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Abstract: This paper presents a new coherency identification method for dynamic 

reduction of a power system. To achieve dynamic reduction, coherency-based equivalence 

techniques divide generators into groups according to coherency, and then aggregate them. 

In order to minimize the changes in the dynamic response of the reduced equivalent 

system, coherency identification of the generators should be clearly defined. The objective 

of the proposed coherency identification method is to determine the optimal coherent 

groups of generators with respect to the dynamic response, using the Partitioning Around 

Medoids (PAM) algorithm. For this purpose, the coherency between generators is first 

evaluated from the dynamic simulation time response, and in the proposed method this 

result is then used to define a dissimilarity index. Based on the PAM algorithm, the 

coherent generator groups are then determined so that the sum of the index in each group is 

minimized. This approach ensures that the dynamic characteristics of the original system 

are preserved, by providing the optimized coherency identification. To validate the 

effectiveness of the technique, simulated cases with an IEEE 39-bus test system are 

evaluated using PSS/E. The proposed method is compared with an existing coherency 

identification method, which uses the K-means algorithm, and is found to provide a better 

estimate of the original system. 
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1. Introduction 

In recent years, power systems have experienced rapid changes accompanying the integration of 

various power electronic devices and large-scale renewable energy sources. These changes may have 

unexpected impacts on power system stability. To maintain the stability and improve the performance 

of a system, the transient stability in response to such changes should be assessed continuously. 

However, transient stability assessment based on real-time dynamic simulations is subject to 

limitations when applied to large-scale nonlinear power systems, since the momentary processing 

ability of a simulator is limited by the given hardware specifications. In a modern power system, it is 

almost impossible to study transient stability problems for the entire system because of its large size 

and complexity, even when expansion is considered. Dynamic reduction of a power system is a good 

alternative for transient analysis of the entire power system, provided it preserves the dynamic 

characteristics of the original system with acceptable accuracy [1–4]. When studying transient stability 

using detailed system models, it is a common practice to represent a large power system with some 

form of reduced equivalent model via dynamic reduction [5–8]. 

In recent decades, several dynamic reduction techniques have been developed, including  

coherency-based equivalence techniques, modal equivalence techniques, and slow coherency 

techniques (which combine the merits of both of the preceding types). Of these, the coherency-based 

techniques are most widely used in practical applications for nonlinear dynamic simulation because of 

their simplicity [1,3–9]. In a dynamic reduction procedure, a coherency-based technique defines 

coherency in terms of the behavior of generators during severe disturbances, divides them into groups 

according to coherency, and then aggregates generators in the same group as an equivalent  

generator [7–11]. A coherency-based dynamic reduction method ensures greater accuracy of the 

reduced equivalent model, provided coherency identification of the generators is clearly defined. 

Consequently, research to evaluate and identify coherency from the dynamic responses of generators 

mainly have been conducted in relation to coherency-based dynamic reduction techniques. However, 

relatively few grouping algorithms have been developed to determine generator groups according to 

coherency. Existing algorithms are also subject to some limitations when applied to the dynamic 

reduction of modern power systems, since the complexity of power systems has recently increased 

with the number of generators. The grouping algorithm proposed by Van Oirsouw [12] has several 

drawbacks arising from its sequential procedure, despite its advantages of speed and simple 

application. When this algorithm is used, the first generator group becomes the largest group in the 

majority of cases, and a generator can be grouped with other generators with which it is hardly 

coherent, since the group in which a generator is placed is determined solely by comparison with the 

last generator assigned to that group. On the other hand, the recently proposed coherency identification 

technique using the K-means algorithm solves most of the problems associated with Van Oirsouw’s 

algorithm [13,14]. However, this approach still has some drawbacks, such that the groups are 

determined differently, depending on the calculation procedure and initial group. This means that the 

resulting coherent groups are unlikely to be the optimized case unless the calculation sequence is 

defined properly. 

This paper proposes a new coherency identification method based on the Partitioning Around 

Medoids (PAM) algorithm. The PAM algorithm is a typical clustering algorithm, and like the K-means 
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algorithm, it has been used in the data mining area. Compared to the K-means algorithm, this 

procedure provides better optimized results regardless of the calculation procedure and initial 

conditions, since it minimizes a cost function (a sum of dissimilarities) instead of using only the 

Euclidean distances between individual objects. The proposed approach evaluates the coherency 

among generators from the dynamic simulation time responses, and defines it as a dissimilarity index. 

Coherent generator groups are determined to minimize the sum of this index in each group, based on 

the PAM algorithm. For this purpose, the time responses of the generators are obtained by dynamic 

simulation using PSS/E program, and the reduced equivalent model is verified by comparing the 

dynamic simulation results with those of the original system. 

2. Proposed Coherency Identification Method 

As mentioned above, coherency is defined by the dynamic responses of generators during severe 

disturbances, such as system faults. Two generators are considered to be coherent when the phase 

angle difference of their terminal voltages is bounded by some specified quantity over a certain period 

of simulation time. The coherency condition generally simplifies to:  

( ) ( ) ( ) consti j ijt t t      (1)

where δi(t) is the rotor angle of the ith generator and δj(t) is the rotor angle of the jth generator. 

Consequently, coherency indicates the relative electric coupling between generators in the system and 

the coherent generators are expected to have similar dynamic characteristics and responses during 

severe disturbance, such as a fault sequence. Generators satisfying Equation (1) are then aggregated 

and replaced by a single equivalent generator in the dynamic reduction. 

2.1. Dissimilarity Index  

The first step in coherency identification is to define coherency from the dynamic response of the 

system. Conceptually, coherency is identical to the dissimilarity that is usually used in clustering 

algorithms, in that both indicate the relationship between objects equally well. This means that a 

clustering algorithm such as the PAM algorithm can be used to construct coherent groups of 

generators, provided coherency is defined numerically. In order to apply the PAM algorithm to 

coherency identification, a dissimilarity index is proposed to define the coherency of the generators in 

this paper. For this purpose, swing curves for all generators are obtained from the time response during 

a disturbance, using the PSS/E simulator. The rotor angle vector of the ith generator can be defined by 

sampling the simulation results, as follows: 

 1 2 3 4( ) ( , , , , ... , )i nG x x x x x   (1) 

where xk is the sampled rotor angle for each time interval. The normalized rotor angle vector for ith 

generator, δN(i), is then obtained from (1) via the following equation: 
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where δinit(Gi) is the initial rotor angle of the generator. In this equation, the dc offset is eliminated in 

order to remove the effect of the initial value, and the rotor angle vector is normalized by dividing by 

the difference between its maximum and minimum values. The dissimilarity index between two 

generators is determined from the normalized rotor angle vectors, as follows: 

 
2

( , ) ( ) ( )i j N i N jD G G G G    (3) 

Since the dissimilarity index D(Gi, Gj) is defined as the Euclidian distance between the angles of 

two generators for a given time duration, the correlation between the generators decreases as the value 

of the index increases, contrary to the usual definition of coherency. 

2.2. Define the Generator Groups Using PAM Algorithm  

In next step, the coherent groups of generators are determined using the dissimilarity index with the 

criterions based on PAM algorithm. The proposed generator grouping algorithm consists of the 

following steps: 

Step 1. Calculate the Dissimilarity Index (DI) table; 

Step 2. Build: Determine the initial generator set M; 

Step 3. Swap: Perform a swap test between the generators of set M and the non-medoid set; 

Step 4. Cluster the generators using the optimal medoid set. 

In the PAM algorithm, a medoid is the object representative of a group. All objects are classified 

into clusters to minimize the sum of the dissimilarities between objects and medoids [15]. 

Accordingly, each cluster of objects, corresponding to a group of generators in the proposed approach, 

is determined uniquely for a given medoid set by selecting the medoid that is closest to the objects in 

the cluster. The optimal clusters are then obtained by examining the objective function for every 

feasible medoid set, and selecting the medoid set that minimizes the objective function. The proposed 

generator grouping algorithm uses a typical form of the PAM clustering algorithm. The generators in 

the target system are classified into optimal coherent groups, so that the sum of the dissimilarities 

between the generators and medoid of each group (i.e., the objective function) is minimized. The 

following subsections provide brief descriptions of each of the four steps: 

(A) Calculate the Dissimilarity Index: As mentioned above, the Dissimilarity Index (DI) between 

generators is determined by the rotor angle vectors obtained from the dynamic time simulation, which 

is arranged in tabular form in this procedure. The value of the dissimilarity index of generators i and j, 

D(Gi, Gj) is calculated by Equation (4), and the cost function of the overall generator grouping 

algorithm can be defined as follows: 

 
1 1

( , ) ,
K N

i j i j i
i j

D G G TC for G M G C
 

    (4) 

where K is the number of groups and N is the number of generators in the ith coherent group Ci. In this 

equation, M denotes the medoid set used in the PAM algorithm, and Gi indicates the generator 

corresponding to the medoid of the ith coherent generator group. This cost function is calculated 

continuously using the DI during the overall coherency identification procedure, and the coherent 



Energies 2012, 5 4421 

 

 

group of each generator is determined to minimize the cost function. The cost function is referred to as 

TC in the remainder of the paper, and the objective function of the PAM algorithm is generally defined 

to minimize TC. 

(B) Build: Determine the initial medoid set M: To determine the groups of generators that 

minimize the cost function, an initial set of generators corresponding to the medoids is necessary. The 

initial value of the cost function is calculated using this generator set. Generally, the initial medoid set 

can be chosen arbitrarily in the PAM algorithm. In the proposed method, however, some of the initial 

generators are determined from existing power system information. Generators with similar controls or 

connected to nearby buses are normally expected to be coherent. These generators are likely to be 

included in the same group after identifying coherency, and one of them can be used as the 

representative generator of the coherent group. Therefore, if generator information (such as bus 

connections and control systems) is available, the calculations can be reduced by choosing the initial 

generator set using this information. The remaining generators are then added via the proposed 

algorithm, and the efficiency and convergence of the clustering algorithm are thereby improved. The 

detailed procedure for selecting the initial generator set is as follows: 

B.1. Determine an initial user-defined medoid set M (1 ≤ n(M) ≤ K); 

B.2. Calculate       ,
min , ,k j i j kj k j M

C D G G M D G G
 

    for all non-medoid generators k; 

B.3. Add a generator which maximizes Ck to the medoid set M; 

B.4. if n(M) = K, go to the next procedure; 

if n(M) < K, go to step 2 and repeat step 2–3. 

where n(M) is the number of generators in the initial user-defined medoid set and it should be smaller 

than or equal to K, the number of groups, at the beginning of this procedure. In the step B.2., Ck 

indicates notionally a possible decrease in the cost function TC when generator Gk becomes a medoid, 

and a generator which has a larger Ck than the others is more likely to be included in the medoid set 

after identifying coherency. Therefore, Ck is tested for all non-medoid generators in this step, and a 

generator which makes Ck maximized is added to the initial medoid set M. This procedure is repeated 

until the number of generators in the initial medoid set is equal to the number of coherent groups. 

(C) Swap: Perform a swap test for generators in set M and the non-medoid set: Once the initial 

generator set M has been determined, each generator in the medoid set is tested by successively 

swapping it with all generators in the non-medoid set. Then, the change in the cost function is checked. 

During this process, a non-medoid generator that makes the cost function smaller than it was just 

before a swap is selected to replace the medoid generator with which it was swapped. The detailed 

procedure for swap test is as follows: 

C.1. Swap generator Gi in the medoid set M with generator Gj in the non-medoid set; 

C.2. Calculate ΔTCij for all j; 

C.3. if Min{ΔTCij} < 0, generator Gj replaces generator Gi as a medoid; 

if Min{ΔTCij}) ≥ 0, go to step 5; 

C.4. Select the next generator i in set M and repeat step 1–3; 

C.5. Repeat steps 1–4 until ΔTCij ≥ 0 for all i. 
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Figure 1 illustrates these procedures conceptually. The optimal medoid set is determined when the 

change in the cost function TC during the swap test has a nonnegative value for all generators Gi in the 

medoid set. 

Figure 1. The swap test for the generators in the set M and the non-medoid set. 

 

(D) Determine the groups of generators using the optimal medoids set: In this step, groups of 

generators are determined using the optimized medoid generator set M obtained in the previous steps. 

The generators are divided into a given number of coherent groups by selecting the medoid that has the 

minimum dissimilarity index with each generator. Consequently, the optimal coherent groups are 

determined uniquely when the cost function is minimized. Figure 2 shows a flow chart of the overall 

generator grouping algorithm explained in this chapter. 

Figure 2. Flow chart of the proposed algorithm.  
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In the proposed coherency identification method, the PAM algorithm is used to determine the set of 

coherent generator groups. The algorithm obtains the optimized coherent groups of generators by 

minimizing the cost function TC (the sum of the dissimilarity indices). This means that the generators 

in each coherent group are generators with the most similar characteristics in the transient state. 

Therefore, the proposed approach ensures that the generators in each group can be aggregated and 

replaced by an equivalent generator, while preserving the dynamic characteristics of the original 

system with high accuracy. 

2.3. Generator Aggregation  

Once the coherent groups have been identified, the generators in each group are aggregated and 

replaced by a single equivalent generator, while maintaining the steady-state power flow of the original 

system for the next step. A detailed generator model with an exciter and a governor is used in this 

process. The detailed generator aggregation procedure is as follows: 

(1) Join the buses; 

(2) Aggregate the static generator and load model; 

(4) Aggregate the dynamic generator model; 

(5) Aggregate the control units. 

After each generator group has been aggregated, the modified network contains only equivalent 

generators that represent coherent groups and the original loads and buses. Network reduction is then 

performed using a static reduction method, such as the Ward-PV equivalence technique [16], if needed. 

This eliminates selected load nodes of unconcerned subsystems, and provides accurate results when 

applied to a passive network. With this coherency-based dynamic reduction of generators, a power 

system is reduced to a smaller equivalent system, which has the appropriate size and complexity for 

the practical use of transient simulators.  

3. Case study 

In order to verify its effectiveness, the proposed coherency identification method was compared 

with an existing method based on the K-means algorithm [13]. For this purpose, both procedures were 

applied to the dynamic reduction of an IEEE 39-bus test system. The PSS/E simulator program is used 

for the dynamic simulations, and the dynamic responses of the two equivalent reduced systems to a 

fault sequence are compared. Figure 3 shows a diagram of the IEEE 39-bus test system used in the  

case studies. 

3.1. Coherency Identification for Dynamic Reduction 

The test system was divided into internal and external systems for the dynamic reduction. Figure 4 

shows the division of the system. The dynamic reduction was performed on the external system, which 

included six generators and 24 buses. In the external system, the load buses are to be eliminated, 

considering the effects at boundary buses, and the generators are to be aggregated into the given 

number of equivalent generators, once the coherent groups have been determined by the coherency 

identification method. 
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Figure 3. One line diagram of the IEEE 39-bus test system. 

 

Figure 4. Division of the system into internal and external systems. 

 

The six generators in the external system are to be aggregated into four equivalent generators after 

the dynamic reduction. For coherency identification using the proposed method, the Dissimilarity 

Index (DI) should first be calculated using the rotor angle vectors, which are obtained from the 

dynamic simulation. The calculated DIs between generators are listed in Table 1. 



Energies 2012, 5 4425 

 

 

Table 1. Dissimilarity Index (DI) table of the test system. 

D(Gi, Gj) 31 32 33 34 35 36 

31 0 0.2622 0.3087 0.2196 0.4577 0.5211 
32 0.2622 0 0.2637 0.2816 0.2815 0.3807 
33 0.3087 0.2637 0 0.2002 0.3283 0.4278 
34 0.2196 0.2816 0.2002 0 0.3868 0.4823 
35 0.4577 0.2815 0.3283 0.3868 0 0.2118 
36 0.5211 0.3807 0.4278 0.4823 0.2118 0 

In the table, a smaller value indicates a stronger correlation between two generators, and the index 

of each generator with itself is equal to zero accordingly. Using these indices, the generators are 

classified into four coherent groups, based on the PAM algorithm. The generator grouping results are 

given in Table 2. The representative generators of the groups are determined by the optimal medoids, 

which are defined during the process of identifying the coherent generator groups using the PAM 

algorithm. Once the coherent generator groups have been determined, the dynamic reduction is to be 

completed by aggregating the generators in each group into a representative equivalent generator. 

Table 2. Coherency identification result for the proposed algorithm. 

 Buses Representative Sum of DI 

Group 1 31 31 0 
Group 2 32 32 0 
Group 3 33, 34 33 0.2002 
Group 4 35, 36 36 0.2118 

TC 0.4120 

Next, the existing method based on the K-means algorithm is applied to the same IEEE 39-bus test 

system, and its coherency identification results are listed in Table 3.  

Table 3. Coherency identification result of k-mean algorithm.  

 Buses Representative Sum of DI 

Group 1 31 31 0 
Group 2 32 32 0 
Group 3 33, 34, 35 33 0.5285 
Group 4 36 36 0 

TC 0.5285 

The sums of the dissimilarity indices in each coherent group and the TC are also calculated in this 

case, and their larger values indicate that coherency identification based on the K-means algorithm 

does not provide optimized coherent groups for the defined coherency. Comparing these results, one 

can conclude that the proposed method functions properly, and ensures a more optimized grouping 

result for the dynamic reduction. 
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3.2. Dynamic Response of the Equivalent Reduced System 

In this section, transient simulations during a system fault are performed for the original system and 

each of the equivalent reduced systems, and their dynamic responses (the changes in the rotor angles of 

the generators) are compared. For this purpose, a three-phase line fault is applied to the lines between 

buses 28 and 29, buses 2 and 3, and buses 17 and 18 at 1 sec respectively, and cleared after six cycles 

by fault clearing in each case. The rotor angles of the selected generators are then investigated in the 

original system and both equivalent reduced systems. Figure 5 shows the changes in the rotor angle of 

a 30-bus generator following each fault. 

Figure 5. Rotor angle of a 30-bus generator following each fault. 
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(a) Rotor angle of 30-bus generator following 3-phase line fault at line between 28 and 29 buses. 
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(b) Rotor angle of 30-bus generator following 3-phase line fault at line between 2 and 3 buses. 
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(c) Rotor angle of 30-bus generator following 3-phase line fault at line between 17 and 18 buses. 
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As these figures show, the rotor angle patterns of the 30-bus generator in each of the equivalent 

reduced system (using the proposed technique and the K-means technique) are almost the same as 

those of the original system. There are some differences between the amplitudes of the swings in the 

original and reduced systems, but the differences are smaller with the proposed method. This implies 

that the PAM-based procedure causes less change in the dynamic responses after reduction, and 

provides a better estimate of the original system. The dissimilarity indices between the same pairs of 

generators in the original and reduced systems are listed in Table 4, and these reinforce this point more 

precisely. According to the definition of (4), the DI is defined as the Euclidian distance between the 

angle vectors of two generators for a given time duration. Therefore, the DI value for the same 

generators of original and reduced system arithmetically represents the error in the dynamic responses 

caused by the dynamic reduction. As the table indicates, the DI values for all of the generators are 

smaller with the proposed algorithm (PAM case), and this means that the proposed coherency 

identification method ensures a more accurate dynamic reduction compared to the K-means algorithm. 

Table 4. Comparison of the Dissimilarity Index (DI) between original and each  

reduced system. 

Cases 
Generators 

Average Difference 
30-bus 37-bus 38-bus 39-bus 

2–3 line 
fault 

KM case 0.2806 0.2484 0.2364 0.3148 0.2701 
0.0782 

PAM case 0.2081 0.1908 0.1688 0.1999 0.1919 
17–18 line 

fault 
KM case 0.2788 0.2071 0.2134 0.2053 0.2262 

0.0946 
PAM case 0.1477 0.1097 0.1291 0.1398 0.1316 

28–29 line 
fault 

KM case 0.1108 0.1096 0.0936 0.1398 0.1135 
0.0222 

PAM case 0.086 0.0892 0.0622 0.1278 0.0913 

3.3. Discussion 

Existing studies of dynamic reduction have focused primarily on obtaining an accurate equivalent 

model for a given set of coherent generator groups, and the development of accurate grouping 

algorithms for determining the coherent groups has received comparatively little attention. However, 

since power systems are becoming increasingly complex, the demand for more accurate generator 

grouping algorithms is increasing. Compared with the existing methods of [12] and [13], the 

advantages and improvements of the proposed technique can be summarized as follows: 

First, optimization using the proposed method is robust, rather than simply providing local optimal 

results. Use of the PAM algorithm ensures that the coherent grouping results are not influenced by the 

calculation sequence or the initial conditions in the proposed approach. The PAM algorithm classifies 

generators into optimal coherent groups minimizing the sum of the dissimilarity indices in each group. 

In this process, almost all available generator sets are tested as possible medoid sets, and the generator 

set that minimizes the cost function (TC) is selected. This ensures that an optimized coherent generator 

set is determined, regardless of the calculation sequence or initial conditions. 

Second, additional sequences to determine the representative generators of each group are not 

necessary in the proposed approach. Once the coherent groups are determined by the coherency 

identification, the representative generators for the aggregation of each group should be defined. In the 
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existing techniques, additional sequences are required to define the representative generator from 

among the generators in a given group. However, since the proposed method utilizes medoids (the 

representative object of a group in the PAM algorithm), the representative generators and buses in each 

group are naturally defined with the medoids. 

Finally, since the PAM algorithm examines almost all available cases to determine the optimal 

medoid set, the execution speed of the proposed method may be slower than that of existing techniques 

based on sequential processing, especially when the power system is very large and has lots of 

generator accordingly. To compensate for this weakness, some adjustments are adopted for 

determining the initial medoid set in the PAM-based approach. Specifically, some parts of the initial 

medoid set are defined using existing system information, such as the generator configurations of the 

system. Then, the remainder of the initial medoid set is determined in terms of contributions to 

objective function, by minimizing the TC. This makes it possible to define the initial medoid set close 

to the optimal medoid set, and hence the execution speed is improved by reducing the overall number 

of swapping processes. 

4. Conclusions 

This paper presents a new coherency identification method based on the PAM algorithm, a typical 

clustering algorithm, which has been used in data mining area. The objective of the proposed 

coherency identification technique is to determine the optimized coherent groups of generators with 

respect to the dynamic response. For this purpose, the coherency between generators is first evaluated 

using the dynamic simulation time response, and is used to define a dissimilarity index. This index 

provides the criterion for determining the coherent generator groups in the new procedure. Using the 

PAM algorithm, the coherent generator groups are then determined so that the sum of the dissimilarity 

indices in each group is minimized. Finally, once the optimal coherent groups have been determined, 

the generators and buses in the same group are aggregated and replaced by equivalent generators and 

buses, while retaining the steady-state power flow of the original system in the dynamic reduction. In 

order to validate the effectiveness of the proposed coherency identification method, simulated cases 

with an IEEE 39-bus test system were evaluated using PSS/E. The proposed technique was compared 

with an existing coherency identification method based on the K-means algorithm, and the results 

show that new procedure provides a better estimate of the original system 
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