as the activation function. It was experimentally measured that the performance
is optimal when the number of neurons in each of the two hidden layers of the Basic BP
model and the BP-MRPSO model were set to 12 and 11, 9 and 8, respectively.

Table 4. Structures of the basic BP and BP-MRPSO models.

Model Total Parameters Layer Type Neuron Number Activation Function Mean R-Squared

Basic BP 251 Input 7 -- 83%
Dense 12 ReLu
Dense 11 ReLu

Dense (Output) 1 ReLu
BP-MRPSO 161 Input 7 -- 92%

Dense 9 ReLu
Dense 8 ReLu

Dense (Output) 1 ReLu

When MapReduce and PSO are combined and applied to BP neural networks [22],
MapReduce effectively manages and processes large-scale hydrocarbon fuel datasets
through its distributed computing capability. The efficient data processing provides a
high-quality database for the PSO algorithm, which enables the PSO algorithm to perform
global parameter search and optimization more accurately.

MapReduce is used for large-scale data processing, while PSO is used for global
parameter optimization, significantly improving the performance of neural networks in
characterizing the ignition of hydrocarbon fuels.

4. Prediction and Analysis of Fuel Ignition Delay Characteristics
4.1. Comparison of BP-Based and BP-MRPSO Neural Networks

A backpropagation (BP) neural network was employed to predict and evaluate the
ignition delay properties of hydrocarbon fuels with different carbon levels. The BP net-
work learns the influence of temperature, pressure, and equivalence ratio on the ignition
delay during training. Consequently, it effectively incorporates these intricate nonlinear
connections inside the model.

To determine the optimal structure of the neural network, this study adopted a strategy
combining grid search with 10-fold cross-validation. Initially, a multidimensional parameter
space was defined, encompassing a variety of neuron number configurations from simple
to complex, ranging from a single layer with 4 neurons to dual layers with up to 15 neurons
each. A systematic grid search was employed within this parameter space to enumerate
every conceivable neuron combination, from straightforward structures to more complex
ones, ensuring comprehensive coverage of experimental data. Subsequently, rigorous
evaluation of each neuron configuration was performed via 10-fold cross-validation. During
each iteration, data was evenly divided into 10 subsets, with one subset serving as the
validation set and the remaining nine used for training. This procedure was repeated
10 times, with a different subset selected as the validation data each time, to guarantee the
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fairness and accuracy of assessments. Furthermore, upon the completion of each cross-
validation cycle, the average performance metrics of the model were computed, and the
performance data for each configuration were documented.

Figure 6 provides a comparative analysis of the predictions made by the BP and
BP-MRPSO neural networks.
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Figure 6 displays a comparative analysis of the performance of two distinct neural
network models in predicting the IDT of fuel. The horizontal axis represents the index
of the dataset samples, and the vertical axis indicates the ignition delay time. The left
side displays the prediction results of the conventional BP neural network, while the right
side showcases the prediction results of the BP neural network model that integrates the
MapReduce and PSO algorithms. Refs. [6,7] refers to a neural network configuration with
7 neurons in the first hidden layer and 6 neurons in the second hidden layer. Similarly,
refs. [15,24] indicates a configuration of 9 neurons in the first hidden layer and 8 neurons in
the second hidden layer, and refs. [17,25] represents 12 neurons in the first hidden layer
and 11 neurons in the second hidden layer. The model configurations, in descending
order, are Chaos et al.; Wu et al. [25,26], Pawan et al.; Zhukov et al. [8,27], and Wang et al.;
Wu et al. [11,12], representing the number of neurons in each configuration. Within each
picture, the model predicts the IDT with a blue line, whereas a green asterisk shows the
experimentally measured IDT. The prediction accuracy increased by 25.34% when the
neuron configuration was changed from [25,26] to [8,27]. This change also increased the
average correlation coefficient of the BP-MRPSO model from 0.9745 to 0.9896. Furthermore,
the accuracy of the model improved to 38.89%. Similarly, when the neuron configuration
was changed to [11,12], the accuracy of model increased by 25.02%. The experiments
indicate that among various configurations, the neuron configuration of [8,9] exhibits
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the best performance on the validation set, with its average error rate reduced to 2.75%.
Simultaneously, its performance on the test set also demonstrates its superior generalization
capability. The BP-MRPSO model has superior capability in capturing and learning the
intricate features of the IDT compared to the conventional BP model. By examining the
traditional BP model depicted in the figure, it becomes apparent that there is a noticeable
discrepancy between the actual values (represented by green dots) and the predicted values
(represented by the blue line). However, in the BP-MRPSO model on the right, there is a
substantial improvement in the agreement between the two, indicating the optimized model
has extraordinary accuracy and resilience. Through ongoing optimization of the hidden
layer structure and neuron count, our model demonstrates enhanced predictive capability
and resilience in handling intricate data, which is a key factor in correctly predicting fuel
ignition delay.

The optimized BP-MRPSO neural network model can conduct synchronous studies
on activation energy. Regarded as a core output variable, activation energy represents
the energy barrier that must be overcome for a reaction to occur and is a key parameter
for assessing fuel ignition characteristics. This model utilizes a variety of input features,
including but not limited to temperature (T), pressure (p), and equivalence ratio (φ). By
learning the relationships between temperature, pressure, equivalence ratio, and activa-
tion energy, the BP-MRPSO model reveals how activation energy varies under different
conditions, thereby optimizing combustion conditions for efficient burning. For instance,
the equivalence ratio, the proportion of fuel to oxidizer (such as air), directly impacts the
completeness and efficiency of the combustion reaction. Under ideal equivalence ratio
conditions, fuel can burn completely, releasing maximum energy. The BP-MRPSO model
allows for the exploration of changes in activation energy under different equivalence
ratios, analyzing how conditions of excess or insufficient fuel affect activation energy and
combustion efficiency, providing a scientific basis for optimizing the fuel mixture ratio.

Compared to traditional experimental and theoretical computation methods, the
optimized BP neural network demonstrates significant advantages. Traditional methods
are often constrained by experimental conditions and simplified computational models,
making it difficult to capture the complex nonlinear relationships in the combustion process.
In contrast, the optimized BP neural network, with its multilayer architecture and strong
nonlinear fitting capability, can accurately predict ignition delay times across a broader
range of parameters and exhibit equally precise and in-depth predictions for activation
energy. This capability enables the model not only to handle large volumes of data but
also to accurately capture the complex dynamics of how activation energy changes with
combustion conditions, providing deeper insights into the combustion mechanisms of
fuels. Especially in analyzing the dependencies of ignition delay times and activation
energy on factors such as temperature, pressure, and equivalence ratio, the optimized BP
neural network, with its high flexibility and adaptability, can reveal subtle differences in the
changes in activation energy during the combustion process, which are often challenging
to achieve with traditional methods. The application of this method not only improves
the accuracy of predictions but also significantly enhances the efficiency and depth of
research, offering a powerful analytical tool for optimizing aviation fuels and enhancing
combustion efficiency.

In practical aeronautical engineering applications, the optimization model of hydro-
carbon fuel ignition characteristics based on BP neural network can provide accurate
combustion dynamics prediction for engine design, optimize combustion efficiency, and
improve energy utilization. The model can accurately predict the fuel ignition characteris-
tics in various flight conditions by examining the intricate reaction process. Additionally,
it may offer valuable guidance for designing engine combustion chambers and help to
develop more effective fuel management systems. The model can forecast combustion
behavior in extreme situations, offering extra confidence in ensuring flight safety. Hence,
this model improves the field of aeroengine design and offers vital data to support the
future development of aviation fuels.



Energies 2024, 17, 2072 13 of 16

4.2. Analysis of Experimental and Prediction Results of BP-MRPOS

For data on the ignition characteristics of various hydrocarbon fuels, Figure 7 compares
the experimental results with the predicted results.
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The following presentation displays the prediction results of the BP neural network
model, which integrates MapReduce and PSO algorithms. Jet A fuel and aviation kerosene
are utilized as illustrative instances. By comparing the experimental values with the pre-
dicted values, it is evident that the BP-MRPSO neural network accurately predicts the IDT
of hydrocarbon fuels across various conditions. Figure 7a,e display the experimental and
projected values of the IDT of the mixture at various pressures, assuming an equivalence
ratio φ of 1. The data points collected at various pressure levels clearly demonstrate the
substantial impact of pressure on the ignition process. The data points collected at vari-
ous pressure levels clearly demonstrate the substantial impact of pressure on the ignition
process. Figure 7b,f display the measured and estimated IDTs for various oxygen concen-
trations for an equivalence ratio φ of 1. The correlation between the rise in IDT and the
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decrease in ignition temperature can be seen by the relationship with a 1/T increase. The
IDT of Jet A fuel and aviation kerosene decreases as the oxygen concentration increases.
This means the fuel oxidation reaction rate is enhanced when more oxygen is available,
resulting in faster ignition. The IDTs of experimental and predicted values for various
equivalence ratios are displayed in Figure 7c,g. The IDT of the combination with a mixture
equivalence ratio φ of 1.5 is greater than that of the correct ratio mixture, indicating that
the fuel concentration also plays a role in the igniting process. Figure 7d,h demonstrate
the relationship between fuel concentration and IDT at an air-fuel ratio φ of 1. The results
indicate that the IDT decreases when the fuel concentration increases regardless of the
equivalence ratio remaining the same.

Table 5 shows some of the data comparing the experimental values with the predicted
values based on the BP-MRPSO model, where the absolute error indicates that the difference
between the predicted values and the actual values does not exceed 6 µm at most, and
the error is controlled in a relatively small range. The relative error is less than 5%, which
indicates that the prediction model can predict the experimental values with a relatively
high degree of accuracy. Based on the absolute and relative errors, this data set shows that
the prediction model has good accuracy and reliability.

Table 5. Comparison of experimental and predicted values predicted by the BP-MRPSO model
serial number.

Serial Number Experimental Value (µs) Predicted Value (µs) Absolute Error (µs) Relative Error

1 51.8 53.939 2.139 4.129
2 405 410.335 5.335 1.317
3 45 43.391 1.608 3.575
4 189 183.001 5.998 3.173
5 125 121.816 3.183 2.546
6 237 242.848 5.848 2.467
7 162 156.837 5.162 3.186
8 125 121.816 3.183 2.546
9 175 180.410 5.410 3.091
10 114 118.872 4.872 4.274
...

...
...

...
...

Based on the information in Table 5, the computed accuracy R2 of the projected
ignition characteristics is 90% or above in all cases. The prediction accuracy of the IDT
is influenced by multiple parameters, as indicated by the trend of the curves in Figure 7.
Combustion is an intricate chemical reaction process that includes numerous reaction
stages and intermediate species. The speeds of these reaction steps frequently fluctuate
with slight variations in temperature, pressure, and mixing ratio. Furthermore, slight
deviations in experimental parameters, such as the precision of temperature regulation, the
precision of pressure assessments, and the uniformity of fuel–air blending, can significantly
influence the ignition delay. Furthermore, slight disparities in the chemical makeup of
the fuel between different batches might also result in changes in igniting characteristics.
Collectively, these elements contribute to the ignition process, rendering it challenging
for even the most refined model to comprehensively encompass all variances, thereby
restricting further enhancements in forecast precision.

5. Conclusions

Based on particle swarm optimization algorithm (PSO) and MapReduce-based parallel
processing technology, a BP-MRPSO neural network model is constructed to analyze
the ignition characteristics of hydrocarbon fuels. Co-optimization of MapReduce with
PSO dramatically improves the prediction accuracy and stability of BP neural networks.
Compared to the BP model, the BP-MRPSO model can increase the average correlation
coefficient from 0.9745 to 0.9896.
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The results also show that the accuracy R2 of the ignition characteristics prediction
can reach 90% and above, The BP-MRPSO model can be used for synchronous studies of
data such as ignition delay and activation energy, analyzing the effects of factors such as
equivalence ratio, mixture gas pressure, ignition temperature, and combustion characteris-
tics on these two data points. This method can not only handle large-scale datasets but can
also maintain high accuracy with high efficiency, which provides a new perspective for the
study and application of fuel ignition characteristics and is expected to play an essential
role in the field of aviation fuel design and evaluation.
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Nomenclature

Abbreviation/Term Full Name/Explanation
AI Artificial intelligence
BP Back propagation
BP-MRPSO Back propagation-MapReduce particle swarm optimization
IDT Ignition delay time
PSO Particle swarm optimization
MapReduce A programming model for processing and generating large data sets
CO Carbon monoxide
UHC Unburned hydrocarbons
ANN Artificial neural network
ϕ Equivalence ratio
p Pressure, MPa
T Temperature, K
O2 Oxygen concentration, %
N2 Nitrogen concentration, %
Ar Argon concentration, %
IDT Ignition delay time, µs
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