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Abstract: Ensuring optimal building performance is vital for enhancing student activity comfort and fos-
tering energy-saving initiatives toward low-carbon objectives. This paper focuses on university student
centers in China, aiming to diminish building energy consumption while enhancing indoor thermal
comfort. Parametric modeling of typical cases is executed using the Grasshopper 1.0.0007 software
package, and the simulation of building energy consumption and indoor thermal comfort relies on
the Ladybug and Honeybee plug-in. Employing a multi-objective optimization design method and
the Octopus multi-objective optimization algorithm, this study integrates numerical simulations and
on-site surveys to analyze how factors like building form, orientation, envelope structure, and others
impact the indoor and outdoor environment. A comprehensive optimization design approach is im-
plemented for the building’s exterior components, including the walls, windows, roof, and shading
system. After conducting a comparative analysis of the annual comprehensive energy consumption
and indoor thermal comfort before and after the optimization plan, it is determined that implementing
these measures reduces the annual comprehensive energy consumption of the building under study by
58.8% and extends the duration of indoor thermal comfort by 53.0%. This study presents a practical
optimization design methodology for university student center architecture in China, aiding architects
in decision making and advocating for energy-efficient building designs.

Keywords: student center; low energy consumption; thermal comfort; multi-objective optimization
design; numerical simulation

1. Introduction

The global construction industry is shifting from making quantitative changes to
focusing on qualitative transformations, particularly in university construction, where
there is an emphasis on fostering the sustainable development of green campuses. By
prioritizing design goals centered around durability, livability, and low carbon emissions,
solutions have been identified for addressing challenges encountered by different types
of university buildings associated with high energy consumption [1]. Within this context,
the student center, known for its diverse and intricate functional spaces, becomes a critical
focal point in striving to achieve low energy consumption across the campus.

In constructing a student center, a comprehensive approach to considering thermal
comfort and green energy efficiency within indoor environments is crucial. On the one hand,
maintaining an appropriate temperature and humidity directly impacts students’ utilization
and frequency of space. On the other hand, some student centers sacrifice high energy
consumption to sustain indoor thermal comfort, resulting in increased energy usage. Hence,
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designing an energy-saving optimization scheme for the student center demands a multi-
objective optimization study focusing on achieving both low energy consumption and
optimal indoor thermal comfort. This approach aims to drive the development of energy-
efficient campuses across China.

2. Literature Review

In recent times, scholars have conducted multi-objective optimization research con-
cerning low building energy consumption and thermal comfort. Their primary focus has
been on examining the interaction between optimization algorithms and simulation tools.

Regarding optimization algorithms, several studies have been conducted. Caldas et al.
focused on office buildings, considering factors associated with different orientations and
exterior windows as variables, with total building energy consumption as the optimization
objective [2]. Magnier examined building equipment and envelope structure as variables,
utilizing the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) algorithm combined
with the ANN algorithm to target building energy consumption and thermal comfort as
optimization objectives [3]. Yuan Fang et al. centered on the design of external windows in
office buildings. They simulated building performance using the Grasshopper platform
and Ladybug and Honeybee plug-in, analyzing the impact of these windows on energy
consumption and proposing relevant optimization strategies [4]. Li Haiquan proposed
a multi-objective building energy-saving model based on a genetic algorithm, focusing
on parameters such as body shape coefficient and windward area [5]. Benedek Kiss
explored a multi-objective optimization technique, specifically the Direct MultiSearch
method, applied to a case study involving a multi-story residential building [6]. Giouri ED
investigated the exterior windows of high-rise office buildings, analyzing their influence
on energy consumption and proposing corresponding optimization strategies [7]. Badr
Chegari utilized a multi-objective optimization method based on an intelligent agent model,
employing machine learning tools like ANN and the MOPSO algorithm for optimization [8].
Facundo Bre introduced an effective method involving metamodels for solving multi-objective
optimization problems in building performance, combining NSGA-II with an artificial neural
network (ANN) metamodel [9]. Aiman Albatayneh conducted a sensitivity analysis (SA) using
the Design Builder software Version 6.1 package, assessing 12 design variables simultaneously
for their impact on heating and cooling loads through regression methods [10].

Regarding the interaction of simulation tools, Ehsan Asadi investigated existing ex-
ternal wall insulation and other envelope structures as components. They considered
building energy consumption and thermal comfort as optimization objectives and con-
ducted research using GenOpt and MATLAB Version 8.0 [11]. Erlendsson focused on the
effective lighting level within residential atrium spaces. They utilized the Grasshopper plat-
form and Honeybee plug-in to study the impact of glass size and material in atriums [12].
E. Belloni and colleagues investigated a novel aerogel glazing system (AGS) employing
a simulation model to calculate the annual energy demand of a reference building in
Tokyo. Through building performance simulation, it was demonstrated that AGS could
reduce energy requirements in cold climates, concurrently decreasing the consumption
associated with heating, cooling, and lighting [13]. Benedek Kiss introduced a modular
parametric optimization framework for a multi-apartment building. The framework has
key components including geometry, shell structure, installation, and heating energy. It
integrates advanced building modeling, life cycle assessment (LCA), energy calculations,
and environmental optimization methods, both single and multi-objective [14]. Zhang
Anxiao’s research centered on primary and secondary schools in cold areas. They aimed
to optimize building energy consumption and room thermal comfort, employing multi-
objective optimization theory and algorithms to verify the feasibility of a multi-objective
optimization platform [15]. Yang Zhao and associates conducted a study on the thermal
comfort of semi-outdoor spaces within a university building in Guangzhou, China, utilizing
questionnaires for evaluation. The results revealed that both air temperature and mean
radiant temperature within the courtyards were notably elevated. Planting trees in these
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courtyards could reduce the Physiological Equivalent Temperature (PET) from “very hot”
to “hot”, thereby aiding in the improvement of thermal comfort [16]. Erminia Attaianese
and her team proposed an integrated method for creating sustainable indoor architectural
environments, emphasizing Indoor Environmental Quality (IEQ) and overall building qual-
ity. They validated this approach through a subjective survey carried out at the University
of Salerno’s Fisciano Campus in Italy [17]. Liu Qianqian’s study considered envelope struc-
ture factors as optimization variables, focusing on building energy consumption, lighting
environment, and renovation economic cost. They utilized Rhino and Grasshopper for
multi-objective optimization, examining objective optimization during the design phase of
neural networks [18]. Table 1 presents a more systematic representation of the literature on
achieving low building energy consumption and enhancing thermal comfort.

Table 1. Representative literature on building low energy consumption and thermal comfort.

Optimization Objectives Research Object Methodology Literature

Building energy consumption
and thermal comfort

Building equipment and envelope Optimization algorithm [2,11,15,19,20]

Primary and secondary schools in
cold climates

Interaction of simulation tools +
optimization algorithm [13,21]

Building energy consumption

Orientation and exterior window
form of office building Interaction of simulation tools [1,3,6,16,22]

Sensitivity analysis of
12 design variables Interaction of simulation tools [10]

Factors for envelope Interaction of simulation tools +
optimization algorithm [14,17,23]

Building energy efficiency

Apartment Interaction of simulation tools [7,24]

Shape factor and windward area Interaction of simulation tools +
optimization algorithm [4]

Atrium space Interaction of simulation tools [11,12]

Multi-objective
optimization tool

Multi-story residential building

Optimization algorithm

[5]

Multi-objective optimization of
building performance [9,21,25–28]

Building optimization based on
intelligent algorithm [8,29–31]

Building optimization with
machine learning [32–34]

Upon reviewing existing research, several key observations emerge:
(1) In the realm of architectural optimization design, intelligent parametric design and

optimization algorithms have progressively become commonly utilized methods in archi-
tecture. This is particularly evident in the comprehensive platforms based on Grasshopper.

(2) Using multi-objective optimization to improve building energy efficiency mainly
centers on integrating various algorithms to optimize building structure, design, enve-
lope, and equipment. This approach aims to enhance both energy efficiency and overall
comfort levels.

(3) Research on integrating parametric building design and performance simulation
is limited. More specifically, there is a shortage of studies that utilize multi-objective
optimization algorithms within the context of campus public buildings, particularly when
examining student centers.

Drawing from the aforementioned existing research, this study focuses on the student
center in China. The research leverages the Grasshopper platform for building performance
simulation analysis alongside a multi-objective optimization module to analyze the current
state and outcomes of computer simulations. The aim is to identify existing issues in the
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usage of university student centers, considering key evaluation criteria for energy-saving
design in public buildings. Subsequently, the study focuses on two primary goals: reducing
building energy consumption and enhancing indoor thermal comfort. It reforms and
optimizes the main factors influencing energy conservation in buildings. The innovation of
this study lies in integrating the establishment of parameterized building models, building
performance analysis, and multi-objective algorithm optimization on the same platform,
avoiding errors in data exchange and repeated modeling between traditional platforms.
Comparing the results of the optimization scheme with the initial simulation data of the
building model, a comprehensive analysis is conducted to derive energy-saving optimiza-
tion strategies for the student center. This study introduces fresh insights and theoretical
references for architectural design methodologies specific to university student centers,
considering regional climate characteristics in China.

3. Methodology
3.1. Morphological Characteristics of University Student Centers in China

Alongside the continuous evolution of modern college education concepts, the student
center has become an integral part of campuses, drawing widespread attention due to its
distinctive architectural characteristics and functionalities. Referring to pertinent content in
“China’s Architectural Design Data Set” (3rd edition) [35], functional types are summarized in
Table 2. Given the inclusive and diverse nature of student centers, organizing their interior
spaces must not only ensure the autonomy of each functional room and the distinction
between active and quiet areas but also prioritize flexibility in usage and the integration of
various functions. Following the guidelines outlined in “Code for the Architectural Design of
Cultural Centers” JGJ/T 41-2015 [36] and relevant specifications in the Architectural Design
Data Set (3rd edition), plans are primarily categorized into three types (centralized combined
type, series combined type, and courtyard enclosed type), as illustrated in Table 3.

Table 2. Program of student center recommended by the Architectural Design Data Set [35].

Name Program

Office
Student union, science and technology service center,
information service center, psychological counseling,

career center, etc.

Event and
management occupancy

General club room Literature club, photography club, fine arts club, etc.

Literary club rehearsal room Vocal, dance, etc.

Group activity
Rooms for exhibitions, discussions, lectures, fellowship,

and other activities organized by student
organizations or individuals

Recreation Board, billiards, video games, etc.

Fitness gym

Hall Professional stage, can be large-scale
performance places

Multi-purpose room Ballroom, a venue for larger events such as exhibitions,
assemblies, or rehearsals

Others

Broadcasting station Broadcasting station

Service room Bookstores, banks, haircuts, photocopying, repairs, etc.

Small food and beverage occupancy Fast food restaurant, cafe, etc.

Although factors such as geographical location, environment, university scale, and
construction period vary among colleges and universities, the functional types of student
centers across these institutions are fundamentally similar. However, spatial organization
is influenced by geographical conditions and climate characteristics. This study employs
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a literature review, map consultation, and site visits. Several student centers in Beijing,
Tianjin, Nanjing, Guangzhou, Xi’an, and other cities were investigated. Due to space
constraints, Table 4 presents eight representative university student centers in China.

Table 3. Organizational form of plan [35,36].

Classification (a) Centralized Combined Type (b) Series Combined Type (c) Courtyard Enclosed Type
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rooms, and smaller spaces including offices and service rooms. The combination, utiliza-
tion, and management of these spaces are notably intricate. 

(4) Unique utilization patterns: The peak usage of student centers differs significantly 
from teaching buildings; it tends to concentrate more during after-school hours, including 
nights and non-class periods, and particularly on weekends. 

3.2. Typical Case Study 
This study chose a university student center located in Xi’an, Shaanxi Province, 

northern China for several reasons: 
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Through investigation, we observed distinctive characteristics in the function and 
utilization of the student center, primarily manifested as follows: 

(1) Functional diversity: The student center integrates educational, social, and recre-
ational functions, offering adaptable space to address diverse needs. 

(2) Layout response to climate: As depicted in Table 4, student centers in southern 
regions predominantly adopt series and courtyard layouts, while in the north, centralized 
layouts prevail. 

(3) Integration of spaces in varied scales: The design of the student center encom-
passes extensive areas such as halls, medium-sized spaces like activity and rehearsal 
rooms, and smaller spaces including offices and service rooms. The combination, utiliza-
tion, and management of these spaces are notably intricate. 

(4) Unique utilization patterns: The peak usage of student centers differs significantly 
from teaching buildings; it tends to concentrate more during after-school hours, including 
nights and non-class periods, and particularly on weekends. 

3.2. Typical Case Study 
This study chose a university student center located in Xi’an, Shaanxi Province, 

northern China for several reasons: 
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Through investigation, we observed distinctive characteristics in the function and 
utilization of the student center, primarily manifested as follows: 

(1) Functional diversity: The student center integrates educational, social, and recre-
ational functions, offering adaptable space to address diverse needs. 

(2) Layout response to climate: As depicted in Table 4, student centers in southern 
regions predominantly adopt series and courtyard layouts, while in the north, centralized 
layouts prevail. 

(3) Integration of spaces in varied scales: The design of the student center encom-
passes extensive areas such as halls, medium-sized spaces like activity and rehearsal 
rooms, and smaller spaces including offices and service rooms. The combination, utiliza-
tion, and management of these spaces are notably intricate. 

(4) Unique utilization patterns: The peak usage of student centers differs significantly 
from teaching buildings; it tends to concentrate more during after-school hours, including 
nights and non-class periods, and particularly on weekends. 

3.2. Typical Case Study 
This study chose a university student center located in Xi’an, Shaanxi Province, 

northern China for several reasons: 
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Through investigation, we observed distinctive characteristics in the function and 
utilization of the student center, primarily manifested as follows: 

(1) Functional diversity: The student center integrates educational, social, and recre-
ational functions, offering adaptable space to address diverse needs. 

(2) Layout response to climate: As depicted in Table 4, student centers in southern 
regions predominantly adopt series and courtyard layouts, while in the north, centralized 
layouts prevail. 

(3) Integration of spaces in varied scales: The design of the student center encom-
passes extensive areas such as halls, medium-sized spaces like activity and rehearsal 
rooms, and smaller spaces including offices and service rooms. The combination, utiliza-
tion, and management of these spaces are notably intricate. 

(4) Unique utilization patterns: The peak usage of student centers differs significantly 
from teaching buildings; it tends to concentrate more during after-school hours, including 
nights and non-class periods, and particularly on weekends. 

3.2. Typical Case Study 
This study chose a university student center located in Xi’an, Shaanxi Province, 

northern China for several reasons: 
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Through investigation, we observed distinctive characteristics in the function and 
utilization of the student center, primarily manifested as follows: 

(1) Functional diversity: The student center integrates educational, social, and recre-
ational functions, offering adaptable space to address diverse needs. 

(2) Layout response to climate: As depicted in Table 4, student centers in southern 
regions predominantly adopt series and courtyard layouts, while in the north, centralized 
layouts prevail. 

(3) Integration of spaces in varied scales: The design of the student center encom-
passes extensive areas such as halls, medium-sized spaces like activity and rehearsal 
rooms, and smaller spaces including offices and service rooms. The combination, utiliza-
tion, and management of these spaces are notably intricate. 

(4) Unique utilization patterns: The peak usage of student centers differs significantly 
from teaching buildings; it tends to concentrate more during after-school hours, including 
nights and non-class periods, and particularly on weekends. 

3.2. Typical Case Study 
This study chose a university student center located in Xi’an, Shaanxi Province, 

northern China for several reasons: 
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Through investigation, we observed distinctive characteristics in the function and 
utilization of the student center, primarily manifested as follows: 

(1) Functional diversity: The student center integrates educational, social, and recre-
ational functions, offering adaptable space to address diverse needs. 

(2) Layout response to climate: As depicted in Table 4, student centers in southern 
regions predominantly adopt series and courtyard layouts, while in the north, centralized 
layouts prevail. 

(3) Integration of spaces in varied scales: The design of the student center encom-
passes extensive areas such as halls, medium-sized spaces like activity and rehearsal 
rooms, and smaller spaces including offices and service rooms. The combination, utiliza-
tion, and management of these spaces are notably intricate. 

(4) Unique utilization patterns: The peak usage of student centers differs significantly 
from teaching buildings; it tends to concentrate more during after-school hours, including 
nights and non-class periods, and particularly on weekends. 

3.2. Typical Case Study 
This study chose a university student center located in Xi’an, Shaanxi Province, 

northern China for several reasons: 
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Through investigation, we observed distinctive characteristics in the function and 
utilization of the student center, primarily manifested as follows: 

(1) Functional diversity: The student center integrates educational, social, and recre-
ational functions, offering adaptable space to address diverse needs. 

(2) Layout response to climate: As depicted in Table 4, student centers in southern 
regions predominantly adopt series and courtyard layouts, while in the north, centralized 
layouts prevail. 

(3) Integration of spaces in varied scales: The design of the student center encom-
passes extensive areas such as halls, medium-sized spaces like activity and rehearsal 
rooms, and smaller spaces including offices and service rooms. The combination, utiliza-
tion, and management of these spaces are notably intricate. 

(4) Unique utilization patterns: The peak usage of student centers differs significantly 
from teaching buildings; it tends to concentrate more during after-school hours, including 
nights and non-class periods, and particularly on weekends. 

3.2. Typical Case Study 
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Through investigation, we observed distinctive characteristics in the function and 
utilization of the student center, primarily manifested as follows: 

(1) Functional diversity: The student center integrates educational, social, and recre-
ational functions, offering adaptable space to address diverse needs. 

(2) Layout response to climate: As depicted in Table 4, student centers in southern 
regions predominantly adopt series and courtyard layouts, while in the north, centralized 
layouts prevail. 

(3) Integration of spaces in varied scales: The design of the student center encom-
passes extensive areas such as halls, medium-sized spaces like activity and rehearsal 
rooms, and smaller spaces including offices and service rooms. The combination, utiliza-
tion, and management of these spaces are notably intricate. 

(4) Unique utilization patterns: The peak usage of student centers differs significantly 
from teaching buildings; it tends to concentrate more during after-school hours, including 
nights and non-class periods, and particularly on weekends. 

3.2. Typical Case Study 
This study chose a university student center located in Xi’an, Shaanxi Province, 
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Through investigation, we observed distinctive characteristics in the function and 
utilization of the student center, primarily manifested as follows: 

(1) Functional diversity: The student center integrates educational, social, and recre-
ational functions, offering adaptable space to address diverse needs. 

(2) Layout response to climate: As depicted in Table 4, student centers in southern 
regions predominantly adopt series and courtyard layouts, while in the north, centralized 
layouts prevail. 

(3) Integration of spaces in varied scales: The design of the student center encom-
passes extensive areas such as halls, medium-sized spaces like activity and rehearsal 
rooms, and smaller spaces including offices and service rooms. The combination, utiliza-
tion, and management of these spaces are notably intricate. 

(4) Unique utilization patterns: The peak usage of student centers differs significantly 
from teaching buildings; it tends to concentrate more during after-school hours, including 
nights and non-class periods, and particularly on weekends. 

3.2. Typical Case Study 
This study chose a university student center located in Xi’an, Shaanxi Province, 
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Through investigation, we observed distinctive characteristics in the function and 
utilization of the student center, primarily manifested as follows: 

(1) Functional diversity: The student center integrates educational, social, and recre-
ational functions, offering adaptable space to address diverse needs. 

(2) Layout response to climate: As depicted in Table 4, student centers in southern 
regions predominantly adopt series and courtyard layouts, while in the north, centralized 
layouts prevail. 

(3) Integration of spaces in varied scales: The design of the student center encom-
passes extensive areas such as halls, medium-sized spaces like activity and rehearsal 
rooms, and smaller spaces including offices and service rooms. The combination, utiliza-
tion, and management of these spaces are notably intricate. 

(4) Unique utilization patterns: The peak usage of student centers differs significantly 
from teaching buildings; it tends to concentrate more during after-school hours, including 
nights and non-class periods, and particularly on weekends. 

3.2. Typical Case Study 
This study chose a university student center located in Xi’an, Shaanxi Province, 

northern China for several reasons: 

multi-purpose room

Energies 2024, 17, x FOR PEER REVIEW 5 of 22 
 

 

is influenced by geographical conditions and climate characteristics. This study employs 
a literature review, map consultation, and site visits. Several student centers in Beijing, 
Tianjin, Nanjing, Guangzhou, Xi’an, and other cities were investigated. Due to space con-
straints, Table 4 presents eight representative university student centers in China. 

Table 4. Program analysis diagram of student center in China. 

Region (South) Layout and Functional Zoning Region (North) Layout and Functional Zoning 

Student center, South China 
University of Technology  

 

Student center, Tsinghua 
University 

 

Student center, Shenzhen 
University  

 

Student center, Tianjin Poly-
technic University 

 

Student center, Southeast 
University 

 

Student center, Lanzhou 
University 

 

Student center, Nanjing 
University  

 

Student center, Chang’an 
University 

 

 office  event and management occupancy  hall  multi-purpose room  others 

Through investigation, we observed distinctive characteristics in the function and 
utilization of the student center, primarily manifested as follows: 

(1) Functional diversity: The student center integrates educational, social, and recre-
ational functions, offering adaptable space to address diverse needs. 

(2) Layout response to climate: As depicted in Table 4, student centers in southern 
regions predominantly adopt series and courtyard layouts, while in the north, centralized 
layouts prevail. 

(3) Integration of spaces in varied scales: The design of the student center encom-
passes extensive areas such as halls, medium-sized spaces like activity and rehearsal 
rooms, and smaller spaces including offices and service rooms. The combination, utiliza-
tion, and management of these spaces are notably intricate. 

(4) Unique utilization patterns: The peak usage of student centers differs significantly 
from teaching buildings; it tends to concentrate more during after-school hours, including 
nights and non-class periods, and particularly on weekends. 

3.2. Typical Case Study 
This study chose a university student center located in Xi’an, Shaanxi Province, 

northern China for several reasons: 

others

Through investigation, we observed distinctive characteristics in the function and
utilization of the student center, primarily manifested as follows:

(1) Functional diversity: The student center integrates educational, social, and recre-
ational functions, offering adaptable space to address diverse needs.

(2) Layout response to climate: As depicted in Table 4, student centers in southern
regions predominantly adopt series and courtyard layouts, while in the north, centralized
layouts prevail.
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(3) Integration of spaces in varied scales: The design of the student center encompasses
extensive areas such as halls, medium-sized spaces like activity and rehearsal rooms, and
smaller spaces including offices and service rooms. The combination, utilization, and
management of these spaces are notably intricate.

(4) Unique utilization patterns: The peak usage of student centers differs significantly
from teaching buildings; it tends to concentrate more during after-school hours, including
nights and non-class periods, and particularly on weekends.

3.2. Typical Case Study

This study chose a university student center located in Xi’an, Shaanxi Province, north-
ern China for several reasons:

(1) The Xi’an region is situated in a cold zone with a warm temperate continental
monsoon climate, characterized by distinct cold, warm, dry, and wet seasons. Buildings
in this area must meet insulation design requirements and consider natural ventilation
and shading design. Additionally, Xi’an is home to numerous universities with extensive
building areas. The prevalence of high energy consumption without adequate indoor ther-
mal comfort maintenance, particularly among major universities in the area, underscores
the need for research and optimization of the thermal environment in academic buildings.
Findings from this region can provide valuable insights for buildings in other cold regions.

(2) China has a substantial inventory of “non-green” buildings characterized by low
energy utilization and high operating energy consumption. With the introduction of the
“dual-carbon” target, the green and energy-saving renovation of existing buildings is poised
to become the prevailing trend in China’s construction industry.

(3) Research reveals that some previously constructed student center buildings were
constrained by factors such as outdated building energy efficiency standards, materials,
technology, and equipment. Issues such as obsolete heating equipment, aging power
lines and envelope structures, severe condensation, mold growth in indoor corners, and
peeling of inner wall finishes have become increasingly prominent. The inadequate thermal
performance of envelope structures results in indoor heat loss, elevated building energy
consumption, and challenges in maintaining comfortable indoor temperatures.

(4) The existing research literature predominantly focuses on the spatial design of
student centers, neglecting building performance and physical environment optimization
design. Therefore, this study aims to explore energy-saving optimization design con-
cepts and plans for this building type. The findings will facilitate improved operation,
construction, and maintenance of student center buildings.

This study conducted a large-scale survey on student centers in universities in Xi’an,
and selected 5 representative student centers constructed after 2000 as research cases for
detailed investigation. The reason for selecting cases after 2000 is that during the investiga-
tion, it was found that some older student centers have been abandoned or repurposed,
and lack good renovation value. These 5 universities represent the disciplines of liberal
arts, science, and engineering in the Xi’an region, include Chang’an University (CHD),
Xi’an International Studies University (XISU), Xi’an University of Finance and Economics
(XUFE), Shaanxi Normal University (SNNU), and Xi’an University of Architecture and
Technology (XAUAT). An overview of the case study buildings is provided in Table 5.

Table 5. Basic information of the five student centers.

Typical Cases Year Plan Story Floor Height Gross Floor Area

CHD student center
Before Design Standard for Energy

Efficiency of Public Buildings
GB50189-2005

2004
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Table 5. Cont.

Typical Cases Year Plan Story Floor Height Gross Floor Area

XISU student center
Before Design Standard for Energy

Efficiency of Public Buildings
GB50189-2015

2009
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We visited the management departments of five universities and obtained the com-
pletion drawings of the student centers, along with the total electricity consumption data 
of the buildings from 2017 to 2020. We discovered that all the student centers operate upon 
central air conditioning for cooling (electricity consumption) indoors in summer and cen-
tralized heating (natural gas) for indoor spaces in winter. It is observed that the total 
power consumption and power consumption per unit area of the student centers have 
consistently increased annually over the past four years, as depicted in Figures 1 and 2. 
These buildings, due to their comprehensive nature and combination of variously sized 
spaces, demonstrate low continuity in space utilization. The interior space of the building 
presents distinct usage requirements based on different functional divisions. During the 
construction phase, energy conservation considerations were not given significant prior-
ity. Combined with the effects of aging and wear during the building’s use, it currently 
experiences poor thermal comfort and high energy consumption. Consequently, it fails to 
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We visited the management departments of five universities and obtained the com-
pletion drawings of the student centers, along with the total electricity consumption data
of the buildings from 2017 to 2020. We discovered that all the student centers operate
upon central air conditioning for cooling (electricity consumption) indoors in summer and
centralized heating (natural gas) for indoor spaces in winter. It is observed that the total
power consumption and power consumption per unit area of the student centers have
consistently increased annually over the past four years, as depicted in Figures 1 and 2.
These buildings, due to their comprehensive nature and combination of variously sized
spaces, demonstrate low continuity in space utilization. The interior space of the building
presents distinct usage requirements based on different functional divisions. During the
construction phase, energy conservation considerations were not given significant prior-
ity. Combined with the effects of aging and wear during the building’s use, it currently
experiences poor thermal comfort and high energy consumption. Consequently, it fails
to meet present-day requirements for energy conservation and consumption reduction,
posing challenges in maintaining a comfortable indoor environment.

Considering the characteristics of the student center outlined above, including layout,
spatial design, and usage features, and in conjunction with the fact that China issued the
“Design Standard for Energy Efficiency of Public Buildings” GB50189-2005 [37] in 2005,
this study ensures the comprehensiveness and integrity of relevant data. As a result, the
CHD student center is chosen as the specific research subject. Despite being constructed
in 2004, the building lacked comprehensive energy-saving measures during construction.
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It presents a non-energy-efficient structure with a simplistic envelope design, inadequate
thermal insulation, and numerous energy-related issues.
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3.3. Numerical Simulation
3.3.1. Setting Parameters for Typical Case Model

To examine the correlation between the building design of the student center and its
impact on energy consumption and thermal comfort, this study utilized the Design Builder
software package to simulate the case study. Climate data and building parameters were
employed to parameterize elements such as building form, orientation, envelope structure,
and other factors [9]. Simulation parameters were established following the calculation
guidelines for physical properties of commonly used building materials, as outlined in
Appendix B of the “Code for Thermal Design of Civil Buildings” GB 50176-2016 [38], and
were based on the construction drawing practices of existing typical case models. Notably,
the CHD Student Center lacks insulation material in its exterior walls and roof.

3.3.2. Basic Parameters of Heat Source in the Room

The model parameters were set in line with the actual characteristics of the case
building, encompassing metrics such as the per capita area and room occupancy rate,
the energy consumption rate of lighting and equipment per unit, lighting power density,
switching times, and operational periods of the building’s air conditioning and heating
system [39]. Specific configurations are outlined as follows:

(1) Per capita area and occupancy: The area per person is set at 6 m2; activity energy
is 70 W; the thermal resistance unit of clothing is specified as ‘clo’, the occupants can adjust
clothing according to their thermal feelings. Based on the Evaluation Standard for Indoor
Thermal Environment in Civil Buildings GB/T 50785-2012, according to normal office
clothing, when occupants wear thin pans and short-sleeve shirts, clo = 0.50 in summer;
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when occupants wear long-sleeve shirts, trousers, warm jackets, and long sleeved and
pants underwear, clo = 1.2 in winter [39,40].

(2) Lighting and equipment energy consumption per unit area indoors: Lighting power
density is 9 W/m², triggering lamps when the working surface illumination falls below 500 lx.
Fresh air volume is 30 [m3/(h)], and electrical equipment power density is 15 W/m2.

(3) Operational schedule for public university buildings: Electrical equipment, room occu-
pancy, and lighting have flexible timings, operating 7 days a week from 8:00 am to 10:00 pm
based on the University’s activity center usage. Lamp operation is limited to this period.

(4) Air conditioning and heating system operation: The cooling temperature is set
to 26 ◦C, and the heating temperature to 18 ◦C [41]. Fan operation is synchronized with the
student center’s schedule, and inactive during other times. The study focused solely on
indoor energy consumption and thermal comfort, excluding fan and coil models that might
affect energy usage. Annual energy consumption calculations encompass cooling, heating,
lighting, and other equipment.

After conducting field investigations on student centers in Xi’an, a representative
typical building case was selected for parametric modeling and subsequent building per-
formance simulation. Considering the climate characteristics of Xi’an, simulation analyses
were conducted to assess building energy consumption and indoor thermal comfort. These
simulation outcomes serve as a comparative data set for the optimization design scheme
detailed in the subsequent paper. Illustrated in Figure 3 is a schematic diagram depicting
the process and platform for building performance analysis.
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3.4. Simulation of Energy Consumption and Thermal Comfort
3.4.1. Accuracy Verification of Typical Cases

Before conducting a building performance simulation, it is crucial to validate the
accuracy of the model and the software’s parameter settings. In this study, the measured
outdoor temperature and humidity in Xi’an on 6 July 2021, were compared with the
software-simulated data for verification. This comparison is depicted in Figures 4–6.

By organizing the measured data from outdoor measuring points, the results of outdoor
simulations were compared against them. To simplify calculations, some simulation parameters
were set to an ideal state. Consequently, the simulated outdoor humidity measurement points
may register higher than the actual measurements, but they consistently reflect the trends of
each measurement point. Upon comparison, the disparity between simulated temperature and
humidity values and the measured values at various times of the day is less than 10%. This
indicates that the software simulation results are largely in line with the test results, validating
the feasibility of the software model and parameter settings.
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3.4.2. Simulation Analysis of Energy Consumption

In this study, the Ladybug and Honeybee plug-in is used to calculate annual heating
energy consumption, cooling energy consumption, artificial lighting energy consumption,
and other equipment energy consumption to obtain annual comprehensive building energy
consumption and comprehensive energy consumption per unit area. The visual results of
building energy consumption and its data are depicted in Figure 7.
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Figure 7. Energy consumption balance diagram of CHD Student Center.

As depicted in Figure 7, the annual energy consumption analysis of the CHD Student
Center reveals a total energy consumption of 183.57 kW·h/m2 per unit area, with an accu-
mulated annual heat consumption of 82.15 kW·h/m2. The primary cause for this lies in the
aging of the envelope structure and excessive heat transfer coefficient. During winter, the
primary heat loss occurs through the envelope, while in summer, air conditioning is pre-
dominantly used for interior comfort. Addressing this issue requires further optimization
of the envelope and shade design, particularly for summer conditions.

3.4.3. Simulation Analysis of Indoor Thermal Comfort in Typical Buildings

The PMV-PPD index chosen for this study reflects the indoor thermal comfort within
buildings. The visualized results and data illustrating PMV for indoor thermal comfort
throughout the year are presented in Figure 8.
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According to the simulation results of thermal comfort, the percentage of people with
unsatisfactory indoor expectations in the CHD Student Center throughout the year is 23.7%, the
absolute value of PMV at this time is 0.89, and the annual indoor discomfort time is 2179.75 h.

The heat transfer coefficient (U value) of each building envelope component is com-
pared with the specified limit value in the building energy-saving design standards across
various periods to ascertain compliance with energy-saving design requirements. The
comparative results are displayed in Table 6.

Table 6. Judgment of related indicators of CHD Student Center.

Name Value
Design Standard for Energy

Efficiency of Public Buildings
GB 50189-2005 Limit Value [37]

Satisfied
or Not

Design Standard for Energy Efficiency
of Public Buildings GB 50189-2015

Limit Value [42]

Satisfied
or Not

Roof
W/(m2·k) U = 0.519 U ≤ 0.55

√
U ≤ 0.45 ×

Exterior wall
W/(m2·k) U = 2.055 U ≤ 0.6 × U ≤ 0.50 ×
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Table 6. Cont.

Name Value
Design Standard for Energy

Efficiency of Public Buildings
GB 50189-2005 Limit Value [37]

Satisfied
or Not

Design Standard for Energy Efficiency
of Public Buildings GB 50189-2015

Limit Value [42]

Satisfied
or Not

Window
wall ratio

East 0.20 U = 3.4 U ≤ 3.0 × U ≤ 2.7 ×

West 0.20 U = 3.4 U ≤ 3.0 × U ≤ 2.7 ×

South 0.68 U = 3.4 U ≤ 2.0 × U ≤ 1.9 ×

North 0.10 U = 3.4 U ≤ 3.5
√

U ≤ 3.0
√

Shape factor 0.15 ≤0.40
√

≤0.40
√

Based on the comprehensive findings from field investigations, data testing, and soft-
ware simulation analyses, the university student center exhibits several issues concerning
the thermal performance of its envelope structure, building energy consumption, and
indoor thermal comfort:

(1) Thermal performance of the enclosure structure: The table reveals that the CHD
Student Center, in its architectural design, does not adhere to building energy conservation
requirements. Consequently, the thermal performance of the building envelope exceeds
the current codes and standards. There exists substantial potential for energy-saving
optimization in the building envelope design.

(2) Building energy consumption: As per the specifications outlined in the “Standard
for Energy Consumption of Buildings” GB/T 51161-2016 [43], the prescribed value for
Xi’an’s annual unit area heat consumption index stands at 0.21GJ/(m2·a), equivalent to
58.333 kW·h/m2. However, based on the energy consumption simulation results, the CHD
Student Center demonstrates an annual cumulative heat consumption per unit area of
82.15 kW·h/m2, surpassing Xi’an’s building heat consumption index limit.

(3) Building thermal comfort: According to the standard outlined in the “Evaluation
Standard for Indoor Thermal Environment in Civil Buildings” GB/T 50785-2012 [39], a ther-
mal environment with a Predicted Percentage of Dissatisfied (PPD) of ≤10% signifies com-
fort, while the indoor thermal environment should ideally range between −0.5 and +0.5 for
Predicted Mean Vote (PMV). Based on the thermal comfort simulation results, the CHD
Student Center experiences an unsatisfactory indoor environment throughout the year,
with 23.7% of individuals dissatisfied, and a PMV of 0.89, categorized as a grade III stan-
dard. This indicates low satisfaction among occupants regarding the humidity and thermal
environment. Analysis of the construction drawings reveals that the thermal performance
of each component of the building envelope exceeds the current code limit. This situation
is detrimental to creating a favorable indoor thermal environment in the building, making
it challenging to maintain comfortable conditions.

4. Results and Discussion

Based on the status of student centers in Xi’an and simulation analysis results, it
has been discovered that the CHD Student Center has significant potential for energy
conservation in terms of both building energy consumption and indoor thermal comfort.
Expanding on this assessment and considering the actual influencing factors, a transfor-
mative design was implemented. This involved adjusting the external wall insulation
materials and thickness, types of external windows, roof insulation materials and thickness,
external sunshades, and more. These modifications were evaluated against the heat transfer
coefficient specified in the “Design Standard for Energy Efficiency of Public Buildings”
GB50189-2015 [42]. Using a multi-objective optimization module, the optimal Pareto so-
lution set was computed to identify the most fitting scheme that meets the heat transfer
coefficient prerequisites. The process of multi-objective optimization, along with the result-
ing optimal design concepts relevant to comparable existing buildings in the Xi’an area,
is depicted in Figure 9: schematic diagram of the multi-objective optimization research
process and technical platform.
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form of student center.

4.1. Multi-Objective Optimization Experiment Design

The meteorological data selected in this simulation study are the data of typical
meteorological years in Xi’an. The schedule of heating and cooling equipment, the open-
ing conditions of ventilation and lighting, and the activity schedule adopted by indoor
personnel were consistent with the initial case simulation.

To sum up, the parameter settings of optimization variables in this study are shown
in Table 7.

Table 7. Variable parameter setting.

Optimizations Original Building Parameters Simulate and Optimize Building
Parameters

Roof insulation 35 mm-thick XPS board for roof

R1 100 mm-thick XPS board
R2 150 mm-thick XPS board
R3 100 mm-thick EPS board
R4 150 mm-thick EPS board

R5 100 mm-thick rock wool board
R6 150 thick rockwool board

Exterior insulation No external wall insulation

W1 100 mm-thick XPS board
W2 150 mm-thick XPS board
W3 100 mm-thick EPS board
W4 150 mm-thick EPS board

W5 100 thick rock wool board
W6 150 thick rockwool board

Type of glass for building exterior window 6 mm common double glazing

G1 3 mm + 12Ar + 3 mmLow
G2 6 mm + 12Ar + 6 mmLow

G3 3 mm + 12Ar + 3 mm plain glass
G4 6 mm + 12Ar + 6 mm regular glass

Length of southwest-facing visor Unshaded

S1 0 m
S2 0.5 m
S3 1 m

S4 1.5 m

Note: Ar in the table indicates filled inert gas.
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Referring to the algorithm parameter settings from previous studies [8], a comparative
test was conducted regarding the parameter settings in this study. In optimizing the
parameter settings of the algorithm, the configuration utilized in this study ensures the
algorithm’s performance while effectively balancing the optimization of building energy
consumption and indoor thermal comfort. The optimization algorithm’s parameter settings
for this study are detailed in Table 8.

Table 8. Octopus optimization parameter settings for this study.

Name Value

Elitism Elitism Ratio 0.50
Mut. Probability Mutational probability 0.05
Mutation Rate Mutation rate 0.10
Crossover Rate Crossover probability 0.80
Population Size Population size 50

Max Generations Max evolutionary algebra 50
Record interval Record time interval 1

Save interval Save interval 0

4.2. Optimize the Analysis of Experimental Results

In this study, the optimization algorithm module of the software was used to simulate
the building energy consumption and the uncomfortable duration inside the building, etc.,
corresponding to the Pareto scatter plots of 5, 25, 45, and 50 generations (Figures 10–13),
until the point distribution reached a stable convergence state. The dark red cube is Pareto’s
optimal solution set.
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Figure 13. Pareto solution iterated 50 times.

Figures 10–13 illustrate that the Pareto optimal solution sets are interconnected to
form a Pareto front surface. The overall shape closely resembles a convex paraboloid
centered around the coordinate origin. Observing the fluctuation in the solution set of the
50th-generation frontier surface indicates that this optimization set has converged. The
resulting optimal solution set obtained from this convergence can be utilized for further
research and analysis. The iterative process of the multi-objective optimization simulation,
comprising approximately 2500 operations, unveiled a dense trend in the distribution of the
Pareto solution set. The relatively stable position within this distribution can be regarded
as the state of convergence for the set.

(1) Analysis of total building energy consumption
Analysis of the 50th-generation Pareto solution set data obtained from the multi-

objective optimization study of the CHD Student Center indicates a notable reduction in
building energy consumption following the optimization process. The annual energy con-
sumption after optimization ranges between 800,000 kWh and 830,000 kWh. Specifically, the
33rd-generation Pareto solution set (depicted in Figure 14) generated the minimum energy
consumption of 800,322.19 kWh through energy consumption optimization simulations.
Conversely, the maximum energy consumption was recorded from the 46th-generation
Pareto solution set, resulting in 843,523.24 kWh. Overall, in the 50th-generation data set,
the building’s energy consumption demonstrates a significant reduction compared to the
pre-optimization consumption of 1,964,153.07 kWh.
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(2) Indoor thermal comfort analysis of buildings
Examining the impact of multi-objective optimization on the discomfort duration

within the building, an analysis was conducted using the 50th-generation Pareto solution set
data from the multi-objective optimization study of the CHD Student Center. This analysis
generated a relationship diagram between the discomfort duration within the building
and the Pareto solution set (see Figure 15). The discomfort duration values mostly range
between 800 h and 1600 h. As per the multi-objective optimization research, the minimum
discomfort duration is recorded in the 8th generation, amounting to 753.52 h. Conversely,
the maximum discomfort duration resulting from the multi-objective optimization research
occurs in the 21st generation, with a value of approximately 2168.75 h. Overall, across
the 50 generations, the building’s indoor discomfort duration exhibits a notable decrease
compared to the indoor thermal discomfort duration of 2179.75 h before the optimization.
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(3) Analysis of variable optimization design
Optimization of wall insulation structure: An analysis of the 50th-generation Pareto

solution set reveals that the optimization primarily centers on two types of wall insulation
structures: W2 (XPS, 150 mm thickness) and W4 (EPS, 150 mm thickness). Within these
options, the XPS board configuration dominates the solution set, suggesting its superior
performance in terms of energy consumption and comfort at a thickness of 150 mm.

Optimization of roof insulation structure: An analysis of the Pareto solution set
highlights the preference for solutions centered around R1, R2, and R4 (involving XPS
and EPS insulation panels with 100 mm and 150 mm thicknesses, respectively). Due to
the relatively small roof insulation area, the optimization process does not significantly
increase the thickness of the insulation material. This indicates that both XPS and EPS
exhibit effective insulation properties, with 150 mm thickness being the prevalent choice.

Selection of external window glass type: The results from multi-objective optimization
indicate that G1 (3 mm + 12 Ar + 3 mmLow glass) and G3 (3 mm + 12 Ar + 3 mm ordinary glass)
window types are preferred. In particular, the G1 type holds a notably higher proportion
within the solution concentration, highlighting its distinct advantages in optimization.

Optimization of horizontal shading: Data analysis shows that S2 (0.5 m overhang
horizontal shading) in the southwest direction contributes more effectively to enhancing
the energy efficiency and comfort of the building interior. Pareto solution sets without
horizontal sunshade (S1) also exist, but their proportion is small.

(4) Weighing scheme analysis
In this study, the scheme provided by the 29th-generation Pareto solution set has

been chosen as the optimization scheme (see Figure 16). Based on the multi-objective
optimization point diagram of the building, the thermal insulation structure of the external
wall has been adjusted to a 150 mm-thick XPS board from the original structural design. The
roof’s insulation structure has also been set to a 150 mm-thick XPS board. Additionally, the
external window glass has been replaced with a 3 mm + 12 Ar + 3 mmLowE structure, and
a 0.5 m horizontal sunshade has been installed on the building’s southwest side. Simulation
results demonstrate a notable reduction in the building’s energy consumption, bringing it
down to 809,273.24 kWh—considerably lower than the pre-optimization consumption of
1,964,153.07 kWh. Moreover, the discomfort duration inside the building has decreased to
1024.19 h. The corresponding parameters of this solution set are detailed in Table 9.
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In the research process, if there is an optimal solution or solution set scheme, will compare
the benchmark values in the building energy efficiency design codes or building comfort
standards, including the Evaluation Standard for Indoor Thermal Environment in Civil Build-
ings GB/T 50785-2012 and the Design Standard for Energy Efficiency of Public Buildings
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GB50189-2015. When there is no optimal solution set, it is necessary to calculate the data of
the non-optimal solution set calculated in Ladybug and Honeybee software Version 0.0.65,
calculate the heat transfer coefficients of the corresponding parts of the model, such as the
exterior windows, exterior walls, and roof, and then compare them with the benchmark heat
transfer coefficients in the standard. Based on this, select the optimal solution that meets the
heat transfer coefficient requirements. Based on this, compare the energy consumption and
uncomfortable time length of the selected solution to determine the optimal solution.

Table 9. Corresponding parameters of the solution set of the 29th-generation Pareto.

Algebra Building Energy
Consumption (KWh)

Duration of Discomfort
inside the Building (h)

Type of Exterior
Insulation

Type of Roof
Insulation

Exterior Window
Glazing Type

Southwest Horizontal
Shade (m)

Pareto 29 809,273.24 1024.19 W2 R2 G1 S2

4.3. Multi-Objective Optimization of Optimal Solution Set

Calculate the energy-saving rate of the envelope structure according to the “Standard
for Green Performance Calculation of Civil Buildings“ JGJ/T 449-2018 [44]. The calculation
formula is as follows (Equation (1)):

ηE =
EB − E0

E0
× 100% (1)

In the formula, the following are defined:

ηE—total building optimization rate, %;
EB—the total building comprehensive energy consumption after optimization, kWh;
E0—total building comprehensive energy consumption after initial building model, kWh.

After evaluating the building’s energy consumption and thermal comfort performance
target optimization rate, we compared the multi-objective optimization data with the
original building data. The annual comprehensive energy consumption was reduced by
approximately 58.8% following optimization. Simultaneously, the annual indoor thermal
comfort duration increased by about 53.0%. This validates and analyzes the energy-saving
optimization scheme for the CHD Student Center as an effective transformation strategy,
detailed in Figures 17 and 18, and Table 10.
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Table 10. Corresponding parameters of the initial scheme and the solution set after optimization.

Name
Building Energy
Consumption

(KWh)

Duration of
Discomfort inside
the Building (h)

Type of Exterior
Insulation

Type of Roof
Insulation

Exterior Window
Glazing Type

Southwest Horizontal
Shade (m)

Original 1,964,153.07 2179.75 / 35 mm-thick
XPS board

6 mm plain
double glazing /

Optimized
Pareto29 scheme 809,273.24 1024.19

150 mm-thick
XPS

insulation board

150 mm-thick
XPS

insulation board

3 mm + 12Ar +
3 mmLow

The
southwest-facing
horizontal visor

protruding length
is 0.5 m

After conducting a comparative analysis of the annual comprehensive energy con-
sumption and indoor thermal comfort values before and after the optimization plan, it
is concluded that the case building’s annual comprehensive energy consumption was
reduced by 58.8% after implementing optimization measures, now being 75.36 kW·h/m2,
much lower than the 183.57 kW·h/m2 before the renovation; the heat consumption index
is 38.19 kW·h/m2, reduced by 46.5%, which meets the limit value of 58.333 kW·h/m2

for the building heat consumption index in Xi’an according to the “Standard for Energy
Consumption of Buildings” GB/T 51161-2016. The indoor thermal comfort duration has
increased by 53.0%, and the percentage of indoor dissatisfaction expected throughout the
year is 11.2%. According to the “Evaluation Standard for Indoor Thermal Environment
in Civil Buildings” GB/T 50785-2012, it is classified as Level II standard and basically
meets the comfort requirements. These verification results demonstrate the rationale and
feasibility of the optimization process.

Based on the above analysis, it can be seen that unlike single-factor optimization,
multi-objective optimization can be optimized from both energy consumption and thermal
comfort perspectives. For various practical cases, it is necessary to reasonably adjust
the various influencing factors involved in multi-objective optimization based on the
actual situation of the case, and ensure the optimal optimization plan through repeated
adjustments. Not only that, other variables can be added during the optimization process
and multi-objective joint optimization design can be carried out to obtain the Pareto solution
set through simulation calculation. In addition, targeted economic strategies can also be
proposed based on analysis of the actual situation, such as adjusting material thickness
reasonably, selecting appropriate material categories, etc., thus forming the optimal plan to
achieve the maximum economic benefits.

5. Conclusions

This study focuses on the university student center buildings in China and proposes a
multi-objective optimization design method for achieving thermal comfort while maintain-
ing low energy consumption. The study illustrates this method through practical examples,
leading to the following conclusions:

(1) The university student center serves diverse functions, encompasses various spaces,
exhibits high total energy consumption, and displays energy usage patterns distinct from
other university buildings. It demonstrates significant potential for energy savings.

(2) The Octopus multi-objective optimization module is employed to conduct research,
facilitating the simultaneous optimization of building comprehensive energy consumption
and indoor thermal comfort. This approach allows for comprehensive design optimization
involving elements such as the building’s exterior wall (insulation material type and thickness),
exterior windows (glass material type and thickness), roof (insulation material type and
thickness), and external sunshade (length of horizontal sunshade). Initially, this scheme aids
architects in making informed design decisions during the project’s early stages, fostering
energy-conserving building design. Furthermore, it generates more practical transformation
technical schemes. In this study, the annual comprehensive energy consumption of the
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building is reduced by 58.8%, while the indoor thermal comfort duration increases by 53.0%,
demonstrating the feasibility and soundness of the optimization design method.

(3) The multi-objective optimization platform considers multiple factors globally,
utilizing a multi-objective optimization algorithm to prevent insufficient consideration
of individual factors. Moreover, this process generates multiple visualized optimization
schemes, allowing designers to select options based on different objectives. This ensures
that all objective functions achieve an optimal state, significantly enhancing the efficiency
and effectiveness of building transformation optimization.

In the optimization of university student center design, this study focused solely on
analyzing building energy consumption and indoor thermal comfort, while other variables
were not extensively compared or discussed. Future optimization experiments could benefit
from employing multi-objective optimization algorithms to consider comprehensive factors
such as site selection, space layout, and building equipment selection, enabling a more holistic
examination of the university student center. Additionally, conducting more in-depth analyses
and comparisons of building performance across various climate zones in subsequent research,
through detailed data or statistical analysis, would facilitate broader conclusions.
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