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Abstract: This study validates a three-zone lumped-parameter airflow model for Urban
Building Energy Modeling, focusing on its accuracy in estimating air change rates caused
by natural ventilation, referred to here as air change rate. The model incorporates urban-
scale variables like canyon geometry and roughness elements for the accurate prediction
of building infiltration, which is an important variable in building energy consumption.
Air change rate predictions from the three-zone lumped-parameter model are compared
against results from a three-zone CONTAM model across a range of weather scenarios.
The study also examines the impact of building level of detail on air change rates. Results
demonstrate that the three-zone lumped-parameter model achieves reasonable accuracy,
with a maximum Mean Absolute Error of 0.1 h−1 in winter and 0.03 h−1 in summer com-
pared to three-zone CONTAM model, while maintaining computational efficiency for
urban-scale energy consumption simulations. However, its applicability is limited to build-
ings within urban canyons rather than detached structures, due to the assumptions made
in the methodology of the three-zone lumped-parameter model. The results also showed
that the model had lower errors for low to mid-rise buildings since the simplification of
a detailed high-rise building into a three-zone model alters the buoyancy effect; a 4-story
building showed Mean Absolute Percentage Error of 7% and 5% for a typical winter and
summer day respectively when a detailed and simplified three-zone models are compared,
while the error for a 16-story building were 18% and 12%. The results of building air
change rates are used as input data in an hourly energy consumption model at urban scale
and validated against measured hourly consumption to test the effect of the calculated
urban-scale hourly air change rates.

Keywords: building ventilation; infiltrations; lumped-parameter model; ACR; CONTAM;
Urban Building Energy Modeling; place-based approach

1. Introduction
Building energy consumption represents the largest share of urban energy use. Accord-

ing to the International Energy Agency (IEA), operational energy use in buildings accounts
for about 30% of global final energy consumption [1]. In the United States, buildings are
responsible for 40% of total energy use, including 75% of all electricity use [2].

Building energy modeling (BEM) has emerged as a powerful decision-support tool,
enabling the assessment of energy efficiency strategies and identifying conditions that cause
higher energy consumption. For instance, the U.S. Department of Energy highlights BEM’s
adaptability, remarking on its applications, both for new buildings and retrofit design, to
develop building energy-efficiency codes and decision policies [3]. However, BEM usually
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focuses on individual buildings and detailed energy systems, but the complexity of the
urban environment—particularly the influence of surrounding elements such as buildings
and trees—demands more comprehensive modeling approaches.

Urban Building Energy Modeling (UBEM) addresses this gap by extending energy
analysis to an urban scale, accounting for physical surroundings, microclimatic conditions,
and building-specific characteristics. Recent reviews have highlighted both the significance
and potential of UBEMs, while also addressing the challenges they face and suggesting
ways to enhance their robustness [4,5]. UBEM incorporates factors such as shading effects,
wind dynamics, and urban density to provide a comprehensive understanding of energy
consumption and production. For example, shadows from different urban elements can
impact the effectiveness of solar technologies [6], while modifications in wind speed caused
by surrounding structures or roughness elements can influence ventilation and airflow
rates [7–9]. Recent studies have also emphasized the critical role of occupant behavior in
urban-scale modeling, highlighting the need for detailed, data-driven occupancy models
to reduce simulation uncertainties and enhance the accuracy of energy demand predic-
tions [10]. These interdependencies highlight the importance and potential of UBEM in
identifying scenarios that improve an efficient use of energy at urban scale.

Given the complexity of urban environments and the volume of data required for
large-scale analysis, a flexible, time-efficient, and scalable modeling framework is essential
for analyzing large urban environments. In this context, process-driven UBEM provides an
effective approach to calculate building energy use based on physical descriptions and local
weather data. These models can rely on available open-source data for building details
such as thermal transmittance and geometric data and often implement the assumption of
fixed air change rate (ACR) that are based on a building permeability which is associated
with construction period.

However, the assumption of a constant ACR does not reflect real-world conditions, as
air infiltration is influenced by factors not only related to building envelope airtightness
but also by issues such as the wind pressure on the building envelope and indoor-outdoor
temperature gradients. A study that compared experimental methods for estimating
infiltration rates highlighted the variability introduced by wind speed, wind direction,
and temperature gradients [11]. The results emphasized that while experimental methods,
such as CO2, decay provide valuable insights on infiltration, they cannot fully account for
the complexities of urban environments, including the influence of urban geometry on
wind patterns.

The presented work contributes to broader research that aims to enhance the per-
formance of an hourly process-driven and place-based UBEM. Initial efforts were made
to improve ACR calculations focused on scenarios that involve using fixed ACR values,
day/night adjustments, and adding window operation schedule, which all demonstrated
significant impacts on energy consumption [6]. The second step refines ACR calculations by
correcting wind speed inside the urban canyon to incorporate the effects of urban geometry
on airflow dynamics. Lastly, the model is further developed to calculate energy consump-
tion by representing each building as three interconnected zones, which is intended to
better predict performance in large scales applications in conjunction with urban effects [12].
Validating this modeling approach will mark a critical step toward improving urban-scale
energy consumption analysis.

Finally, in this work, the term air change rate (ACR) is used to describe the rate of air
flow due to natural infiltration. While Air Change per Hour (ACH) is frequently applied in
both mechanical and natural ventilation contexts, ACR specifically refers to air changes
resulting from natural forces such as wind and temperature differences, providing a more
accurate description of the phenomenon under consideration.
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2. Objective of the Work
The primary aim of this analysis is to assess the accuracy of an already existing simpli-

fied three-zone lumped-parameter model [12] by comparing its results with CONTAM, a
multizone airflow and contaminant transport simulation program [13]. The methodology
presented in [12] calculated the ACR for a simplified building geometry by considering
the surrounding built environment, which affects wind speed inside urban canyons due to
urban roughness elements, as well as indoor conditions inside buildings.

The novelty of this work lies in analyzing the impact of building level of detail (LoD)
on building ACR calculations and evaluating whether the three-zone lumped-parameter
model, with its simplified representation of building geometry, is effective in estimating
ACR for energy use prediction. This assessment will help define the applicability and
limitations of the three-zone lumped-parameter model’s methodology in urban scale
natural ventilation load assessment.

The broader goal of this analysis is to support strategies to effectively use energy in
urban areas. This will be enabled by developing an effective model for calculating hourly
ACR as a function of urban geometry and local weather conditions, which can be then
used as an input for energy consumption modeling at urban scale, while also optimizing
simulation costs. By incorporating the effects of urban street canyons on wind speed and
airflow dynamics, this methodology seeks to provide a more accurate building ACR input
for UBEM, replacing widely used fixed assumptions.

3. Methods
The workflow followed in this analysis is outlined in Figure 1. The buildings used in

the analysis are provided in Section 3.1. The study begins with providing a Level of Detail
(LoD) analysis (Section 3.2) using CONTAM. This analysis aims to highlight the effect of
simplifying a detailed building into three zones on the results of building ACR.
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Figure 1. Manuscript workflow.

Section 3.3 provides an overview of the general assumptions made in the existing three-
zone lumped-parameter model [12], and the boundary conditions used for the validation:
10 different indoor-outdoor temperature scenarios are tested under 12 wind speeds. The
results of the defined boundary conditions from the three-zone lumped parameter model
are compared with a three-zone CONTAM model. The results of both the LoD analysis and
the validation are discussed in Section 4.

Following the validation, the study explores the potential applications of the proposed
modeling approach, including its limitations, in Section 4.3.
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Finally, Section 4.4 demonstrates the application of using an hourly ACR from a three-
zone lumped-parameter model in estimating hourly energy consumption for space heating
in residential buildings by comparing it against using fixed ACR values. The hourly energy
consumption results of using hourly and fixed ACR are compared with real measured
consumption data.

3.1. Analyzed Buildings
3.1.1. Midrise Prototype Building

The midrise prototype building is selected from the detailed CONTAM models devel-
oped by the National Institute of Standards and Technologies (NIST) and derived from U.S.
Department of Energy (DOE) reference building models [14].

Figure 2 shows the typical floor plan of the prototype building. In this building the
corridor divides the apartments/office across two opposite facades, thus, there is no cross
ventilation for a single unit. The staircase and elevator are located at each end of the
corridor resulting in two shafts. The building has 4 floors, each with a height of 3.05 m.
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Figure 2. Typical floor plan for the midrise prototype building.

3.1.2. Turin Building

The building is a typical condominium built before 1918, located on a large street
canyon (approximately 45 m wide), with adjacent buildings on both sides. It has two
opposing facades: a canyon façade and a courtyard façade on the same side of the buildings
as the staircase, which provides each apartment with cross ventilation. Unlike the prototype
building, the staircase and the elevator are in a single shaft.

The building consists of 5 floors: a ground floor with vehicle access to the courtyard
and 4 floors with layout as shown in Figure 3. The ground floor is excluded from the ACR
calculations, as it is generally not used for residential purposes. The floor height for the
typical floors is 3.3 m.

3.2. Level of Detail (LoD) Analysis
3.2.1. CONTAM

CONTAM (version 3.4.0.1) is a multizone modeling software, developed at the Na-
tional Institute of Standards and Technology (NIST) [15]. CONTAM accounts for room-
to-room, infiltration, and exfiltration airflows driven by temperature-induced pressures
(i.e., stack effect), wind pressures acting on the building exterior, and mechanically-driven
pressure differences (i.e., heating, ventilation, and air-conditioning system flows). The
meteorological variables considered in the calculation of airflow rates are the ambient
temperature [K], barometric pressure [Pa], wind speed [m/s], and wind direction [◦].

CONTAM is able to perform whole-building simulations for periods of up to one
year with an assumption that pressures only vary hydrostatically. Thus, its computa-
tional requirements are not as intensive as using other airflow simulation methods like
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Computational Fluid Dynamics (CFD). CONTAM has been validated in terms of program
integrity [16], laboratory experiments [17], and field studies in residential buildings [18,19].
It was also used to compare real-time infiltration estimates between detailed and simplified
(e.g., single zone) models of two residential test houses at NIST [20]. Depending on the
tightness of the test house and the simulated weather, the simplified models could capture
the whole-building infiltration rate as well as the detailed model for the buildings studied.
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3.2.2. LoD Steps

The LoD analysis is performed using CONTAM and aims to evaluate the impact of
building simplification into three zones by comparing the ACR results between a detailed
building geometry and a simplified three-zone building: two heated zones representing
the upper and lower levels of the building and an unheated shaft connecting them.

The building geometry is simplified according to the schematization provided in
Figure 4, which outlines the LoD steps used for both buildings. The aim of including two
buildings in the LoD analysis is to test the effects of building simplification on models with
different floor plans and climate zones.
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The simplification starts with a detailed building geometry, considering all airflow ele-
ments that represent a real case (including leakages from windows, floors, internal/external
walls, and roof). Then the building geometry is progressively reduced, arriving at the three-
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zone model. In the detailed building step (LoD_1), the internal doors within each apartment
are assumed to be open, while the apartment/shaft doors are considered closed.

For the prototype building, the simplification starts with removing the partitions
between the apartments in LoD_2, followed by merging the building floors into two levels
in LoD_3, and finally removing the corridor and merging the shafts into single shaft to
arrive at three-zones in LoD_4.

For the building in Turin, the process starts by removing the internal partitions within
each apartment in LoD_2, followed by merging the building floors into two levels in LoD_3,
and finally removing the partition between the apartments in LoD_4.

Although the simplification steps differ between the two buildings, the main approach
remains consistent: both buildings are simplified into a three-zone model, with two zones
representing the upper and lower levels of the building and one shaft connecting them [21].
The results of this building simplification on ACR values are provided in Section 4.1.

3.2.3. LoD Models in CONTAM

For each analyzed building, the four LoD steps are modeled in CONTAM. Figures 5
and 6 provide CONTAM models for LoD_1 and LoD_4 only, to allow the direct comparison
between the detailed and simplified models. The figures provide the models for both
buildings with areas and volumes of each zone before and after the simplification (Figure a
and b respectively). The airflow elements considered in this analysis are mainly the leakage
from the envelope (in blue), the closed-door leakage (in red) and the floor leakage (in green).
However, it should be highlighted that in the three-zone lumped-parameter model there is
no leakage from the horizontal elements (floors, roof). To account for this behavior, it is
represented as LoD_4′′, which is the same as LoD_4 but excludes the leakage from the roof
and between floors of the apartments.

In the prototype building, as shown in Figure 5a, there are no partitions within each
apartment. Consequently, the only internal doors are the apartment/shaft doors (in red).

For the building in Turin, Figure 6a, there are two internal door types: within each
apartment (in pink), which are considered open, and the apartment/shaft doors (in red),
which are considered closed.

The leakage from the building envelope is obtained from available references related to
whole building airtightness testing results [22], which are usually provided as normalized
airflow rates, e.g., L/s/m2 @75Pa.
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Having this normalized value, it was possible to calculate the leakage area AL

(cm2/m2) as an input for the flow elements in CONTAM using Equation (1) [14]. This leak-
age area is typically provided under reference test conditions, which include the discharge
coefficient (Cd), flow exponent (n), and pressure difference (∆P).

Q =
CdAL

10000
·

√
2
ρ
·(∆Pr)

0.5−n·∆Pn (1)

where:

Qr is the predicted airflow rate at ∆Pr (from pressurization test data) [L/s/m2]
Cd is the discharge coefficient [-], used here as 1
AL is the leakage area [cm2/m2]
ρ is the air density [kg/m3]
∆Pr is the reference pressure difference (from pressurization test data) [Pa]
n is the flow exponent [-], used here as 0.65
∆P is the pressure difference, used here as 4 Pa.

The value of the flow exponent depends on the type of opening, whether it is large
or small [15]. Generally, the values are near 0.65 for small cracks, which can be used
to represent the leakage from window, door, and wall cracks [15,22]. For the discharge
coefficient (Cd), one of the common reference conditions for small leakage areas is 1.0 at
∆P = 4 Pa [15,22]. Although these values can be used for small openings, Equation (1) can
be used to convert reference building airflow rates for the required boundary conditions.

For the prototype building, the airtightness value used is 3.83 L/s/m2 @75 Pa. For the
building in Turin, the whole building airtightness value is 3.09 L/s/m2 @75 Pa, which is the
average value for multi-unit residential buildings (MURBs), determined from airtightness
tests performed on 113 buildings [22].

Table 1 provides the leakage elements used in CONTAM for each building. The closed
apartment/shaft doors in the prototype building are modeled in CONTAM using the
Powerlaw Model: Orifice airflow element type.
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Table 1. Leakage data of the analyzed buildings.

Envelope (walls, floors, roof): Powerlaw Model: Leakage area

Prototype Turin

Leakage per unit area
[cm2/m2] 2.208 1.783

Discharge coefficient [-] 1 1

Flow exponent [-] 0.65 0.65

Pressure difference [Pa] 4 4

Internal doors

Prototype Turin

Apartment/shaft doors:
Powerlaw Model: Orifice

Internal doors (within apartments):
Two-way Model: Single-opening

Cross-sectional area [m2] 0.023 Height [m] 2.2

Flow exponent [-] 0.5 Width [m] 0.9

Discharge coefficient [-] 0.6 Discharge coefficient
[-] 0.78

Hydraulic diameter [m] 0.172 Apartment/shaft doors: Powerlaw Model:
F = C(∆P)n

Reynold number [-] 30 Flow coefficient (C) [-] Equation (2)

Flow exponent (n) [-] 0.65

For the building in Turin, having two internal door elements, the open doors within
each apartment are modeled using two-way model: Single-opening, and for the closed
apartment/shaft doors using a Powerlaw Model: F = C(∆P)n. For the latter, the flow
exponent (n) is 0.65 and the flow coefficient (C) is calculated using Equation (2) assuming a
typical leakage area of 12 cm2/m2 for each door. This estimate represents a loosely sealed
element, considering construction period of the building [23,24].

The flow coefficient Copening [kg·s−1·Pa−n] for the shaft door in the Turin building is
calculated using Equation (2). It is related to the leakage area (Aleakage) calculated using the
typical leakage area values (AL) available in standards or local databases [22–24].

Copening = Cd,opening·Aleakage·(2·ρ)
1
2 Aleakage = AL·Aopening (2)

where:

Cd,opening is the discharge coefficient of the opening [-], used here as 0.65
Aleakage is the leakage area of the opening [m2]
ρ is the air density [kg/m3]
AL is the leakage area [cm2/m2], used here as 12 cm2/m2

Aopening is the opening area of the airflow element [m2], used here as 1.98 m2.

3.2.4. LoD Indoor Temperature and Weather Data

For the LoD analysis, a simulation for a representative winter and summer day with a
one-hour timestep is used to calculate the hourly ACR. Although the overall simulation is
annual, each hourly interval is solved under steady-state conditions.

The setpoint temperatures for the heated zones are 20 ◦C in winter and 26 ◦C in
summer, while for the shaft the temperature is calculated using the equation provided in
Table 2. These temperature schedules are assigned to each zone using continuous value
files (.cvf) in CONTAM.
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Table 2. Internal conditions of the analyzed buildings.

Season
Temperature [◦C]

Heated Zones (a&b) Shaft (Zone c)

Winter 20 Tsh =
Tout + btr,u

*·(Tin − Tout)Summer 26
* btr,u: correction factor for confined spaces (shaft with one wall facing outwards), equals to 0.4 (Table 5 in the
Appendix A of the Italian standard UNI/TS 11300-1: 2014 [25]).

The weather data used for both buildings are sourced from the EnergyPlus weather
database [26], and subsequently converted from “.epw” format to CONTAM-compatible
“.wth” format using the CONTAM weather file creator [27].

Figure 7 provides the outdoor air temperature (in red) and wind speed (in black)
for a representative winter and summer day. These graphs show that the results of the
three-zone model simplification will be analyzed considering different weather conditions:
tropical (with hot and humid summers) in Miami for the prototype building and continental
temperate in Turin. Both analyzed buildings, midrise and Turin, are simulated using the two
weather files to compare the effects of climate and building geometry on the ACR results.
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The wind pressure coefficients used in this vary as a function of the angle of the
envelope flow paths relative to wind direction only [28], i.e., coefficients do not vary
with height.

3.3. Three-Zone Lumped-Parameter Model
3.3.1. General Aim

The main aim of the three-zone lumped-parameter model being validated was to sim-
plify a building into three zones to enable urban scale natural ventilation load assessments
in energy consumption calculations, while minimizing simulation costs [12]. The exist-
ing model was used in this work with few impoorvements, e.g., neglecting the dynamic
component of the pressure in the internal zones. The results of this simplification of the
building geometry on the ACR results are discussed in Section 4.2.

The three-zone lumped-parameter model is used to consider outdoor airflow dynamics
within urban street canyons, which are significantly influenced by the urban geometry (i.e.,
height-to-width ratio H/W).
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3.3.2. Corrected Wind Speed

In this model, a Geographic Information System (GIS)-based approach is used to
calculate aerodynamic roughness parameters that influence wind dynamics within urban
areas. QGIS (Quantum Geographic Information System) is an open-source tool used to
analyze and visualize spatial data. It supports a wide range of geospatial formats and
provides various tools for geoprocessing and spatial analysis. To calculate the aerodynamic
and morphometric parameters, the Urban Multi-scale Environmental Predictor (UMEP)
plug-in within QGIS was employed [29]. This tool calculates aerodynamic and morphome-
tric parameters using a 3D representation of the urban environment, i.e., digital surface
models (DSM) and digital elevation models (DEM). To calculate the aerodynamic parame-
ters, including the displacement height (zd) and roughness length (z0), the Morphometric
Calculator tool within the plugin applies six different roughness calculation methods based
on morphometric parameters [30]. Depending on the selected method, the calculation
incorporates one or more morphometric parameters: plan area density (λp), frontal area
ratio (λf), average building height (zH), maximum building height (zHmax), and height
variability (zHstd). Among the six methods, the Kanda method is suggested for dense
urban environments, as it incorporates all five morphometric parameters for the calculation
of zd and z0 [31].

The primary parameter obtained from UMEP is the displacement height (zd), which
is determined as a function of the built environment and wind direction. Knowing the
displacement height (zd) in front of each building, the wind speed can be adjusted using
the logarithmic law for buildings above zd, where the flow is less turbulent and CFD
simulations for buildings below zd, in which turbulent flows occur. Most buildings in
dense urban environments have turbulent airflow inside the canyon, thus requiring CFD
simulations for the wind speed adjustment [32].

Considering the high simulation costs of CFD, this wind speed correction methods
used to reduce the number of simulations by categorizing wind effects related to urban
canyons according to height-to-width ratio (H/W). Generally, the canyons in a city can be
defined as large, medium, and narrow. These canyon categories and weather scenarios
for the CFD simulations are presented in Figure 8. The simulations are performed for four
effects considering the presence or absence of wind and temperature gradient between
opposing building facades in the urban canyon, four representative seasons, and four
positions of the building surfaces with respect to wind direction and solar irradiation;
windward/leeward with warm/cold façade. Thus, as illustrated in Figure 8, 192 CFD
simulations are performed, i.e., 64 simulations for each canyon geometry category. The
results of the CFD simulations are used as boundary conditions to calculate the ACR for
each building in the city considering its canyon category, building position, and the weather
conditions during each hour simulated.
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3.3.3. Three-Zone Building Simplification
Geometrical Simplification

The corrected wind speed explained previously is used as input data for a three-zone
representation of each building in a city. The three interconnected zones shown in Figure 9
include two heated zones that correspond to the lower and upper apartment levels (zone a
and b) and an unheated shaft connecting them (zone). The airflow connections between
zones are depicted as thick lines (red for internal and blue for envelope connections) that
are labeled with their flow coefficient (e.g., Ca1). The nodes represented as black dots
in Figure 9 are characterized by steady-state conditions and air pressures, following the
available multizone airflow modeling tools, e.g., CONTAM and COMIS [33], as well as to
simplify the modeling approach which will be applied on urban scale.
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It was assumed that there was no airflow between zones a and b, the roof of zone b
and c, and between the common walls of each building with its adjacent buildings. Thus,
the stack effect is accounted for only in zone c. This assumption reduces the number of
airflow path links, thereby minimizing simulation time for urban-scale analysis.

Physical Assumptions

In order to solve for the unknown internal zone pressures (Pa, Pb, Pc), a set of steady-
state mass airflow conservation equations were applied as shown in Equations (3) and (4).
The flow coefficient (C) is calculated for each link using Equation (2) provided previously.
This three-zone, nonlinear system of equations was solved using MATLAB (version R2023b)
applying the fsolve function and setting initial values and tolerance criteria [12,34].

ṁa1 + ṁa3 + ṁac = 0

ṁb2 + ṁb4 + ṁbc = 0

ṁca + ṁcb + ṁc3 + ṁc4 = 0

(3)


Ca1 (∆Pa1)

n + Ca3 (∆Pa3)
n + Cac (∆Pac)

n = 0

Cb2 (∆Pb2)
n + Cb4 (∆Pb4)

n + Cbc (∆Pbc)
n = 0

Cca (∆Pca)
n + Ccb (∆Pcb)

n + Cc3 (∆Pc3)
n + Cc4 (∆Pc4)

n = 0

(4)

where:
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C is the flow coefficient [kg·s−1·Pa−n]
ṁ is the airflow rate [kg/s]
∆P is the total pressure difference [Pa].

The presented two-step approach—CFD simulations to calculate outside wind speed
within the urban canyon, followed by a three-zone airflow model to estimate ACR—links
urban-scale wind dynamics and building-level airflow rates, enabling the assessment of
building infiltration in dense urban environments.

Validation with CONTAM

The validation aims to test the three-zone lumped-parameter model, explained in the
previous section, with a three-zone CONTAM model to test the accuracy of the implemented
model. For this validation, the building in Turin is used.

The validation is performed with a steady-state simulation using a range of weather
data, which is derived from the hourly weather data presented previously in Section 3.2.4.
This range is defined to ensure that the model is tested under different conditions, including
extreme temperature cases (Tout), i.e., −10 ◦C to 34 ◦C and extreme wind velocity cases
(Ws), i.e., 10 m/s as provided in Table 3.

Table 3. Weather data used for the model validation.

Winter Summer

Tout [◦C] −10 −5 0 3 7 12 24 28 30 34

Ws [m/s] 0.1, 0.5, 1 → 10 (with an increment of 1 for each simulation)

The indoor setpoint temperatures remain the same as 20 ◦C and 26 ◦C for winter and
summer, respectively, for the heated zones, while for the shaft it is calculated using the
equation provided previously in Table 2.

4. Results
This section presents the performance of the three-zone lumped-parameter model,

implemented for urban scale energy analysis, through two steps. First, analyzing the
impact of LoD on building ACR results, then validating the three-zone lumped-parameter
model with a three-zone CONTAM model under a range of weather conditions. This is
followed by highlighting the field of application of the presented methodology. Finally,
an example application of this methodology on a residential building for space heating is
provided in Section 4.4.

To assess the model’s performance, the Mean Absolute Error (MAE) and the Mean
Absolute Percentage Error (MAPE) are calculated using Equation (5). These metrics are
applied to compare the difference in ACR results between a detailed CONTAM building
model (LoD_1) and three-zone CONTAM models (LoD_4 and LoD_4′′) and to assess
the difference in building ACR between the three-zone lumped-parameter model and a
three-zone CONTAM model.

MAE =
1
n

n

∑
i=1

|y − ŷ|MAPE =
1
n

n

∑
i=1

∣∣∣∣y − ŷ
y

∣∣∣∣× 100 (5)

where:

y is the actual value
ŷ is the predicted value
n is the total number of observations.
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4.1. Level of Detail (LoD) Analysis Using CONTAM
4.1.1. Midrise Prototype Building Results

The results of the ACR analysis for different LoD are presented in Figures 10 and 11,
for typical winter and summer days, in Miami. LoD_1 and LoD_2 exhibit similar results,
indicating that internal partitions have a negligible effect on the ACR. The most significant
change occurs in LoD_3, where the building floors are merged into two representative zones
(upper and lower levels). This simplification increases the ACR overall due to the absence
of internal obstructions. Additionally, it likely alters the buoyancy effect, as leakage in the
detailed representation is assumed to occur at the midpoint of each floor height, whereas
in LoD_3, leakage is assumed to occur at the midpoint of the merged zones, significantly
changing the buoyancy-driven airflow.
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In LoD_4, where the corridor is removed and the shafts are merged into a single
shaft, the ACR values became slightly higher compared to LoD_3. However, the results of
LoD_4′′, a variation of LoD_4 where leakages from internal floors and roofs are excluded as
it is assumed in the three-zone lumped-parameter model, are generally lower than all LoD
steps. The average daily building ACR with floor and roof leakage (LoD_4) is 1.5 times
higher in winter and 1.2 in summer compared to LoD_4′′.

The hourly absolute difference is provided in Figure 12 by directly comparing LoD_1
with LoD_4, and LoD_1 with LoD_4′′ (which excludes the roof leakage). The hourly trend
reveals that in winter, the error increases as wind speed decreases, while in summer, the
error mostly followed the hourly wind speed trend. Moreover, the results demonstrate that
excluding floor and roof leakage significantly impacts the ACR values by underestimating
the ACR of a detailed model (LoD1).
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(in blue) for the midrise prototype building.

For LoD_4, the average daily MAE is 0.005 h−1 and 0.003 h−1 for winter and summer
respectively, while for LoD_4′′, the MAE" increases to 0.01 h−1 in both seasons. Using
MAPE, the average daily error with floor and roof infiltrations included is 12% and 4% for
winter and summer respectively, while excluding the infiltrations from the floor and roof
resulted in 35% and 18% MAPE. Given that ACR measurements are low in magnitude, the
MAE provides the error values in the actual units and avoids errors’ overestimation that
occur with MAPE when small differences are compared. Thus, the comparison of ACR
values in the following sections is made using the MAE.

4.1.2. Turin Building Results

The LoD results for the building in Turin closely resemble those for the prototype
building, with the most significant difference occurring in LoD_3 and LoD_4 as represented
in Figures 13 and 14 for winter and summer, using Turin weather data. Like the prototype
building, merging the floors into two levels, from LoD_2 to LoD_3, alters the buoyancy
effect, resulting in higher ACR values. Moreover, the building in Turin showed low ACR
results when the partition between the two apartments is removed: from LoD_3 to LoD_4.

Excluding the leakage from floors and roof (LoD_4′′) results in considerable decrease in
ACR values in this building; the average daily ACR with roof leakage (LoD_4) is 1.8 higher
in winter and 1.6 in summer compared to the LoD_4′′.
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Excluding floor and roof leakage (LoD_4′′) significantly reduces the ACR values
resulting in underestimation for the building in Turin. Comparing LoD_1 with LoD_4, the
MAE for average daily building ACR is 0.02 h−1 and 0.006 h−1 for winter and summer
respectively, while for LoD_4′′, the MAE increases to 0.1 h−1 and 0.05 h−1. Accounting for
roof infiltration, by adding airflow links for the roof in zone b and c, would increase the
ACR, improving the simplified model’s alignment with the detailed one. This can be done
by introducing two flow elements in Equation (3), i.e., ṁbr and ṁcr with the correct flow
coefficients (C).

4.1.3. Summary

When each building was tested under different climate conditions, the overall trend
in results remained unchanged, indicating that building zoning primarily determined the
accuracy of the simplified model (LoD_4) compared to the detailed model (LoD_1). The
mid-rise building, which included a corridor and two shafts in the detailed model, had
different results compared to Turin building, which had no corridor and only a single
shaft. While the mid-rise building overestimated the ACR in the three-zone model in both
climates, the Turin building underestimated it, considering the average daily ACR.

Overall, the LoD analysis results for both buildings indicate a good balance between
the ACR differences observed between LoD_1 and LoD_4, despite the simplification of a
detailed building into only three representative zones. These findings suggest that this
simplified approach is effective for representing building volumes across a city, provided
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that all leakage elements are accurately calculated (as in LoD_4). This finding offers a
practical and efficient for urban-scale simulations.

4.2. Three-Zone Lumped-Parameter Model Validation with CONTAM

For the validation, the building in Turin was used to test 10 various indoor/outdoor
air temperature scenarios under 12 wind speed conditions. Table 4 presents the MAE values
comparing the three-zone lumped-parameter model with the three-zone CONTAM model.

Table 4. The absolute difference in ACR [h−1] between three-zone CONTAM and lumped-parameter
model for the tested weather conditions.

[◦C]

Tout −10 −5 0 3 7 12 24 28 30 34

Tin 20 26

Tshaft 2 5 8 9.8 12.2 15.2 24.8 27.2 28.4 30.8

∆T
|Tout − Tin| 30 25 20 17 13 8 2 2 4 8

Wind
speed
[m/s]

0.1 0.0005 0.0004 0.0016 0.0026 0.0044 0.0071 0.0128 0.0159 0.0154 0.0151

0.5 0.0005 0.0004 0.0016 0.0017 0.0005 0.0007 0.0063 0.0095 0.0106 0.0132

1 0.0036 0.0023 0.0008 0.0002 0.0019 0.0023 0.0053 0.0066 0.0103 0.0067

2 0.0132 0.0108 0.0049 0.0066 0.0047 0.0030 0.0036 0.0042 0.0049 0.0066

3 0.0309 0.0107 0.0056 0.0092 0.0081 0.0075 0.0006 0.0013 0.0021 0.0037

4 0.0099 0.0156 0.0120 0.0128 0.0120 0.0111 0.0053 0.0027 0.0016 0.0004

5 0.0408 0.0168 0.0179 0.0171 0.0160 0.0149 0.0081 0.0079 0.0066 0.0039

6 0.0457 0.0243 0.0225 0.0216 0.0203 0.0189 0.0101 0.0093 0.0090 0.0085

7 0.0448 0.0294 0.0274 0.0263 0.0248 0.0231 0.0122 0.0112 0.0107 0.0098

8 0.0373 0.0349 0.0326 0.0313 0.0296 0.0275 0.0145 0.0132 0.0126 0.0114

9 0.0434 0.0406 0.0379 0.0364 0.0344 0.0321 0.0168 0.0153 0.0146 0.0132

10 0.0496 0.0465 0.0435 0.0417 0.0395 0.0368 0.0193 0.0176 0.0167 0.0151

The results indicate that at lower wind speeds, the absolute differences of ACR are
generally low, particularly when the temperature difference is high (e.g., in winter). As
wind speed increases, the error rises across all temperature scenarios, with a more obvious
effect in winter. For instance, at ∆T = 30 ◦C, the error is significantly higher at a wind
speed of 2 m/s compared to 0.1 m/s. Beyond 5 m/s, the error stabilizes across different
temperatures, ranging from 0.014 h−1 to 0.05 h−1, suggesting a low influence of temperature
differences on ACR estimation. Wind speeds higher than 5 m/s are generally extreme cases
in high-density urban environments. Considering the average wind speed for winter and
summer in Turin were 1.26 m/s and 1.58 m/s, respectively, for the period 2015–2023, our
analysis shows that the lumped-parameter model could be applied with relatively low
errors in Turin.

Overall, the absolute differences remain low, with a maximum of 0.05 h−1 across
all tested weather conditions. These findings demonstrate that the implemented model
performs effectively with optimized fsolve settings for reduced simulation costs. The model
reliably estimates ACR under varying weather conditions, making it a suitable and practical
tool for large-scale infiltration analysis in urban environments.

4.3. Field of Application Analysis

The three-zone model presented in this work is applicable to certain building con-
figurations, based on the assumptions of the lumped-parameter model. It is particularly
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suitable for buildings located in continuous urban canyons with homogeneous building
height, as commonly found in Turin and in city centers generally. This approach, detailed
in Section 3.3.2, involves categorizing urban canyons into specific H/W classes to facilitate
CFD simulations of airflows in the urban canyon. As a result, the model is not suitable for
detached buildings. In such configurations, the lack of neighboring structures on all sides
complicates the application of CFD simulations. This is because, in detached buildings,
boundary conditions for the simulations become more challenging to define. Consequently,
CFD simulations in these scenarios would be less efficient and less representative of urban-
scale dynamics, making this model unsuitable for detached buildings.

Moreover, the results of the LoD analysis indicate that the most significant changes
occur when the building is simplified into two representative zones for the apartments,
which substantially alter the buoyancy effect. This finding makes the model more suitable
for low-rise buildings, as applying such simplifications to high-rise buildings can modify
the buoyancy effect significantly, potentially leading to inaccuracies in ACR calculations.

Figure 16 illustrates the airflow connection heights for LoD_1 and LoD_4, emphasizing
the impact of building height in the simplified model. The variations in airflow opening
heights representing the upper and lower zones highlight how simplifying a high-rise
building into just three zones can intensify discrepancies in the buoyancy effect.
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Figures 17 and 18 presents the hourly ACR for LoD_1 and LoD_4 for a typical winter
and summer day considering different building heights. The results demonstrate that as
building height increases, the ACR value decreases. This trend aligns with findings in the
literature [35,36] and can be also attributed to the reduced surface-to-volume (S/V) ratio in
taller buildings, which lowers the heat loss surface area.
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Figure 18. Hourly LoD effect on ACR (summer) considering different building heights.

For the detailed building model, LoD_1, the average daily ACR decreased by 26% in
winter and 27% in summer when comparing a 16-story building with a 4-story building.
While considering the three-zone model, LoD_4, this decrease is 13% in winter and 18% in
summer when comparing a 16-story building with a 4-story one.

Figure 19 provides the absolute difference between LoD_1 and LoD_4 for each ana-
lyzed building height. The data clearly shows that shorter buildings generally yield lower
differences, which becomes higher under low wind speed conditions. The average daily
MAE increases significantly with taller buildings; 1.4 times higher MAE for both winter
and summer when comparing a 16-story building with a 4-story one.
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The three-zone model was initially designed for residential buildings, which are
generally not high-rise structures. Improving the three-zone model for high rise buildings
would primarily require detailing the airflow elements for zone c (shaft), which would
complicate the system of nonlinear equations (Equations (3) and (4)). A comprehensive
analysis on the effect on building internal zones on the ACR results, has shown that the
contribution of the number of internal zones on ACRs is higher than detailing of the airflow
elements across the façade [37].

Overall, the results showed higher errors for the 16-story building compared to the
4-story building, however the average daily MAE between the LoD_1 and LoD_4 of a
16-story building is 0.03 h−1 in winter and 0.01 h−1 in summer. This MAE would still be
accepted for urban scale applications if needed.
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4.4. Example Application: Energy Consumption for Space Heating
4.4.1. Selected Building

In this section, the methodology of the three-zone lumped-parameter model, previ-
ously presented, is applied to an hourly GIS-based engineering model for calculating the
energy consumption for space heating in residential buildings [6]. Among the buildings
examined, a case study building with available hourly consumption data has been selected.

The objective of this application is to evaluate the contribution of the hourly ACR as
input data for the energy model, compared to using a constant ACR value, in estimating
hourly energy consumption. Both will be compared to the real heating season consumption
data during the examined period.

First, the case study building was selected from the zones in the city of Turin that
correspond to the application field of the presented methodology. The chosen building is
located close to the city center of Turin, built between 1919 and 1945, and has available real
hourly energy consumption data. As shown in Figure 20, the examined building is in a
narrow canyon, oriented NE-SW (30◦N), and positioned on the left side of the canyon. The
hourly energy consumption data were collected from the local district heating company
and correspond to the heating season of 2022–2023 (15 October 2022–15 April 2023).
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left positioned.

Mutani et al. (2020) provided a detailed description of a dynamic engineering model
with three thermodynamic systems (TSs), which form the foundation of the GIS-based
UBEM [6]. In line with this work, the main input data for the hourly energy consumption
model can be summarized into three key categories: building characteristics, local weather
data, and heating schedule.

• Building characteristics including the construction period (i.e., 1919–1945), the associ-
ated ACR value, and thermal properties, such as thermal capacity (Ct) and thermal
transmittance (U) for both opaque (walls, roof, ground) and transparent (glazing)
building envelopes, the window-to-wall ratio (WWR), heating system efficiency (η).
Reference data are provided in Table 5, with the selected building’s construction
period highlighted.

• Local weather data includes hourly outdoor air temperature, humidity, pressure, solar
radiation, and sun altitude, recorded by the weather station of Politecnico di Torino [38]
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for the period from May 2022 to April 2023, in which the hourly consumption data
are available.

• Heating schedule, which details the building’s occupancy patterns and the operation
of the centralized heating system. In the analyzed scenarios, the system operates
according to national and local regulations, with the internal air temperature of 19 ◦C
during the day from 6 am to 9 pm with two interruptions at 9 am and 2 pm.

Table 5. Thermo-physical characteristics and ACR values according to construction period.

WALL ROOF GROUND GLAZING ACR
η

Period
Cenvelope Uwall Uroof Ufloor Ug WWR g-Value h−1

kJ·m−2·K−1 W·m−2·K−1 W·m−2·K−1 W·m−2·K−1 W·m−2·K−1 - - - -

<1918 504 1.45 1.80 1.75 4.85 0.13 0.85 0.5 0.78

1919–45 504 1.35 1.80 1.58 4.75 0.13 0.85 0.5 0.78

1946–60 283 1.18 1.80 1.23 4.40 0.20 0.85 0.5 0.78

1961–70 283 1.13 2.20 1.30 4.90 0.20 0.85 0.5 0.79

1971–80 257 1.04 2.20 1.00 3.80 0.25 0.75 0.5 0.80

1981–90 264 0.78 1.18 0.95 3.80 0.20 0.75 0.5 0.82

1991–00 274 0.7 0.68 0.80 2.15 0.20 0.67 0.5 0.84

2001–05 274 0.7 0.68 0.80 2.15 0.20 0.67 0.3 0.84

2006–12 267 0.42 0.38 0.41 2.60 0.20 0.50 0.3 0.92

2013–15 267 0.34 0.30 0.33 2.20 0.20 0.50 0.3 0.92

2016–19 267 0.30 0.25 0.30 1.80 0.20 0.35 0.3 0.92

4.4.2. Application Results

This section provides the results of the hourly energy consumption model, considering
the scenarios presented in Table 6. All scenarios are then compared to the real consumption
data of the case study building.

Table 6. Infiltration scenarios and ACR.

Scenario Building Permeability ACR

1 cons Based on construction period 0.5 constant during the day

2 cons+(d&n) Same as 1, with less permeability during
the night for window shutters

0.5 during the day and 0.3 during the nigh

3 cons+(d&n)+W Same as 2, with additional window
opening for three times of the day

For 3 h, with windows opening, ACR was
calculated by a correlation [6] considering
15 min of windows opening

4 hourly Air infiltration depends on the weather
conditions. It was considered an average
airtightness of masonry buildings, i.e.,
4.58 L/s/m2 @75

ACR was calculated from the three-zone
lumped-parameter model in each hour of
the year

In the constant scenario “cons”, the ACR for the analyzed building is set at 0.5 h−1,
based on its construction period (see Table 5). In the second scenario “cons+(d&n)” a day-
night variation is introduced to account for closed window shutters at night by reducing
the ACR to 0.3 h−1 from 9 p.m. to 8 a.m. In the third scenario “cons+(d&n)+W”, window
shutters are closed at night and windows are opened for 15 min three times per day [6].

The final scenario uses the hourly ACR (named "hourly") as a result of the three-zone
lumped-parameter model presented previously, with an airtightness value of 4.58 L/s/m2
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@75 Pa, representing the average airtightness for masonry buildings based on a sample of
152 buildings [22].

The main output of the energy model is the heat loss through ventilation (Qv) [kWh],
which directly depends on the ACR values. Figure 21a,b provide Qv for selected days
during the heating season, comparing the different analyzed ACR scenarios for two repre-
sentative days. Figure 21c,d present the hourly energy consumption for space heating for
the same days.
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By examining the hourly profiles of the ventilation load in Figure 21a,b, it is evident
that all constant ACR scenarios, particularly cons+(d&n)+W, show higher values compared
to the hourly ACR scenario. This suggests that the hourly ACR scenario may be influenced
by: the wind speed adjustment within the urban canyon (which is low), the low infiltration
value used in the three-zone lumped-parameter model (which could not reflect the real
situation), and finally the lack of roof infiltration considered in the three-zone lumped-
parameter model.

As seen in Figure 21c,d, the energy consumption using the hourly ACR scenario shows,
overall, lower values compared to the other three scenarios that use constant ACR. This
demonstrates the direct impact of building ACR on space heating energy consumption.

Figure 22 shows the calculated and measured energy consumption for selected days
in each month of the heating season. As this engineering model is directly influenced by
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the building physical characteristics and weather data, the use of hourly ACR presents a
more accurate approach compared to fixed values, especially with natural ventilation.
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Figure 22. Daily energy consumption for space heating representative days during the heating season
comparing the ACR scenarios and the measured consumption data.

For each scenario and day examined in Figure 22, Table 7 provides the MAPE. Among
the analyzed scenarios, the hourly MAPE was lower, indicating that the three-zone lumped-
parameter model provided better estimates of the ACR values. However, the cons+(d&n)
scenario showed the lowest MAPE for 18 January, highlighting the role of unpredictable
user behavior or system performance. Generally, on the analyzed days, MAPE results were
low under conditions of low wind speed, aligning with the findings previously presented
in Table 4.

Table 7. MAPE of the different ACR scenarios in predicting the daily energy consumption for space
heating in representative days of the heating season.

Scenario 26-Dec 18-Jan 26-Feb

cons 12.6% 7.2% 22.9%

cons+(d&n) 10.3% 4.7% 19.6%

cons+(d&n)+W 14.5% 11.9% 25.4%

hourly 4.3% 7.6% 4.7%

Tout [◦C] 6.83 5.44 5.96

Ws [m/s] 1.88 0.97 1.93

Figure 23 compares the hourly energy consumption for space heating [kWh] using
both the cons ACR (solid red line) and hourly ACR (dotted red line), against the measured
hourly consumption (dashed red line) for two selected days during the heating season. The
figures also provide other relevant heat losses and gains [kWh] in the energy consumption
model, which are: the heat loss by ventilation Qv (blue line), the heat gain by internal gains
QI (violet line), the heat loss by transmission from opaque envelope Qt,e (light green line),
the heat loss by transmission from transparent envelope Qt,g (dark green line), the heat
gain by solar irradiation Qsol (yellow line). In addition, the solar irradiance Isol,h [W·m−2]
is also shown (dotted orange line).

Analyzing the two graphs, both the cons and hourly ACR scenarios align closely with
the real measured data (dashed red line), but generally the cons scenario overestimates the
consumption compared to the hourly scenario. However, as provided previously in Table 7,
the average daily MAPE for the presented two days in Figure 23 was lower for the hourly
scenario in December and slightly lower for cons scenario in January.
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Generally, the hourly scenario is underestimating energy consumption compared to
the real measured data, which could be highly associated with the lack of roof infiltration
in the current three-zone lumped parameter model. As mentioned earlier, the three-zone
lumped-parameter model used in this study simplifies the building geometry by excluding
infiltration from the roof and internal floors. This simplification was done to reduce
simulation costs when solving the system of nonlinear equations. However, the model
can be improved to include two extra links to the current system of nonlinear equations
(Equation (3)) to account for roof infiltration from zones b and c. Nevertheless, the relatively
small difference between the measured energy consumption and the consumption based
on the hourly ACR, as presented in Figure 23, suggests that this methodology is promising.
It effectively accounts for the influence of the built environment and corrected wind speed,
which are critical for analyzing building airflow from natural ventilation and estimating
energy consumption at urban scale.

5. Conclusions
This study assesses the accuracy of a steady-state three-zone lumped-parameter model

by analyzing first the effect of simplifying a building into three-zones and then by validating
the implemented three-zone lumped-parameter model with a three-zone CONTAM model.
The lumped-parameter model accounts for natural infiltration in buildings and incorporates
the effects of the surrounding environment by adjusting outside wind speed within urban
canyons using CFD simulations for defined urban canyon and weather scenarios.

The comparison across different LoDs revealed that while internal partitions had a
minor impact, simplifications—such as merging floors into representative zones—had a
greater influence on ACR values, particularly by altering the buoyancy effect. Additionally,
the exclusion of infiltration through floors and roofs led to a notable reduction in ACR,
emphasizing the significance of including these elements in building infiltration modeling.
The effect of including leakages from the floor and roof on the average daily building ACR
was found to be 1.5 times higher in winter and 1.2 in summer for the prototype building,
while for the building in Turin it was 1.8 times higher in winter and 1.6 in summer.

The results of comparing the three-zone lumped-parameter model with CONTAM
using the building in Turin showed higher MAE in winter, with higher wind speed and
higher ∆T.

Applying this model to a real case study and comparing its results with measured
data confirmed that ACR values derived from the three-zone lumped-parameter model
were lower compared to the constant ACR value. This finding underscores the necessity of
accounting for all infiltration elements in buildings to improve model accuracy.
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Despite these limitations, the proposed three-zone lumped-parameter model remains
a computationally efficient tool for estimating ACR in urban-scale energy modeling. Future
enhancements—such as refining the representation of infiltration pathways—could further
improve its accuracy. These refinements hold significant potential in enabling more accurate
assessments of ACR from natural ventilation at urban scale, which plays a crucial role in
building energy loads. The ultimate goal in enhancing energy consumption modeling is to
develop effective strategies for utilizing energy tailored to dense urban environments.
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