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Abstract

With the increasing prominence of the energy crisis and environmental problems, microgrid
technology has received widespread attention as an important technical means to improve
the stability and reliability of new energy access. Focusing on the latest development of
microgrid operation control technology, this paper combs and summarizes the related
research at home and abroad, including the key technologies of microgrid optimization
operation, power prediction and virtual synchronous active support control technology,
and points out their advantages and limitations. First, this review describes the concept
and structure of microgrids, including components such as distributed power sources,
energy storage devices, energy conversion devices and loads. Then, the microgrid opti-
mization operation technologies are analyzed in detail, including energy management
optimization algorithms for efficient use of energy and cost reduction. Focusing on micro-
grid power forecasting techniques, including wind energy and PV power forecasting and
load forecasting, the contributions and impacts of different power forecasting methods are
summarized. Furthermore, the inverter control strategies and the stability mechanism of
the virtual synchronous generator (VSG) active support control technology are investigated.
Finally, synthesizing domestic and international microgrid development experience, this
review summarizes the current state-of-the-art technologies, analyzes the advantages and
limitations of these key technologies (including optimization scheduling, power prediction
and VSG-based active support control) and highlights the necessity of their continuous
improvement to provide a solid foundation for promoting the widespread application and
sustainable development of microgrid technology.

Keywords: microgrid; operation optimization; power prediction; virtual synchronous generator

1. Introduction

In recent years, the rapid economic development is accompanied by the increasing
demand for energy, and the world is gradually facing problems such as the shortage of
conventional fossil fuels and environmental pollution. With advances in small generators,
energy storage devices and power electronics and the gradual rise in fuel costs, building
large, centralized power plants in many cities is not an optimal solution. Therefore, the
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microgrid is replacing centralized power generation as a new power system [1]. The
microgrid has a high penetration rate of renewable energy, in particular wind and solar,
which accounts for 91% of the global renewable energy generation capacity [2,3].

With the continuous improvement of the comprehensive utilization of renewable
energy technology, wind power and photovoltaic (PV) power generation, as emerging ener-
gies in many countries, play an important role in the strategic energy structure, promoting
the rapid development of the industry. Since 2000, the installed capacity of wind power
and photovoltaic in the world and China have shown a doubling growth [4,5]. The global
cumulative and new installed wind power capacity from 2015-2024 is shown in Figure 1 [6],
and the global cumulative and new installed solar PV capacity from 2015-2024 is shown in
Figure 2 [7]. Data from the Global Wind Energy Council’s (GWEC) Global Wind Power
Development Report 2024 show that between 2015 and 2024, the cumulative installed ca-
pacity of global wind power increased from 433 GW to 1167 GW, with a compound annual
growth rate of 11.12%. In 2024, the global new installed wind power capacity reached
155 GW, while China’s cumulative installed wind power capacity exceeded 500 GW, and
its cumulative installed solar PV capacity reached 886 GW. China’s wind power capacity
accounted for over 50% of the global cumulative total, and its solar PV capacity represented
44.54% of the global cumulative installed capacity. Clean energy is projected to exceed 85%
of the global energy mix by 2050.
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Figure 1. Global cumulative and new installed wind power capacity from 2015-2024.
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Figure 2. Global cumulative and new installed solar PV capacity from 2015-2024.
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The inherent flexibility of the power system can accommodate a certain amount of
intermittent renewable energy, but as it enters the medium to high or extremely high
ratios, the system will face multiple challenges in different time scales, such as stability
control, operation and planning. With the large-scale application of renewable energy, the
penetration rate is increasing, and the continuous development of intelligent technology
and the construction of a new type of power system are accelerating. In order to ensure
the stable and reliable operation of renewable energy grid-connected power generation,
microgrids have become an important solution to the problem of the power systems in
some countries. Among them, the current status and development trends of microgrid
operation optimization technology, the research progress and trends of microgrid power
prediction technology, virtual synchronous control technology and other key technologies
have attracted significant attention from academia and the industry and have played a key
role in promoting the innovation of microgrid technology [8-10]. In recent years, many
countries, such as the United States, China, Japan and Europe, have carried out the research
of microgrid technology and made important progress, successfully addressing theoretical
problems related to microgrid operation, protection, economy and so on [11-13].

The renewable energy microgrid is an important construction object to promote the
green development of new power systems. With the increasing application of intermittent
renewable energy sources in the new-generation microgrids, the share of renewable energy
in energy supply is gradually increasing. This decarbonization transition from fossil fuels
to renewable energy not only reduces the controllability of microgrid power output but
also introduces uncertainty. Both wind and solar power renewable energies have inherent
characteristics such as randomness, intermittency and volatility. In addition, wind power
has anti-peaking characteristics. Load demand can also exhibit stochastic behavior, and
load demand and renewable generation usually have different peak and valley character-
istics. These uncertainties lead to certain difficulties in the stable operation and optimal
dispatch of the microgrid after the renewable energy is connected [14]. Therefore, the most
central problems of microgrids are the optimized scheduling and power quality control of
the distributed power sources, the distributed energy storage, the loads and the grid [15].
The optimal scheduling of microgrids is beneficial to improve the consumption capacity
of distributed energy, such as wind power and solar PV power, in the distribution grid,
increase the utilization rate of renewable energy and reduce the losses and operating costs
of the distribution grid. The source-load-storage multi-type, flexible resources are fully
coordinated and interactive in the microgrid-source, load, and storage are no longer an
independent operation, but are combined through the power grid framework to realize the
interaction of the coupled system. The participation of different types of flexible resources
greatly enhances the interaction capabilities among the source-side renewable energy, en-
ergy storage system and users in the process of microgrid optimization. Shifting load
demand from peak to trough of electricity consumption improves the consumption of the
distributed power supply, while the flexible resources on the energy storage side are fully
utilized. By absorbing excess renewable generation and releasing electricity at peak times,
shifting renewable energy output is realized on a time scale. In addition, the accuracy
of wind power, solar PV power, and load power prediction in microgrids constrains the
optimal dispatch of the microgrid and affects the full utilization of renewable energy. There-
fore, accurate power prediction is an important research direction for renewable energy
microgrid energy management systems (EMSs) [16]. Therefore, this paper introduces and
summarizes the latest theoretical results of the operation optimization strategy and the
power prediction of microgrids in detail.

The microgrid can operate either in grid-connected mode or independently (islanded
mode). Regardless of the operating mode, the system requires appropriate control strategies
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to ensure the reliability and stability of the power supply, and hierarchical control is widely
used in power systems [17,18]. The hierarchical control structure of the microgrid is shown
in Figure 3. Optimal scheduling calculations of the microgrid occur at the upper decision-
making layer (third layer), which regulates the power flow direction of the microgrid and
the power grid, solves the optimal scheduling problem to calculate the power of each
distributed source and sends it to the second layer control to ensure the stability and
economy of microgrid operation. The second layer control regulates the output voltage
amplitude and frequency of the inverter through the control signals sent from the given
values of the first layer control of the distributed power supply and realizes the balance of
the power and stabilization of the main grid system. The signal collected by the first layer
control is the local signal of the controller, which generally refers to the power, current and
voltage control of the converter [19].
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Figure 3. Hierarchical control structure of the microgrid.

Therefore, in renewable energy microgrids, the control technology of inverters is
particularly important, as it serves as the medium for connecting distributed generation to
the grid and determines the static and dynamic response performance and stability of the
microgrid system. The main functions of the inverter are to realize microgrid connection
and disconnection, active and reactive power decoupling, terminal voltage stabilization
and regulation of the power balance between power supply and load. Currently, the
mainstream control strategies for microgrid inverters include the following: PQ control,
V/f control, droop control and virtual synchronous generator (VSG) control [20].

PQ control is a common strategy for grid-connected inverter operation, also known
as constant power control, which ensures that the output active and reactive power of
the inverter are constant and consistent with the given value. Due to the particularity of
its control, it can realize decoupling between the output active and reactive power [21].
However, PQ control cannot be used as the main control method in islanded mode because
it cannot provide voltage and frequency support to the grid. Therefore, in a microgrid with
master—slave control, the distributed power supply, which is the master control unit when
grid-connected, is controlled by PQ, and the load changes are followed by the master control
unit. When the microgrid changes from grid-connected to islanded, the master control
unit changes from PQ mode to V/f control. V/f control is a common strategy for off-grid
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operation of inverters, also known as constant voltage and constant frequency control. This
control ensures that the output voltage and frequency of the inverter are constant, its output
power is determined by the load and the external characteristics can be equated to a voltage
source [22]. Because it can provide voltage and frequency support, it is very suited for
islanded operation, but it requires a sufficient amount of energy to meet load demand, so the
capacity of the distributed power supply is relatively large, and it usually requires a backup
power supply. Droop control can adjust the output voltage, frequency and power of the
inverter, similar to the principle of a traditional synchronous generator; it mainly includes
Q-V, P-f regulation of forward control and P-V, Q-f regulation of reverse control. Due to
the established linear relationships between active power and frequency (P-f) and between
reactive power and voltage (Q-V), the droop control can realize the power equalization
without communication. However, droop control does not provide inertia and damping
to the system. Virtual synchronous generator (VSG) technology simulates the power and
voltage control algorithms of a conventional synchronous generator and introduces inertia
and damping characteristics, which can slow down the oscillation of frequency and power
and improve the anti-interference performance of microgrids. Currently, there are two main
VSG-controlled inverters, voltage type virtual synchronous generator and current type
virtual synchronous generator [23]. VSG technology is a new generation of new energy
power generation technology that turns new energy from passive regulation to active
support. It is an effective way to enable new energy power generation to have the ability
to support the power grid with inertia support, primary frequency regulation and active
voltage regulation. It is the exploration and practice of solving the problems faced by the
double-high power system [24,25]. Therefore, this paper provides a detailed introduction
and summary of the latest theoretical results of VSG active support control technology.

Microgrids have been widely used in industrial parks, islands and remote areas due
to their flexible and efficient characteristics. Many countries in the world have established
their own microgrid demonstration projects.

The United States has made important achievements in microgrid development and
is in a leading position in microgrid demonstration projects, technical concepts and key
technologies; the policy environment and market mechanisms and research institutions and
industrial chains. The United States has the largest number of microgrid demonstration
projects in the world, which cover a variety of application scenarios and capacities from
a few kilowatts to several megawatts. Among them, some large-scale microgrid projects
include the Smart Microgrid Demonstration Project and the Solar City Demonstration
Project. At the same time, the United States government and various state governments
have given attention to and supported the development and application of microgrids
by introducing a series of policies and regulations, such as solar investment tax credits,
energy liberalization and power market reform. These policies provide a favorable policy
environment and market mechanism for the development and application of microgrids.
In addition, the United States has numerous research institutions and industrial chains,
such as the National Renewable Energy Laboratory, the Solar Energy Research Institute
and the Microgrid Industry Association, which provide important support and guarantees
for the research and practice of microgrids [26].

Europe is one of the regions in the world where microgrid development is relatively
active. In Europe, intelligent control and integrated management are used to improve the
operating efficiency and reliability of microgrids. At present, the European Union has
produced some research results in the areas of distributed power modeling and island
interconnection. The Demotec microgrid structure of the Solar Energy Technology Institute
at Kassel University in Germany and the Cyclades Islands of the Aegean Sea in Greece are
typical representatives of microgrid demonstration projects [27].
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In recent years, the number of microgrid demonstration projects in Japan has increased
year by year to more than 100, covering a variety of application scenarios, such as urban,
rural and island. The capacity of these demonstration projects ranges from tens of kilowatts
to hundreds of megawatts. The combination of decentralized control and centralized
management is used to control and manage the microgrid in Japan, which improves its op-
erational efficiency and reliability. In addition, Japan has promoted some new technologies
and applications, such as virtual power plants and the energy internet, which have very
promising development prospects [28-30].

In order to improve the structure of the power grid, increase the efficiency of new
energy generation and promote the implementation of the dual-carbon strategy, China has
also invested a lot of money and energy in the field of microgrids, with the strong support
of governmental departments, and has built a variety of microgrid demonstration projects
for different environments. For example, small offline microgrids for towns and residential
school scenarios have been constructed in Qinghai Province to improve the economy and
reliability of the grid. A grid-connected microgrid project for industrial parks has been
constructed in Nanjing, Jiangsu Province, to provide a reliable power supply for the parks.
Through the implementation of microgrid demonstration projects, some experiences and
results have been obtained. With the growing maturity of microgrid technology, it has
become an important part of the smart grid and energy internet.

As an important interface between renewable energy and large-grid, the microgrid is
an effective way to solve the problem of new energy consumption and improve the overall
energy efficiency of the system, and it is also an important direction of future power grid
research and development. A microgrid has more efficient, flexible and reliable operation
control, which can ensure the stable, efficient and low-carbon operation of the smart grid.
A microgrid has broad application prospects in the future energy field. Therefore, it is
necessary to carry out more in-depth research on the new power system for microgrids to
meet the needs of future smart grids. This paper introduces the latest theoretical results
of microgrid key technologies, such as operation optimization strategy, power prediction
and VSG active support control technology, and aims to show the current application
status of operation optimization strategy, power prediction and VSG active support control
technology in microgrid systems, so as to strengthen the connection between theoretical
work and industry applications, expand the horizon of future research and provide some
references for microgrid-related research.

However, a comprehensive review simultaneously addressing operation optimization,
power prediction and virtual synchronous generator (VSG) technologies, particularly their
latest advancements and interdisciplinary synergies, is lacking. To bridge this gap, this
review aims to (1) Systematically synthesize recent breakthroughs in microgrid operation
optimization strategies; (2) Critically evaluate state-of-the-art power forecasting methodolo-
gies for renewable sources and loads and (3) Analyze emerging VSG control paradigms for
active grid support. The graphic paper is represented in Figure 4. The subsequent structure
of this paper is as follows: Section 2 examines optimization strategies for microgrid opera-
tions and classifies the energy management algorithms of microgrid and their applications.
Section 3 assesses power prediction techniques, comparing statistical, machine learning
and hybrid models for wind /PV generation and load forecasting. Section 4 explores VSG
control technologies, focusing on stability mechanisms and adaptive control innovations.
Finally, conclusions are presented in Section 5.
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Figure 4. Graphical representation in the review in this paper.

2. Research Status of Operation Optimization Strategy of Microgrids
2.1. Optimization Objectives and Challenges

Different from the traditional big-grid dispatching, a large number of renewable
energy sources are connected to the microgrid system. The inherent strong fluctuations
and uncertainty of renewable energy output make the constraints, objective functions and
dispatching strategies of energy management and the optimal dispatching of microgrids
diverse and complex, and the energy management and optimal dispatching of microgrids
become more complex. The process of energy management and optimal dispatching
is to forecast the renewable energy output power and load power according to a large
number of historical data, combine various constraints, environmental information, market
rules and other factors to formulate the energy management and optimal dispatching
production plan for the microgrid and make real-time adjustments and corrections to
realize the optimal dispatching of safety, economy and environmental protection of the
microgrid in the actual operation process. The microgrid has various types of power
sources, different control methods and variable and complex operation modes, so the stable
control of the microgrid itself and the energy management research of distributed power
sources and energy storage systems are important. With the continuous development
of control technology, the use of advanced control strategies and energy management
techniques to improve the performance of the microgrid has become a major trend [31]. The
microgrid energy management system (EMS) is an advanced energy management method
that integrates monitoring, operation and dispatching. It can optimize and coordinate the
operation of energy storage and distributed power sources, so as to achieve efficient and
stable operation of the power system and give full play to the advantages of new energy [32].
The energy optimization management of the microgrid can coordinate the multi-side
demand of source-load—-storage, improve the utilization efficiency of intermittent energy
and reduce carbon emissions and operating costs, so as to improve the comprehensive
economic benefits of the microgrid but also reduce the negative impact on system stability.
It is key to achieving efficient and stable operation of the microgrid [33-35].

The microgrid structure includes renewable energy sources such as wind power and
PV power generation, energy storage systems, power dispatching systems, EMS, SCADA
(Supervisory Control and Data Acquisition) systems and gas turbines, where the energy
storage systems and gas turbines are mainly used to balance the intermittency and volatility
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of renewable power generation, as shown in Figure 5. The maximum power point tracking
(MPPT) control is used for wind power and PV power generation. Gas turbines, as backup
power sources, often use power control to regulate their output power. The energy storage
system and the bidirectional converter system adopt voltage closed-loop control to maintain
the constant DC bus voltage by regulating the power direction and size, absorbing the
residual energy in the microgrid. Additionally, a battery management system (BMS) is
equipped to monitor the battery pack state of charge (SOC). In the EMS, the net load power
is the difference between the user load and the renewable energy output power, which
can be obtained in real time by measuring the outlet voltage and current of the battery
energy storage system and the generator system. On this basis, with the goal of improving
power generation economy and limiting the fluctuation of the battery SOC, the gas turbines
output power is determined according to the net load power and the real-time measured
battery SOC to realize the dynamic distribution of the net load between the battery storage
system and the generator system [36].

DC
Power dispatching system | PCC
| Ac Bus l
AC
DC Load
[
== \ DC Bus
SCADA system | |
. 1 | DC DC
DC DC

| l
m DC Load

Figure 5. AC/DC hybrid microgrid component structure.

2.2. Classification and Review of Optimization Algorithms

Through the analysis of the optimal operation of the microgrid, it can be learned that
the optimal operation of microgrids usually involves multiple objectives, such as operating
costs, pollutant gas emissions, profits and other factors [37-39]. If the optimal operation
of the microgrid ignores the impact on the environment and only considers the operating
profit or operating cost, it will certainly lead to the massive emission of pollutants. However,
compared with the consideration of cost and profit, if the objective function only considers
the pollutant emission of the microgrid, the model is simpler. Therefore, when establishing
the operation model of the microgrid, it is necessary to consider the operation cost and the
treatment cost [40-42]. Multi-objective optimization of the microgrid is the key to solving
the dispatching problem, and the establishment of a multi-objective optimization model is
an important research direction for the long-term healthy operation of microgrids.

At present, the research on optimal operation algorithms for microgrids mainly in-
cludes the following aspects: rule-based control strategies, model-based control strategies,
cooperative control strategies, optimal control algorithms and artificial intelligence-based
and heuristic algorithm control strategies [43]. Rule-based control strategy is developed
according to experience and rules, which meet the basic microgrid requirements but lack
flexibility and adaptability. Zhang et al. proposed a multi-timescale energy management



Energies 2025, 18, 3557

9 of 41

strategy based on rule-based, which considers different timescales and proposes a real-time
scheduling energy management strategy that can achieve the economic optimum for eco-
nomic scheduling and ensure the stability of the system, but the strategy is less adaptable
to complex nonlinear systems [44]. The control strategy based on model prediction models
and predicts the output units and loads of the microgrid by establishing a microgrid model,
and uses the model to optimize control, which can improve the operation efficiency and
performance of the microgrid. Li et al. proposed a control strategy for microgrid EMSs
based on model predictive control, to achieve dynamic optimization and dispatching con-
trol by modeling and predicting the load of the microgrid [45]. The control strategy based
on cooperative control realizes the cooperation between the components of the microgrid
through cooperative control to improve the efficiency and performance of the microgrid.
Yue et al. proposed establishing a distributed energy unit control scheme based on a
multi-agent system. Each distributed energy unit is controlled by a primary unit control
agent, while a secondary distributed cooperative control agent manages the second level,
so as to realize the cooperative control and optimization of distributed energy. However,
this method is highly dependent on information and communication technology [46].

Under the dual pressures of energy and environment, the requirements for the econ-
omy and energy-saving and emission reduction performance of microgrid generation are
constantly increasing. Using optimal control theory to optimize the energy distribution has
gradually become a research hotspot in the field of new energy technology in recent years.
The optimal control algorithm is simple to program and can quickly obtain the optimal
solution in the offline. Control strategies based on the optimal control algorithm use certain
parameters of the microgrid as independent variables and find the optimal solution of
the generalized function under the constraints of the allowable control range. There are
two main operation optimization strategies based on optimal control theory: Dynamic
Programming (DP), proposed by American scholar Bellman, and Pontryagin’s Minimum
Principle (PMP), proposed by Soviet scholar Pontryagin. The DP and the PMP methods
are analytical in nature and are effective in solving variational problems with closed set
constraints on control.

In DP, Khalid et al. built a battery simulation model to optimize the charging and
discharging cycling process of the battery through a DP algorithm to achieve the lowest
operating cost with known load and generation capacity [47]. However, the DP strategy
easily leads to dimensional catastrophe due to its huge and complex operations. In order to
solve this problem, Venayagamoorthy et al. proposed a neural network-based adaptive
DP algorithm model based on the output power of the distributed power of the microgrid
system and the forecasted data of load demand; the evaluation function in the DP is
processed by using the J-function estimator of the feed-forward neural network, which
reduces the computational complexity in the optimization process [48]. Regarding the
problem that the DP strategy has difficulty handling large-dimensional data, Das et al.
established an islanded microgrid model based on Markov decision-making and proposed
an approximate DP to achieve energy optimization with minimum operating cost [49].
Cheng combined DP with fuzzy control to solve the supply-demand imbalance problem
in microgrids due to the instability of the clean energy [50]. The energy management
algorithm based on DP is complex, and the power generation of clean energy and the
power consumption of loads need to be known in advance, so it is less applicable in real-
time controls. The optimal control algorithm based on the PMP is mainly used to solve
continuous or discontinuous nonlinear problems. It can take a parameter of the island
microgrid model as a variable and obtain an optimal solution by constantly adjusting the
costate variable. However, it is an offline algorithm overly relying on artificial experience,
leading to difficulties in covariate selection [51,52].
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For the shortcomings of traditional optimization algorithms in solving the multi-
objective optimization process, researchers at home and abroad have continuously explored,
improved and proposed various intelligent optimization algorithms [53,54]. The control
strategy of the heuristic algorithms is to imitate the algorithm summarized by the law
of nature and give the feasible solution according to the example problem. Torkan et al.
applied a multi-objective genetic algorithm to deal with the uncertainty of load and renew-
able energy to achieve the minimum cost and minimum greenhouse gas emissions [55]. In
order to select the optimal size of the microgrid components, Li et al. proposed a genetic
algorithm to find the minimum microgrid cost [56]. In addition, many researchers have
used Simulated Annealing (SA) to solve multi-objective optimization problems. Hafez
et al. used SA optimization tools to solve the battery scheduling optimization problem
for residential microgrids [57]. The particle swarm optimization (PSO) algorithm is also
a widely used algorithm. Wang et al. established an economic power dispatch model for
multiple microgrids by comprehensively considering many factors, such as generation
cost, discharge cost, power purchase cost, power sales revenue and environmental cost and
solved the economic power dispatch model by using the PSO algorithm [58]. Sharmistha
et al. used the Grey Wolf Optimizer (GWO) algorithm in order to minimize the energy
cost of the microgrid and make better use of renewable energy sources [59]. Wang et al.
developed an operational optimization model and optimized it using the Moth Flame
Optimization algorithm in order to obtain the minimum operational cost [60]. Pesaran
et al. proposed a hybrid PSO algorithm to enhance particle diversity by combining the
crossover and mutation operators of genetic algorithms with the original particle swarm
algorithm [61]. Ref. [62] adopted a newly developed crow search algorithm (CSA) to opti-
mize the energy management of the microgrid to reduce the generation cost and pollutant
emissions. The CSA mimics the memory of crows and the strategies of hiding and chasing
food. For the energy management of the microgrid, several practical complexities are
considered, such as valve-point load effects, joint economic emission scheduling using
the price penalty factor method and modeling of renewable energy and energy storage
systems. The obtained results are then compared with many different soft computing
techniques, such as genetic algorithms and PSO, to demonstrate the effectiveness of the
proposed algorithm. Ref. [63] employed the Self-Adaptive Comprehensive Differential Evo-
lution (SACDE) algorithm for solving the Economic Load Dispatch (ELD) and Combined
Economic Emission Dispatch (CEED) problems to achieve optimal power usage in isolated
microgrids. This method has strategically superior effectiveness compared to the price
penalty factor technique. Ref. [64] presented an improved Lévy optimization algorithm
for energy management of a renewable solar/wind microgrid. The microgrid has multiple
diesel generators and is suitable for off-grid remote communities. The main objective is to
solve an economic emission scheduling problem with a price penalty factor to minimize
the energy cost and emission level. The enhanced heuristic Lévy optimization algorithm
is used to improve the searchability of the optimal solution compared to traditional arith-
metic algorithms. The Lévy optimization algorithm is used for the management of the
microgrid and compared with other heuristic optimization algorithms. Results show that
the Lévy algorithm achieves significant cost savings compared to other algorithms, such as
arithmetic algorithms and the crow search algorithm (CSA), hybrid improved grey wolf
optimizer (HIGWO), internal search algorithm (ISA), cuckoo search algorithm (CS), particle
swarm optimization (PSO) and ant colony optimization (ACO).

Some scholars have combined multiple heuristics to greatly improve the adaptability
and feasibility of the algorithms. The Hybrid Improved Grey Wolf Optimizer (HMGWO)
proposed in ref. [65] was used for economic dispatch and emission dispatch of the microgrid.
According to the wolf hunting strategy, the population-based sine cosine algorithm strategy
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is combined with the crow’s position update method to form a robust hybrid algorithm.
The proposed economic emission scheduling method was compared with the existing
price penalty factor method (PPF) and fractional programming (FP) method to solve the
joint economic emission scheduling problem on three dynamic test systems, and a better
optimization scheme between power generation cost and pollutant emission was found.
A new heuristic algorithm called the Arithmetic Optimization Algorithm (AOA) was
proposed in ref. [66], which exploited the distributional behavior of the main arithmetic
operators (multiplication, division, subtraction and addition) in mathematics in order to
perform the optimization process over a wide search space. The performance of the AOA
was examined through 29 benchmark functions and several real-world engineering design
problems, and the performance, convergence behavior and computational complexity
of the proposed AOA were analyzed in different scenarios. The AOA method is used
to find the best solution, which sometimes gets stuck in a local optimum during the
search process [67,68]. This leads to longer search times to find the optimal solution.
In addition, it requires a more comprehensive evaluation when the optimal solution is
distributed over a wider range of possibilities. In ref. [69], an augmented algorithm
combining the Lévy optimization algorithm and the AOA was proposed to improve the
efficiency of the AOA and successfully applied to different engineering problems. The
proposed method enhances the AOA’s exploration and exploitation capabilities and is used
to optimize the operation of a renewable energy microgrid with multiple diesel generators.
Ref. [70] proposed an intelligent energy management system (SEMS) based on artificial
intelligence-embedded FPGA, which used two multi-objective optimization algorithms,
Gorilla Army Optimization Algorithm (GTO) and Reptile Search Algorithm (RSA), to
solve the optimization problem. The proposed Smart Energy Management System (SEMS)
included two levels of control to achieve optimal management and operation of the isolated
microgrid. The first layer used FPGA as the central controller, and the second layer was
based on the optimized operation and management of the isolated microgrid to formulate a
coordinated operation strategy to optimize the coordinated use of backup power. Ref. [71]
developed a hybrid algorithm using the crow search algorithm and JAYA to conduct the
combined economic emission dispatch (CEED) for four power systems with and without
renewable energy source participation, respectively. Both the price penalty factor (PPF) and
fractional programming (FP) methods were used to solve the CEED of all four test systems,
and they were analyzed with the goal of minimizing the emission of harmful and toxic
gases into the atmosphere.

2.3. Energy Management Systems and Case Studies

New energy, as the main distributed power source to access the grid, has many defects,
such as high volatility and instability. The main role of energy management is to ensure
the economic operation of the system under the premise of safety and reliability of the
microgrid. Solving the problems of intermittency, voltage and frequency fluctuations of
distributed power sources is the key to realizing the coordinated management of electric
energy and maintaining a dynamic balance [72]. With the rapid development of the
microgrid, the EMS faces greater challenges [73]. Although the capacity of the microgrid is
not as high as that of the big grid, its EMS is equally complex and requires the integration
of several factors, such as variations in natural conditions, charge/discharge control logic,
load fluctuations, operating costs and pollution emission costs. [74]. Meanwhile, the SOC
of the battery is an important operating condition parameter, and exceeding the SOC
limit will affect the long-term operation of the microgrid. The EMS is needed to help
the microgrid integrate battery SOC and achieve desirable fuel economy and pollution
emission levels. Due to the stochastic nature of the environment, the efficient operation of
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the microgrid EMS depends to a large extent on the real-time performance of the control
algorithm [75-77].

The EMS objectives of the microgrid mainly include the following aspects: minimizing
the operating cost, generation cost, voltage deviation and pollutant emission and maximiz-
ing the comprehensive benefit. Jung et al. and Vaka et al. minimized the operating cost of
the microgrid by optimizing the energy management strategy from the perspective of con-
sidering the operating life and the capacity of the energy storage system [78,79]. Fouladfar
et al. proposed a multi-objective EMS based on demand response and dynamic pricing. In
addition to reducing the market clearing price and increasing the producer profit, it also
focuses on reducing the emission level of generating units, and the improvement effect is
good [80]. Li et al. developed a mathematical model of an islanded microgrid based on an
island with the NSGA-II algorithm, which fully considered the power balance constraints
of the microgrid and the operating power of storage batteries and diesel generators to
optimize the operation of the micropower [81]. Yong et al. established a model of the lowest
power generation cost and the least pollutant emission in the microgrid and balanced and
compromised the two goals by using different control strategies to optimize the objective
function in the grid-connected microgrid project [82].

Alanazi et al. used variable step size and fixed step size methods to search the optimal
value of the microgrid multi-objective function to achieve the minimum voltage deviation
and minimum carbon dioxide emissions [83]. Shuai et al. designed a reinforcement learning
strategy optimization model framework in order to accurately predict renewable energy
generation and realize online dispatch. The Monte Carlo method is used to make the
learning model obtain the best decision, so as to achieve the purpose of economic and
reliable operation of the microgrid [84]. Ali et al. proposed a novel reinforcement learning
approach that utilized a distributed approach to teach the medium to interact with a single
microgrid environment and used a global agent to search for a system cost-optimal solution
for the microgrid group. However, this type of strategy requires continuous reinforcement
learning upfront and a large amount of training data, which may become computationally
expensive or less efficient in finding the least-cost solution [85].

The operation optimization strategy of the microgrid is undergoing a remarkable
transformation, evolving from its previous single-objective, static-model framework into a
more complex and advanced multi-objective, collaborative, dynamic, self-adaptive opera-
tion mode. With the continuous advancement of technology and the increasing demand
on power systems, the future direction of development will require breaking through the
bottlenecks in efficiency and robustness of existing algorithms. In order to achieve this
goal, it is necessary to combine emerging technologies, such as artificial intelligence, big
data analysis and the Internet of Things (IoT), to build a comprehensive “source—network—
charge-storage” intelligent collaborative system. Such a system will be able to achieve
efficient allocation and optimal management of resources, so as to provide solid technical
support and guarantee the construction and development of new power systems.

3. Research Status of Microgrid Power Prediction

The power output of wind power and PV in microgrids is affected by natural condi-
tions and has large fluctuations and randomness, while the load in microgrids also has the
disadvantage of large fluctuations. These lead to large errors in the power prediction of
source-load—storage. Therefore, improving the accuracy of wind-PV power prediction
and load prediction in the microgrid, and combining with the energy storage system for
complementary power generation to optimize the economic and environmental benefits of
the microgrid is of great significance to its reliable and economic operation [86,87].
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3.1. Research Status of Wind and PV Generation Power Prediction Methods

The wind and PV power prediction methods are divided into physical methods and
statistical methods according to the different principles of prediction models. Statistical
methods are the most widely used and can be further divided into the time-series method,
(e.g., Auto Regressive Integrated Moving Average—ARIMA), machine learning, the deep
learning method and the artificial neural network method. Researchers have studied wind
power for a long time, and specialized wind power generation prediction systems have
been established in Denmark, Germany, the United Kingdom and China, as shown in
Table 1. Table 2 shows the classification of solar PV generation methods.

Table 1. Power prediction method of wind power generation.

. . Core Technol- Prediction Key Strengths/ Typical Input
Prediction Model ogy/Algorithm Horizon Focus Area Data Reference
Physical model- Physical accurac
Prediktor ing (NWP + Short-Medium ysice Y NWP, terrain data ~ Louka et al. [88]
. terrain effects
wake modeling)
WPPT AR models, tr§n§fer Short-Term .Cpmputa}tlongl. ngtorlcal POWEL Cutler et al. [89]
functions (Statistical) efficiency, simplicity simple meteo
Mesoscale modeling .
Zephry (Phys) + Kalman Short-Term Hybrid app I‘OE.iCh, NWE, SCADA Smith et al. [90]
. data assimilation data
filter (Stat)
CFD modeling . . .
Previento (Phys) + Statistical Short-Term H{gh spatial resolu- Dgtaﬂed NWP’ Giebel et al. [91]
tion, local effects site specifics
post-proc
Multi-scale meteo + Multi-scale Multi-sotrce
Sipreolico ML + Data Multi-scale integration, Lobo et al. [92]
e Lo meteo, power data
assimilation optimization
Fuzzy neural Handling Historical power,
AWPPS 4 Short-Term uncertainty, p ’ Wang et al. [93]
network (AI) . . meteo data
non-linearity
LocalPred- Phys mod? 1+ ML . Regional adaptation, NWP, regional
. correction + Multi-scale . Banakar et al. [94]
RegioPred error correction power, ML features
Cross-scale
Deep integration . .
WEPROG-MSEPS phys models + Short-Medium Robustness, hybrid H.1gh Tes NWE, Pope et al. [95]
- performance historical stats
Stat learning
Fuzzy neural § Pattern recognition, = Historical power, De Giorgi
AWPT network (AI) Short-Term adaptability meteo data et al. [96]
GH-FORECASTER Adaptive regression Short-Term Ada.ptablhty. t.o Real-time data Pirjan et al. [97]
(Stat/AI) changing conditions streams
ANEMOS Hybrid model Al esp. Extreme Extreme w.eather NWP, ensemble Kariniotakis
forecasting forecasts et al. [98]
Physical + statistical . General purpose, NWP, historical
WPP method Short-Medium flexibility data Zhang et al. [99]
WPFS B/S structure, Upto144h Practical deploy- NWP, operational Aggarwal
cross-platform (Medium) ment, long horizon constraints et al. [100]
NSF3100 BP-ANN (AI) + Short-Term Statistical learning, Historical power,

Refined techniques

data refinement

processed meteo

Wang et al. [101]
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Table 2. Power prediction classification of solar PV generation.
Classification Predictive Core Methodology/ Key Characteris- Reference
Angle Classification Algorithm Examples tics/Applications
Sky imagery, irradiance . .
Physical method modeling, PV Based on first principles, Roberts et al. [102]
. good for clear sky
cell physics
Statistical method ARIMA’ Reg{ressmn S.l mpl.er, relies on Shan et al. [103]
. (linear, nonlinear) historical patterns
Methodological - -
approach ) ANN (BP, RNN, LSTM,  Handles non-linearity,
Air/lDfﬁg&ll?;n GRU), SVM, Ensemble complex patterns, Wai et al. [104]
& Methods (RF, GBDT) big data
Combines strengths,
Hybrid method e, Phys + Stat, Phys + aims for robustness Voyant et al. [105]
Al, Al ensemble
and accuracy
Ultra short- . Grid balancing,
term prediction Minutes to 6 h real-time dispatch Wang et al. [106]
. Short'—te'rm 6hto72h Unit commitment, Yao et al. [107]
Forecasting prediction market bidding
horizon um- i i
Medium-term 3 days to 2 weeks Maintenance planning, Wang et al. [108]

prediction

resource assessment

Long-term prediction

Investment planning,

policy making Liu et al. [109]

Weeks to years

Forecast out-

put type

Point forecast

Van der Meer

Most common, simple etal. [110]

Single expected value

Probabilistic forecast

Quantifies uncertainty,

CDF il , L
, quantiles risk-aware decisions

Sanjari et al. [111]

Interval forecast

Prediction intervals
(e.g., Pls)

Provides range of

likely values Kodaira et al. [112]

The physical method of power prediction is a method that expresses the contribution of
various physical factors and wind-PV power through mathematical formulas. For example,
the Prediktor system (widely used in Spain, Ireland, etc.), and the LocalPred-RegioPred
tool (developed in Madrid, Spain) can predict wind power output.

Firstly, according to the wind speed, temperature, wind direction and pressure and
other meteorological data obtained by Numerical Weather Prediction (NWP), a calculation
method similar to the Wind Atlas Analysis and Application Program (WASP) is used
to convert meteorological data into wind speed and wind direction at the height of the
wind turbine hub, and then the corresponding output power is calculated according to the
corresponding curve [88]. It is difficult to speculate the detailed weather conditions around
the wind farm from the weather forecast, which makes the physical prediction method
difficult to implement and causes large errors. Another common method is the statistical
method, which runs calculations based on power and weather factors, finds the patterns
and then obtains the regression model. In addition, there is a hybrid of the physical and
statistical prediction methods. However, the physical method is not suitable for short-term
prediction because it has the disadvantage of a large amount of calculation and a slow
update speed [94].

The statistical method finds the functional relationship between weather factors and
wind power through mathematical methods. It mainly inputs the historical data of wind
power generation and its influencing factors, etc., and establishes the mapping model
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between the original data and the predicted data through the time series method, regression
analysis, Bayesian statistics, Markov chain, etc., so as to obtain more accurate power
prediction results [113]. Time series methods directly use historical data to establish black
box models. The commonly used sequence methods include the following. (1) The ARMA
prediction model, which uses the fitting of historical data to predict future data and is
generally used in stationary series. Ref. [114] compared several forecasting methods for
average hourly wind speed data using time-series analysis. (2) The wind power prediction
model based on spatial correlation. Because the wind speed and wind power of the wind
farm are not evenly distributed in space, but there is some correlation in space and time,
the geographic and weather characteristics of the wind farm, wind speed and wind power
can be predicted by modeling the spatial correlation at different known locations.

The common machine learning methods include the random forest algorithm, linear
regression, naive Bayes algorithm, K-means algorithm, etc. Ref. [115] proposed a hybrid
model for short-term prediction of wind and light consisting of variational modal decompo-
sition (VMD), the K-means clustering algorithm, and the long-short-term memory (LSTM)
network. The VMD was utilized to decompose the original wind power sequence into a
certain number of sub-layers with different frequencies, and the K-means was utilized to
decompose the data into approximate fluctuation layers according to the fluctuation level
to achieve the power prediction. In order to evaluate the fitting ability of the proposed
model, seven different models were compared on multiple scales in four wind turbine
families, including the back-propagation neural network method, the Elman neural net-
work method, the LSTM method, the VMD-BP method, the VMD-Elman method, the
VMD-LSTM method, and the VMD-K-means-LSTM method. In order to solve the problem
of inaccurate prediction due to the obvious fluctuation of wind power generation caused
by weather changes, ref. [116] proposed a prediction model using an improved time series
deep residual network, which combined the multilayer residual network and the tandem
residual learning method of DenseNet and had high prediction accuracy and parame-
ter efficiency. Ref. [117] proposed a combined forecasting method based on day-ahead
numerical weather prediction (NWP) positioning technology for ultra-short-term wind
power prediction (WPP). Firstly, the NWP information and time window were used to
approximately locate the time point with low prediction accuracy of rolling WPP, and then
a hybrid method combining the neural network and continuous method was proposed to
predict future wind power output. In [118], a model combining VMD, a Convolutional
Long Short-Term Memory network (ConvLSTM) and error analysis was used for short-term
wind power prediction. The VMD algorithm was used to decompose the wind power
signal into a set of different frequency components, and the convolution operation was
embedded into the LSTM network to obtain the preliminary prediction results. The LSTM
was used to model the error sequence trend of the preliminary prediction results. The
prediction error sequence was integrated with the preliminary results to obtain the final
prediction result. The results show that the proposed model has the highest prediction
performance for hard-to-capture wind power generation sequences. In terms of power
prediction, the machine learning method has a more obvious improvement in accuracy
compared with the traditional statistical method. The common machine learning single
model can complete the prediction of generation power well, but it requires a large amount
of data compared with the traditional statistical method [119-121].

In recent years, deep learning has become more and more accurate in dealing with
problems in various fields, and it also has relatively high accuracy in wind power prediction.
With the development of deep learning, LSTMs, Bi-LSTMs, gated recurrent units (GRUs),
artificial neural networks (ANNs) and other methods in deep learning algorithms have
also been introduced into renewable energy generation power prediction [108]. These
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methods effectively mine spatiotemporal correlations between outputs and inputs and
have advanced significantly for complex time series. However, in the process of model
training, setting too long a time-series length may affect its stability [122-125].

Ref. [126] proposed two wind power prediction models, the K-means-LSTM network
model for wind power spot prediction and a nonparametric kernel density estimation
(KDE) model with bandwidth optimization for wind power probability interval prediction
density estimation. The LSTM established correlations between the before and after data,
and the K-Means clustering method composed different clusters of wind power impact
factors to generate a new LSTM sub-prediction model. The bandwidth optimization of
the nonparametric KDE was achieved using the mean integral squared error criterion.
Ref. [127] introduced a deep learning approach to achieve a more accurate wind-solar
towers (WST) power output prediction model. In order to predict the output power of
the system, several machine learning models were evaluated based on quality metrics, a
set of features and regression models were built using this data. Further, the prediction
accuracy was improved by incorporating nonlinearity using second order polynomial
regression. In addition, the data was trained and tested using deep neural networks to
improve the performance of the power prediction. The fuzzy C-mean algorithm is often
used to optimize other machine learning algorithm models for power prediction and
the PSO is used to optimize the extreme learning machine. In view of the intermittency;,
randomness and fluctuation of PV power systems due to complex weather conditions,
ref. [128] proposed short-term forecasting using an LSTM, which was based on the time
scale of global horizontal irradiancy one hour in advance and one day in advance. In
order to improve the prediction accuracy of cloudy weather, the clear sky index was
introduced as input data in the LSTM model, and K-means was used to classify the weather
types into cloudy weather and mixed (partly cloudy) weather during data processing.
A neural network model was built to compare the accuracy of different methods. The
traditional statistical method in power prediction can output more accurate prediction
results to a certain extent, but it has a larger potential for error in power generation
prediction results for the influence of stronger volatility of weather and other factors [129].
Ref. [130] proposed a PV power generation prediction algorithm based on an LSTM neural
network. By combining statistical knowledge of historical solar irradiance data with
publicly available weather forecast types for the city, a comprehensive weather forecast was
created for the target PV plant location, enabling more reliable PV generation forecasts. The
K-means algorithm was used to categorize the historical irradiance data into dynamic-type
sky groups that change hourly during the same season. The performance limitations of
using fixed-type sky categories were alleviated by converting them into dynamic and
numerical irradiance predictions using historical irradiance data. The results showed that
the proposed integrated weather prediction embedded statistical features from historical
weather data, significantly improving accuracy. In addition, the superiority of the LSTM
neural network with the proposed features was verified by comparing machine learning,
including a recurrent neural network, generalized regression neural network, and extreme
learning machine.

Ref. [131] proposed a hybrid deep learning model combining a time-series decomposi-
tion algorithm and a GRU network. The time-series decomposition algorithm consists of
two parts: (1) the complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) and (2) Wavelet Packet Decomposition (WPD). The Normalized Wind Speed
Time Series (WSTS) was processed by CEEMDAN to obtain pure fixed frequency compo-
nents and residual signals. The WPD algorithm performed second-order decomposition
on the first component of the original WSTS containing complex high-frequency signals.
Finally, a GRU network was established for all relevant components of the signal, and
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the predicted wind speed was obtained by stacking the predictions of each component.
An efficient deep learning-based wind power prediction model was proposed to address
the uncertainty of wind power generation that makes it difficult to integrate into energy
systems [132]. The proposed model was divided into two stages. In the first stage, the past
wind power signal was decomposed using Wavelet Packet Transform (WPT). In addition
to disaggregated signals and lagged wind power, multiple external inputs such as calendar
variables and NWP were used as inputs to forecast wind power. In the second stage, a new
prediction model, the Efficient Deep Convolutional Neural Network (EDCNN), was used
to predict wind power. The demand-side management scheme was developed based on the
predicted wind power, day-ahead demand and price, and the performance of the proposed
forecasting model was evaluated on the big data of wind farms in the U.S. Figure 6 shows
the structures of the GRU and BiGRU networks.
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Figure 6. Structures of the GRU and BiGRU networks [132].

The deep learning model combining a nonlinear auto-regressive neural network, a
convolutional neural network, and an LSTM recurrent network prediction was used to
further improve the prediction accuracy [133-135]. Figure 7 shows the architecture of the
GRU network for PV power forecasting.
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Figure 7. Architecture of the GRU network for PV power forecasting [134].

The artificial neural network approach combines artificial intelligence and neural
network approaches for wind power prediction [136]. For the uncertainty and intermittency
of wind power, a short-term wind power prediction model based on a Small-World BP
Neural Network (SWBP) was constructed [137]. The input features of the SWBP were
selected by the improved mutual information method. The selection criterion establishes
the relationship between many input and output variables associated with wind power
prediction by eliminating redundancy. Compared with the BP neural network and radial
basis function neural network algorithm, this method effectively improves the prediction
accuracy. Ref. [138] proposed a combined wind power prediction method based on Artificial
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Neural Networks (ANNs) and Support Vector Regression (SVR) algorithms. The wind
power combination forecasting model was formed by the weighted average of each single
forecasting algorithm, which improved the prediction accuracy of the model. However, the
combined prediction algorithm based on the weighted average did not reflect the overall
weighting effect of the prediction errors of individual samples in the sample set. Ref. [139]
proposed a prediction method based on a sequential forward feature selection algorithm
for wind—solar hybrid power generation, which combined two different objective functions
with an artificial neural network method. For the diversity and dynamics of training
samples, caused by the intermittency and volatility of wind and PV power, a variety of
hybrid prediction models were proposed by using data mining methods composed of
grey relational analysis, K-means clustering and a bagging neural network (NN) to solve
complex control problems in wind and PV power systems and optimize the control of the
microgrid [140-143].

According to the wind power ramp events in the economic operation and risk man-
agement of smart grids, ref. [144] proposed a hybrid prediction model based on a semi-
supervised Generative Adversarial Network (GAN) to solve the problem of short-term
wind power output and ramp events prediction. In the proposed model, the original time
series of wind energy data was decomposed into several sub-sequences characterized by
intrinsic mode functions (IMFs) with different frequencies, and the data was expanded
using semi-supervised regression with label learning to extract nonlinear and dynamic
behaviors from each IME. The unlabeled virtual samples were obtained using the GAN
to generate a model for capturing the data distribution characteristics of wind power
outputs, while the semi-supervised regression layer was used to redesign the discrimi-
nant model to perform the point prediction of wind power. After two GAN models, a
min-max game was formed to improve the quality of sample generation and reduce the
prediction error. Ref. [145] quantified the prediction uncertainty caused by the intermittent
and fluctuating characteristics of wind energy through wind power interval prediction.
For the two most critical objectives in interval prediction, effective coverage and short
interval length, a new interval prediction method was proposed, which combined the Con-
formal Quartile Regression algorithm with Time Convolution Networks (TCNs) without
using any distributional assumptions. Compared to conventional RNN-based methods,
the adopted TCN architecture avoided iterative propagation and gradient vanishing and
could process very long sequences in a parallel fashion. According to the instability and
volatility of load sequences, ref. [146] proposed a dynamic decomposition-reconstruction
integration method by combining reconstruction and secondary decomposition techniques.
The decomposition-integrated prediction framework was improved by introducing a dy-
namic classification and filtering-based decomposition reconstruction process and given
criteria for determining the components that needed to be decomposed again. The model
leveraged decomposition, complexity analysis, reconstruction, secondary decomposition
and hyperparameter-optimized neural networks, demonstrating superiority in prediction
accuracy, stability, correlation, overall performance and statistical tests. The short-term load
prediction results provided effective support for the safe operation of the electric power
system and rational scheduling.

In addition, extreme Gradient Boosting [147], Light Gradient Boosting Machine [148],
Adaptive Boosting [149] and other tree integration algorithms, as representatives of artificial
intelligence technology in wind and PV power prediction, have achieved good application
results. The wind and PV power prediction technology has been widely studied throughout
the world. The artificial neural network method, as an intelligent feature extraction method,
uses a self-learning artificial intelligence method to help the management of mathematical
models, and its research has practical application prospects [150-152].
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3.2. Research Status of Microgrid Load Forecasting Methods

According to the scheduling needs of the power system dispatching department, the
microgrid load forecasting is divided into short-term and medium-long-term, according to
the forecasting time scale. According to the predictive modeling method, it is divided into
a traditional statistical model and an Al-driven model.

Short-term load forecasting methods for microgrids mainly include traditional sta-
tistical methods and machine learning methods. Traditional statistical methods mainly
include the Autoregressive Integrated Moving Average (ARIMA) model, Suppot Vector
Machine (SVM), etc. [153]. These kinds of methods have simple principles and modeling
and consider the time-series relationship of data but have limited prediction ability for
nonlinear load data with relatively high complexity. Machine learning algorithms can effec-
tively deal with nonlinear problems. Traditional machine learning methods mainly include
Artificial Neural Network (ANN), Support Vector Regression (SVR) [154], random forest
(RF), wavelet neural network [155], deep residual network [156], etc., but these methods
are based on strongly correlated input. These methods can better reflect the nonlinear
relationship between the data, but their common problem is the lack of consideration of
the time correlation of time series data. Ref. [157] proposed a medium-short-term load
forecasting, using a hybrid model of the Multilayer Feedforward Neural Network (MFFNN)
and the Grasshopper Optimization Algorithm (GOA), which can be used to predict the
load at different times and on different days of the month. The MFFNN processed the
input layer and output layer, weather factors such as temperature were used as the input
of MFENN and, finally, the appropriate number of hidden layers was selected. The main
steps included feeding data into the network, training the model and finally implementing
the prediction process. The results show that the temperature has a clear influence on
the predicted load in the proposed model. In addition, there are differences between the
maximum and minimum loads in winter and summer. A regression model was introduced
to determine the relationship between the dependent variable (load) and the indepen-
dent variables affecting the load (such as temperature). Combined with load forecasting,
ref. [158] developed a new power flow management algorithm for islanding power systems,
which can simultaneously achieve more stable conventional unit operation and reduce
the demand peak values. The forecasting module was based on the feedforward artificial
neural network and can forecast short-time day-ahead load. Then, the predicted load curve
of the previous day is used as the input of the pattern recognition algorithm to classify it
according to the shape (pattern) of its load curve. Subsequently, if the classification result is
a clear night peak pattern, the hourly trajectory of the diesel generator operation can be
estimated, and the charging set point of the battery energy storage system can be derived.
The SVM is a supervised learning method that always finds the global optimal solution
and performs well on smaller datasets. However, when the data set becomes larger, it is
prone to overfitting problems. Although the SVM can solve nonlinear problems well, the
convergence speed of the SVM is slow due to the increase in computational complexity,
and the relaxation variables and kernel parameters need to be set manually [159]. Ref. [160]
proposed a multi-task learning model based on the Least Square Support Vector Machine
(LSSVM), which realized the simultaneous output of electricity, heat, cold and gas load
forecasting tasks.

The continuous development of deep learning has brought more choices for microgrid
load forecasting. Different types of deep learning models are applied in the field of load
forecasting [161,162]. It mainly includes convolutional neural networks (CNNs), recurrent
neural networks (RNNs), LSTMs [163], deep belief networks (DBNSs), etc.

Ref. [164] used CNNs to automatically extract features from input data and consider
the correlation between different times of the day and different days of the week, which
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achieved good results compared to traditional machine learning methods, but the method
only performs well on small data, and when the data fluctuates greatly, a single CNN
model is unable to make good predictions. In ref. [165], the Multiple Time Series (MTS)
was generated by combining macro and micro information of continuous time series and
discrete time series to improve the performance of short-term load forecasting. The MTS
included four information sequences: short-term, periodic, long-short-term, and trans-
long-short-term. The MTS was used to build a short-term load forecasting system using a
recurrent neural network (RNN) model that could learn sequential information between
continuous and discrete sequences. Ref. [166] proposed a variant of the RNN based on the
LSTM, which effectively solved the gradient explosion defect of recurrent neural networks
by adding forgetting units. As an optimization of the LSTM network, GRU simplifies
the internal unit structure of the LSTM, achieves similar prediction accuracy as the LSTM
and has the advantages of fewer training parameters and high speed. The Bi-directional
Long Short-Term Memory (Bi-LSTM) network can extract time series features from both
the front and back directions and has better representation of continuous time series, and
the multiplexing of weight parameters makes it less demanding on data [167]. The above
network model can fully reflect the long-term historical process in the input time series
data, but it cannot extract the effective information between the discontinuous data, so it
cannot deeply explore the potential relationship between the data. Ref. [168] constructed
an iterative multi-step load forecasting method by incorporating an extreme learning
machine and dynamic neural network to mine features. The features of the two were
learned and fused to output the predicted value for the current time step. Subsequently, the
prediction was iteratively made into the future based on the predicted value and historical
data. Ref. [169] proposed a hybrid attention LSTM network based on an encoder—decoder
framework to better capture dynamic temporal features in an interpretable form.

In ref. [170], the DBN based on the restricted Boltzmann machine was used to extract
the features of data, and multi-task learning was combined to realize the comprehensive
energy load forecasting of electricity, heat and gas. Ref. [171] proposed a new hybrid
ensemble deep learning method for low-voltage load side forecasting. In order to improve
the regression ability of the DBN, a series of integrated learning methods, such as bagging
and boosting variants, was introduced. In addition, the different transformation technique
was used to ensure the stationarity of the load time series of the bagging and boosting
methods. Based on the idea of integrated learning, a new hybrid integration algorithm
was proposed by combining multiple independent integration methods. Considering the
diversity of various ensemble algorithms, an effective k-nearest neighbor classification
method was used to adaptively determine the weight of the sub-models. On this basis,
using the inherent re-sample idea of bagging and boosting, a probabilistic prediction
method based on hybrid ensemble deep learning (HEDL) was proposed. The above
comprehensive energy multivariate load forecasting literature adopts different methods for
forecasting, and most of them also consider the complex dynamic characteristics between
energy sources, but do not fully mine the important information of more dimensions in
the data.

With the diversification of training data types and the improvement of load forecasting
accuracy requirements of the power grid, combined forecasting models have emerged to
overcome the shortcomings of a single model in load forecasting accuracy [172]. Ref. [173]
explored using a gated convolutional network and GRU network to solve a day-ahead
multi-step load forecasting problem. By introducing a linear gated unit, the defect of
convolutional neural networks having difficulty addressing time-series prediction was
remedied. The recursive strategy was used for prediction, which greatly depended on the
prediction results of the previous order. In the process of transmission, it is easy to cause
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the superposition of the prediction errors of the previous order, which leads to the decline
in the prediction accuracy of the model. Ref. [174] proposed a hybrid network model by
combining the attention mechanism. Compared with the unfused attention model, the
proposed method is more accurate for real-time prediction and shows better adaptability
in peak consumption situations. Ref. [175] adopted a Seq2Seq method in Encoder—Decoder
architecture to enhance the load timing feature mining capability, and the CNN was added
to extract the coupling feature information in the integrated energy system, which further
helped Seq2Seq to achieve the accurate prediction of system load. Ref. [176] used the
Copula method to analyze the nonlinear correlation between loads, screened the larger
correlation factor features as the input features of the prediction model and constructed
a bidirectional long- and short-term memory network to predict the electricity, heat and
cold loads. Ref. [177] constructed three load CGRU-feature mining networks, established
high-dimensional abstract features and cooperated with enhanced multi-task learning with
homoskedastic uncertainty to output short-term prediction results for electricity, heat and
cold loads. Ref. [178] proposed a load forecasting method based on nonlinear relationship
extraction by training two convolutional neural networks individually to extract nonlinear
load features and nonlinear load—temperature features, respectively, and the extracted
features were fed to the SVR model for one hour ahead of load forecasting. Experimental
results show that the method exhibits excellent prediction performance compared to LSTM,
CNN and SVR methods.

With the continuous development of data decomposition algorithms, in order to reduce
the influence of volatility and nonlinearity in the load sequence and further improve the
accuracy of short-term load forecasting, a combined forecasting method that combines data
decomposition algorithms with the existing forecasting models has been widely used in
the field of load forecasting. The classical signal decomposition algorithms mainly include
Wavelet Decomposition (WD), Empirical Mode Decomposition (EMD) and Variational
Mode Decomposition (VMD). These combined prediction methods firstly decompose
the original load sequence into multiple components with different characteristics by
means of data decomposition algorithms and then build a prediction model for each
component and reconstruct the prediction results of each component to obtain the final
prediction value. Ref. [179] proposed a probabilistic load forecasting model based on
wavelet transform. Before using quantile regression forest and random forest to establish
a probabilistic forecasting model, the wavelet decomposition was used to preprocess
a load time series, which effectively improved the forecasting accuracy. However, the
decomposition effect of the WD is related to the selection of the wavelet basis and the
amount of decomposition, lacking adaptability. The EMD method absorbs the advantage
of multi-resolution of the wavelet transform and, at the same time, overcomes the difficulty
of selecting the wavelet basis and determining the decomposition scale in the wavelet
transform. So, it is more suitable for nonlinear and nonsmooth signal analysis and is
an adaptive signal decomposition method. A hybrid method for STLF in the microgrid
was proposed, which integrated the EMD, the PSO and an adaptive network based the
fuzzy inference system [180]. Ref. [181] proposed an STLF method combining the EMD,
the Bi-LSTM and the attentional mechanism, where the load sequence was decomposed
into several Intrinsic Mode Functions (IMFs) by EMD, and, subsequently, an attentional
mechanism-based Bi-LSTM neural network was applied to each of the extracted IMFs in
order to predict the variation trends of these IMFs. However, the EMD needed to solve the
problems of modal aliasing and endpoint effects. Ref. [182] used the VMD algorithm to
decompose the original data and eliminate the noise present in the data, which helped the
LSTM improve the accuracy of the STLE. Compared with the WD and EMD algorithms, the
VMD is more adaptive and has the ability to overcome modal aliasing, so it has been widely
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used in the field of load forecasting. However, the VMD method lacks evaluation criteria
to guide the parameter setting, and the parameters are often given empirically, which leads
to unsatisfactory decomposition results.

Power prediction is a necessary precondition to ensure the balance of power supply
and demand in the microgrid. Only with effective generation of power prediction and
system consumption can load prediction be used as the condition of power dispatching
at the same time. High-precision power prediction can ensure the correctness of power
dispatch, reduce supply deviation and improve the operational stability and safety of
the power system. In the prediction time, the current new energy power prediction main
research focuses on ultra-short-term (same day) and short-term (next day) power prediction.
And less research and results are oriented towards the future 3-10 days duration prediction.
If the future is predicted for a longer time, the time resolution of the weather forecast is
lower, the weather forecast model may have drift and the accuracy of the weather forecast
will decrease day by day. Due to this constraint, when the traditional method is facing the
future 3-10 days, the power prediction effect will be significantly reduced compared with
the ultra-short-term and short-term. Therefore, medium-term power prediction is one of the
urgent problems to be solved in microgrids, and its research has far-reaching significance
and practical engineering value. Through the close integration of Al technology and the
IoT, microgrid power prediction is shifting from a “passive response” to an “active sensing—
decision-making” mode, which has become a key technology pivot for the intelligence of
new power systems.

4. Research Status of Virtual Synchronous Active Support Control Technology
4.1. VSG Fundamentals and Control Strategies

When the power electronic interface circuit adopts droop control or other control
methods, it has the characteristics of fast response and low inertia. With the emergence
of a large number of distributed power supplies connected to the power system through
the power electronic interface circuit, and the rotating reserve capacity in the system is
reduced, which reduces the operation stability of the power system. In order to solve
this problem, the inverter has the external characteristics of a synchronous generator by
adopting the appropriate algorithm, which is the virtual synchronous control of the inverter.
Virtual synchronous generator (VSG) technology facilitates the transition of renewable
energy generation from passive regulation to active grid support. It not only enables
inertia support, primary frequency regulation and active voltage regulation capabilities but
also addresses challenges in power systems with high renewable penetration and power
electronics (“double-high” systems).

VSG includes current mode and voltage mode. In the development of VSG, the early
control scheme was current type. The concept of Static Synchronous Generator (55C) was
first proposed by the IEEE Task Force in 1997 [183]. On this basis, Johan Morren, Sjoerd W.
H and other scholars from Delft University of Technology in the Netherlands proposed the
idea of using a distributed power supply to participate in system voltage and frequency
regulation and creatively proposed the principle of simulating synchronous generator
primary frequency modulation characteristics and moment of inertia in 2005 [184], when,
VSG’s research was still in early stages. In 2007, Beck H. P of the Technical University
of Lausktal in Germany took the lead in proposing the VISMA (Virtual Synchronous
Machine) scheme, which enabled the inverter to have the same moment of inertia and
damping characteristics as the synchronous generator [185]. The European VSYNC project
was jointly launched by several scientific research institutions such as Devteco University
of Technology and the Netherlands Energy Research Center, focusing on improving the
overall stability of microgrid systems through inverter control and energy storage devices,
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and the concept of VSG was first proposed in the same year [186]. The above schemes are
current-type VSG controls, and the whole system can be equivalent to the current source.
Although these schemes can improve the dynamic performance of the system by simulating
the characteristics of synchronous generators to a certain extent, due to the limitations of
the current source itself, they cannot be applied to the off-grid mode of microgrids.

In order to solve the shortcomings of current-type VSG control and ensure that reli-
able voltage and frequency can be provided in off-grid mode, voltage-type VSG control
has received extensive attention. In 2009, Professor Qingchang Zhong of Loughborough
University proposed the concept of voltage VSG control technology with Synchronverter.
By simulating the second-order electromagnetic model of synchronous generators, the
distributed power script was equivalent to the electrical and mechanical characteristics,
as well as the frequency and voltage regulation characteristics of SG [187]. In 2012, Sal-
vatore D’Arco of the Norwegian Academy of Industrial Sciences and Jon Are Suul of the
Norwegian University of Science and Technology proposed the VSM (Virtual Synchronous
Machine) scheme. By adding an output voltage control loop (voltage and current double
closed-loop control) to the power control loop in the VSG control, the output performance
of the system was improved, and the design of various parameters of the control link was
analyzed [188]. Since the European VSYNC Engineering Center first proposed virtual
synchronous control technology in 2008, relevant technical theories have been continuously
supplemented and developed [189,190].

4.2. Advanced VSG Inverter Control Strategies

The inverter control strategy based on virtual synchronous generator (VSG) tech-
nology can fully simulate the operating characteristics of a synchronous generator and
provide inertial damping support for the system in the dynamic process while realizing
the functions of primary frequency modulation and primary voltage regulation. Virtual
synchronous generator (VSG) control is different from traditional microgrid inverter control.
By simulating the mechanical and electrical characteristics of a synchronous generator, VSG
can not only achieve a droop effect similar to droop control but also have further inertia
and damping characteristics, so that the transient process of the microgrid inverter becomes
slow, providing voltage and frequency support for the system. Finally, the anti-interference
ability of the system is improved [191]. The circuit structure of the inverter based on VSG
technology is shown in Figure 8.
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Figure 8. Circuit structure of the inverter based on VSG technology [191].
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The traditional virtual synchronous generator adopts fixed parameters, which can-
not reflect the advantages of flexible parameter regulation. Some scholars proposed a
VSG control method with adaptive parameter adjustment to reduce the duration of the
transient process. When the system is disturbed, according to the rate of change of the
rotor angular speed or the difference between the angular speed and the rated value of
the virtual synchronous generator, the moment of inertia is changed adaptively. For large
disturbances, greater inertia is used, and for small disturbances, less inertia is used, so that
the system quickly enters a stable state. The concept of inertial midpoint was proposed, and
according to this concept, the parameter design of the inverter in the multistage parallel
system of virtual synchronous generators was guided, so as to optimize the frequency
response of the entire isolated network system and improve the operation stability of
the isolated network system [192]. An adaptive inertia control method was proposed to
enable virtual synchronous generators to have different amounts of inertia under different
working conditions, so as to improve the frequency regulation process of microgrids in
reference [193]. The inertial response of the PMSM wind turbine control system and hy-
brid energy storage system controlled by a virtual synchronous generator were analyzed
respectively, which expanded the application prospect of virtual synchronous generator
control [194]. Ref. [195] derived the closed-loop characteristic equation of a VSG power
loop, establishing relationships between dynamic performance and designing parameters
(inertia coefficient and damping coefficient). Ref. [196] designed and proposed a rotational
inertia adaptive control strategy based on VSG control and studied the dynamic response
of VSG through parameters such as peak time and overshoot. By studying the change law
of angular frequency, the adaptive adjustment scheme of moment of inertia is designed.
Through the real-time change of moment of inertia, the control effect is obviously improved,
the overshoot of the system is reduced and the adjustment time is shortened.

The real-time measured network frequency was used as the frequency reference value
of VSG, and the constant power control of VSG was realized under a grid-connected steady
state. A virtual synchronous generator control method for suppressing harmonic current
and power frequency fault inrush current under non-ideal large power grid conditions was
proposed, and the proposed method was verified [197]. Ref. [198] proposed an enhanced
VSG control method to address the problem of active power oscillation and improper
distribution of transient active power in VSG control. Based on state space analysis, it
achieved oscillation damping and proper transient active power sharing by adjusting
virtual stator reactance. Ref. [199] proposed a mode-switching control method that would
change the VSG mode when the power grid failed. However, differential detection was
used, which can lead to a lot of noise and additional system instability. At the same time,
with the mode switching control method, if the VSG does not have an equilibrium point, it
may oscillate at the boundary. Ref. [200] proposed an improved virtual synchro control
method based on Lyapunov energy function for direct power control under the condition of
power grid voltage imbalance to solve the power fluctuation problem when the power grid
voltage was unbalanced. Ref. [201] explored the influence and configuration of inertia and
damping on energy storage and used linear optimization control to adjust power frequency
fluctuations, so as to enable the microgrid system to have secondary frequency modulation
capability and optimize power output. The proposed control scheme for the cascaded
H-bridge-based BESS in grid-connected mode is shown in Figure 9.

Ref. [202] studied the application of VSG technology in different scenarios, such as
wind power, photovoltaic and energy storage, and each scenario had grid-connected and
networking operating conditions. For VSGs with dual-mode operation, it is necessary to
ensure that the charged state SOC of the energy storage unit is within the safe range during
both charging and discharging. Once the SOC of the energy storage unit exceeds the safety
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range due to the power fluctuation of the distributed power supply on the DC side of the
VSG or the participation of the VSG in the primary frequency modulation, it is necessary to
stop discharging or charging. Ref. [203] clarified the energy conversion method of inertia
and energy storage and used equivalent calculation to configure energy storage but ignored
the constraint of state of charge (SOC) of energy storage. When the battery has a low SOC,
its output power changes greatly, and it cannot meet the adjustment requirements of the
microgrid. The overall control diagram of the VSG is shown in Figure 10.
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Figure 9. Proposed control scheme for the cascaded H-bridge-based BESS in grid-connected
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Figure 10. Overall control diagram of VSG [203].

The parallel operation of multiple VSGs is one of the hot topics in the research of
high-proportion renewable energy power systems, and the core challenge is to solve the
problems of stability reduction, model accuracy deficiency and multi-machine cooperative
control [204]. In order to solve the stability problem caused by the high proportion of
renewable energy connected to the power system, Wang X et al. studied the parallel system
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of a grid-constructing multi-machine VSG inverter and grid-following PQ inverter. By
establishing Thevenin and Norton equivalent impedance models, and based on global
admittance stability criteria, the influence of control parameters and line impedance on
system stability was analyzed. They found parallel coupling could improve PQ inverter
stability but potentially destabilize VSG inverters. The study provided a new theoretical
support for the stability analysis of multi-inverter parallel systems [205]. Long proposed
a power-frequency admittance model considering power coupling to solve the problem
of insufficient model accuracy caused by power coupling in multi-VSG grid-connected
systems. The model modified the second admittance by considering the power coupling,
which significantly improved the accuracy of the model under the condition of high line
impedance in the medium- and low-voltage microgrid. In addition, the conductivity matrix
model of the multi-VSG system was extended to analyze the effects of line impedance
and reactive power loop coefficients on system stability. Simulation results showed the
proposed model’s error was significantly lower than traditional models under strong power
coupling [206]. Lin et al. proposed a multi-VSG mutual damping control strategy based on
a model predictive control and consistency algorithm. The system power oscillation was
effectively suppressed by distributed calculation of the power increment and information
exchange. This study not only proved the stability of the controller through the Lyapunov
theory but also introduced the gain adjustment function to improve the robustness in
non-ideal communication environments. Simulations demonstrated significant advantages
in dynamic response optimization and economic dispatch [207].

4.3. VSG Stability Mechanisms

The stability problem is one of the basic problems in power system analysis, which
mainly includes power angle stability, voltage stability and frequency stability. The proposal
and application of VSG technology is to solve the problem that large-scale new energy
enters the power grid through power electronic equipment and affects the stability of the
power grid. According to the magnitude of the disturbance, it can be divided into static
stability and transient stability.

In terms of static stability, ref. [208] studied the stability of DC microgrids under the
high permeability of high-voltage power electronic convertors and proposed three active
damping solutions. The stability of the system under different compensation schemes is
evaluated by small signal analysis. In addition, the reconstructed source impedance and
modified voltage tracking dynamic performance of the voltage source inverter interface
under different compensation schemes are derived. The dynamic coupling between ac-
tive damping and voltage tracking controllers is evaluated by sensitivity and robustness
analysis. The problem of secondary control of voltage and frequency in isolated island
microgrids is transformed into the problem of first-order system tracking synchronization
using feedback linearization technology [209]. The stability of VSGs was proved by us-
ing the eigenvalue method of small signal modeling, and key parameters such as inertia
coefficient, excitation coefficient, sag coefficient and virtual impedance were analyzed
by eigenvalue and sensitivity [210]. Ref. [211] used the impedance method to establish
impedance models of the VSG, power grid and load, respectively, and gave the Nyquist
stability criterion. The influence of each impedance on system stability was reflected from
the separate frequency response of load and source impedance, and the cause of instability
of a digitally controlled voltage source inverter operating as a microgrid was explained
through experiments. The state space method was used to analyze the stability of small
signals in power electronic systems. After linearizing the study variables at the operating
point, the state space equation was formed, and the stability of the system was judged by
the eigenvalue of the state matrix. Compared with the impedance method, the state—space
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method simplifies the system model by linearizing the system equation and can study
the degree of influence of different parameters of the system on system stability and the
interaction between different parts of the system [212]. Ref. [213] modeled each dynamic
element of the VSG to form a state—space model, and then the eigenvalue and singular
value decomposition (SVD) analysis were used to evaluate the impact of the network model
and virtual impedance on the dynamics of the VSG.

Ref. [214] focused on the small-signal modeling and parameter design of the VSG
power loop, pointing out that in order to avoid serious distortion of VSG output voltage,
the bandwidth of the power loop should be much less than twice the bandwidth of the
line frequency. On this basis, the linear frequency average small-signal model of the VSG
was derived, which was used for system analysis and parameter design. The coupling
effect between active loop and reactive loop was analyzed from the point of view of system
stability. Ref. [215] pointed out that when dynamic changes of inverters and circuits are
considered, system stability is constrained by virtual inertia and damping parameters.
Ref. [216] studied a VSG implementation based on a voltage source converter (VSC), in-
cluding a virtual impedance and an outer loop frequency droop controller. The linearized
small-signal model, including the converter and its network-side filter, the control system
and a network-side equivalent circuit, was established and verified by time-domain simu-
lation of the nonlinear system model. However, there are 19 state variables in this model,
and it is difficult to extend it to parallel or even multi-machine models because of too many
variables considered. A full analytical model of the VSG’s small-signal output impedance
in the dq coordinate system was established, considering the dynamics of sag control and
virtual inertia [217,218]. The small-signal models of power level, external power control
loop and internal voltage and current controller were derived. The full analytical model’s
accuracy was then verified using SABER simulation measurements. Based on the gener-
alized Nyquist criterion (GNC), the impedance model was used to analyze the stability
of a VSG in grid-connected mode, and the information required for system stability was
analyzed. However, this method can only be applied to systems with access to stable AC
points, otherwise the operating points will no longer be constant. Ref. [219] proposed an
additional damping strategy to suppress power oscillations. After analyzing the relation-
ship between the output power and angular acceleration, an acceleration control damping
strategy with disturbance compensation was designed. The block diagram of small-signal
model for a paralleled VSG system is shown in Figure 11a. The stability of the method
was studied by small-signal analysis. A small-signal model of an inverter based on sag
control and VSG control was established, and the dynamic response of time was compared.
An adaptive time constant control strategy based on improved sag control was proposed,
which improved the response characteristics of output frequency and active power when
the power command changes in grid-connected mode and can provide sufficient inertia
characteristics [220]. Ref. [221] studied the synchronization stability of virtual synchronous
generators under power grid faults. Qualitative analysis was carried out based on a lin-
earization model, and quantitative analysis was combined with a nonlinear model to reveal
the internal mechanism of a low-pass filter to improve synchronization stability in a reactive
power control loop. Figure 11b shows the block diagram for enhancing VSG transient
stability with a low-pass filter. Ref. [222] proposed a hybrid harmonic suppression scheme
consisting of a local voltage harmonic control loop and an adaptive grid current control
loop, aiming at the problem that local nonlinear load and network distortion will affect the
power quality of virtual synchronous generators. Small-signal modeling is used to study
the stability of the system and its robustness to parametric perturbations. Refs. [223,224]
provided the small-signal models of grid-connected mode and island mode and analyzed
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the stability of the system by analyzing the eigenvalues of the small-signal models and
their parameter sensitivity.
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Figure 11. Block diagram of small-signal model for paralleled VSG system to enhance the VSG
transient stability with low-pass filter (a) Block diagram of small-signal model (b) Configuration of a
three-phase grid-connected VSG [219,221].

In terms of transient stability, ref. [225] used the phase portrait method to conduct an
in-depth analysis of the transient stability of power synchronous controlled voltage source
converters. The results showed that, following a transient disturbance, synchronization
with the grid can be maintained as long as an equilibrium point exists. The critical clearance
angle of a power synchronous control voltage source converter, that is, the power angle of
unstable equilibrium point after fault, is identified when there is no equilibrium point in the
power network fault. Ref. [226] proposed a method to improve the transient stability of the
power grid of multiple virtual synchronous generators (VSGs) by controlling the oscillation
of the electromagnet relative to the inertia center frequency of the power grid in the case of
a short circuit. The proposed method can prevent the increase of the relative irreversible
distance angle of the multi-virtual synchronous generator, which was the main factor
preventing the multi-virtual synchronous generator from reaching the instability point, and
its stability was verified by the Lyapunov function. The PSO algorithm was introduced to
optimize and adjust the VSG unit parameters, and a scheme of alternating the moment of
inertia value was applied to the dynamic voltage control system of a microgrid to rapidly
suppress oscillations and improve transient stability after large disturbances [227]. In this
scheme, the moment of inertia of the VSG is switched by the angular frequency of the VSG
relative to the equilibrium point and its rate of change. Ref. [228] studied the transient rotor
angle stability of parallel SG-VSG systems through comparative analysis. It showed that
differences between parallel units affect transient stability, particularly during faults. A
control method to improve the transient stability of shunt SG-VSG systems was proposed.
On this basis, the nonlinear model of isolated island microgrids was established by using
the Lyapunov method, and the attractive domain of parallel systems was quantified.

Ref. [229] designed a simple energy function to study the transient stability of VSGs
and then proposed a Bang-Bang control strategy using the power angle relationship to
improve the transient stability, but it is difficult to implement. Ref. [230] studied the
transient stability of grid-connected voltage source converters under large signal interfer-
ence. The dynamic performance and transient stability of four typical control schemes—
power synchronization control, basic droop control, low-pass filter droop control and VSG
control—were compared. The results show that transient stability and basic droop control
can maintain stable operation as long as the equilibrium point exists, because they have a
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non-inertial transient response. However, the low-pass filter droop control and the virtual
synchronous generator control are unstable even in the presence of an equilibrium point
due to the lack of damping in their inertial transient responses. Through a phase portrait,
the stability mechanism was clearly explained, and the quantitative effects of controller
gain and virtual inertia were analyzed. The system stability of a static synchronous compen-
sator (STATCOM) using a virtual synchronous generator was deeply analyzed [231]. The
synchronizer and vector control performance were compared using different mathematical
tools, such as eigenvalue analysis, numerical simulation and the Lyapunov theory. Finally,
the feasibility of using synchronizer control strategy was verified on an IEEE 39-bus system.
The results show that the synchronizer brings the advantage of artificially increasing system
inertia, which is an important problem in modern power systems. The virtual synchronous
generator was essentially a nonlinear system, and nonlinear control design was needed to
maintain the stable operation of the synchronous generator when the power grid failed.
Ref. [232] proposed an adaptive method to solve this problem, which can realize the full
power injection of the power grid under unbalanced conditions, and analyzed the stability
of the system through the Lyapunov function. In this method, the supplementary internal
nonlinear controller was used as the external subsystem, and the power angle and inverter
voltage were adjusted step by step using the on-line reverse updating law. The transient
angular stability of VSGs was studied by the Lyapunov direct method. The influence of re-
active control loop on transient angular stability was analyzed, and then the voltage change
was considered using the Lyapunov direct method. The effects of different parameters on
the transient angular stability were studied. Finally, a control method was proposed to
improve the stability margin of VSGs by adjusting the reference active power.

Due to its excellent characteristics and the gradual maturity of distributed power
technology, VSG technology will become the core technology of power structure transfor-
mation and smart microgrid construction in the future. Although there have been a large
number of studies on the small-signal and large-signal stability of VSG, and there are a
large number of studies on the parameter optimization design and parameter adaptive of
VSG systems, most of the research results are based on the simplified model of a single
machine connecting to an infinite power grid or island parallel, which can be regarded as a
long-distance transmission model because it ignores the parameters of some transmission
lines. This is inconsistent with the actual situation of the current user-side energy storage
facilities connected to the grid, so it is of great significance to study the multi-machine VSG
system with transmission line parameters. At the same time, because it is difficult to guide
the system parameter design with the Lyapunov method, it is necessary to consider a new
large-signal stability analysis method.

Although VSG technology can significantly improve the stability of the power grid and
the ability to connect renewable energy to the grid, it still faces many economic and technical
challenges in practical applications. VSGs have high initial investment costs and require
high performance inverters and DSP controllers, which are more expensive than traditional
synchronous machines [233]. The VSG itself does not store energy and requires a battery
(BESS) or supercapacitor (SC) to provide actual power support. The VSG needs to simulate
the inertia, damping and other characteristics of synchronous generators but under different
grid conditions (such as microgrid, large grid, high proportion of new energy access),
and parameters need to be dynamically adjusted, otherwise it may lead to oscillation or
instability [234]. At the same time, it is necessary to realize the functions of frequency
modulation (P-f), voltage regulation (Q-V) and harmonic suppression simultaneously,
and the control strategy is complex. In the case of power grid faults (such as a short
circuit or voltage drop), the VSG needs to quickly switch control mode to avoid going off
grid [235]. At high grid impedance, such as remote microgrids, VSGs can cause resonance
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or voltage instability. When multiple VSG systems are connected in parallel, a mismatch of
control parameters may lead to power oscillation or circulating current problems. A high
proportion of new energy grids have low inertia, and the virtual inertia of the VSG may
aggravate the frequency fluctuation if it is improperly designed. VSG technology has great
potential in improving power grid stability, but it still needs to solve key problems such as
high control complexity, energy storage dependence and high cost. In the future, through
algorithm optimization, hybrid energy storage and policy support, VSGs are expected to
become one of the core technologies of the smart grid.

5. Conclusions and Future Perspectives
5.1. Conclusions

Microgrids enhance grid reliability and flexibility while enabling effective renewable
energy utilization. This paper summarizes recent microgrid research progress, focusing on
operation optimization strategies, power prediction methods and the latest advances in
VSG active support control technology. Key conclusions are drawn as follows:

(1) Operation Optimization Strategies: Energy Management Systems (EMSs) leveraging
heuristic algorithms (e.g., PSO, GWO), multi-objective optimization and Al-driven
strategies significantly enhance economic efficiency and renewable energy utiliza-
tion. Challenges remain in handling high-dimensional computations and real-time
adaptability in complex scenarios.

(2) Power Prediction Methods: Hybrid models integrating decomposition techniques
(e.g., VMD, CEEMDAN) with deep learning (e.g., LSTM, GRU) improve the accuracy
of wind/PV and load forecasting. Medium-term (3-10 days) prediction remains
underdeveloped due to meteorological uncertainty and data resolution limitations.

(8) VSG Control Technology: Voltage-type VSG technologies emulate synchronous gen-
erator characteristics, providing inertia support and frequency regulation. Stability
mechanisms (e.g., impedance modeling, Lyapunov-based analysis) are established for
grid-connected /islanded modes, yet multi-VSG coordination and transient stability
require further validation.

These findings underscore the maturity of core microgrid technologies while highlight-
ing persistent gaps in scalability, real-time performance, and cross-domain integration. This
review aims to provide insights for enhancing economic, reliable, safe and stable microgrid
operation, promoting further research and application

5.2. Future Perspectives

To address unresolved challenges and propel microgrid technology toward industrial
deployment, future research should prioritize the following:

(1) Quantum Optimization for EMSs: Address computational bottlenecks in large-scale,
high-dimensional microgrid optimization using quantum algorithms (e.g., leveraging
superposition and entanglement [236]). This can reduce optimization time from min-
utes to seconds, enabling real-time EMSs for 24 h scheduling. Cross-energy coupling
optimization (electricity, hydrogen, heat) across multiple timescales is also crucial.

Advanced Power Prediction: Enhance prediction accuracy via multi-modal deep
learning and spatiotemporal graph neural networks, integrating diverse data sources
(satellite, radar, local sensors). Develop physical-information fusion systems using digital
twins updated with real-time data [237]. Implement ultra-low-latency edge forecasting by
integrating LSTM cores into dedicated weather chips (<50 ms) [238].

Next-Generation VSG Hardware: Utilize superconducting materials for near-zero-loss,
ultra-fast response VSGs (100 x speed increase) [239]. Employ wide-bandgap materials
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(SiC, GaN) for high-frequency switching (>10 kHz), reducing losses by 50% and enabling
wider impedance bandwidth control.

Distributed VSG Coordination: Develop intelligent, self-organized VSG cluster control
strategies for synchronous frequency regulation, reducing reliance on centralized systems
and aligning with distributed microgrid trends.

(2) There is an urgent need to deepen research in the field of automation and intelligence
of microgrid systems. Advanced technologies such as Al IoT and big data analytics
are deeply integrated with microgrid technology to build a comprehensive “source—
grid-load-storage” intelligent synergistic system. Intelligent microgrid systems have
the ability to automatically identify load demand, make accurate power predictions
and optimize dispatch. Through independent management and automatic control,
efficient and low-carbon energy utilization is achieved. Through the close integration
of Al technology and the IoT, the microgrid is shifting from a “passive response” to
an “active sensing-decision-making” mode.

(8) There is an urgent need to strengthen the in-depth research of multi-level hybrid mi-
crogrid technology, so as to promote the transformation process of regional multistage
distribution systems of microgrids and realize the evolution of microgrids in the large-
capacity and regional hybrid direction. At the same time, it is essential to deepen the
research on application technology and integration technology, in order to promote
the development of microgrids in the direction of integration. VSG technology faces
a number of challenges, including high control complexity, dependence on energy
storage systems and relatively high cost. These problems have become obstacles to
the further development and wide application of VSG technology. However, with the
continuous progress and innovation of technology, through the continuous optimiza-
tion of algorithms, the in-depth application of hybrid energy storage technology and
strong support from the policy level, VSG technology is expected to overcome these
challenges in the future. Once these problems are properly solved, VSG technology
will most likely become one of the core technologies in the field of smart grids, provid-
ing strong technical support for the stable operation of smart grids and the efficient
use of energy.

(4) There is an urgent need to strengthen the research on energy storage technology.
As a core component of microgrids, energy storage systems play a crucial role in
optimizing energy structure, improving energy efficiency and ensuring the stability
of the energy supply. With the continuous expansion of the scale of microgrids,
the energy regulation function of energy storage systems in time series has become
the key to solving the inherent randomness and volatility of renewable energy and
maintaining the stable operation of microgrids. The VSG itself does not have the
function of energy storage and must be combined with battery energy storage systems
or energy storage devices such as supercapacitors to provide actual power support.
By effectively integrating VSGs with these storage devices, power distribution can be
optimized to improve the stability and efficiency of the entire system. Therefore, the
combination of energy storage systems and VSG technology is the key to promoting
the development of more intelligent and efficient microgrids.

In the process of rapid development of distributed generation technology, the micro-
grid has emerged to provide a boost to the operation of the power system. In the future, the
microgrid will continue to face the challenges of technological innovation and marketing.
The microgrid is a nonlinear complex system. In order to further improve the microgrid,
it is necessary to flexibly apply more advanced intelligent energy management systems,
power prediction technology and VSG active support control technology to further en-
hance the efficiency and flexibility of the microgrid, thereby promoting the development of
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