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Abstract: Energy management systems strive to use energy resources efficiently, save 

energy, and reduce carbon output. This study proposes transient feature analyses of the 

transient response time and transient energy on the power signatures of non-intrusive 

demand monitoring and load identification to detect the power demand and load operation. 

This study uses the wavelet transform (WT) of the time-frequency domain to analyze and 

detect the transient physical behavior of loads during the load identification. The 

experimental results show the transient response time and transient energy are better than 

the steady-state features to improve the recognition accuracy and reduces computation 

requirements in non-intrusive load monitoring (NILM) systems. The discrete wavelet 

transform (DWT) is more suitable than short-time Fourier transform (STFT) for transient 

load analyses. 

Keywords: non-intrusive load monitoring; feature analysis; wavelet transform; short-time 

Fourier transform; energy management systems 

 

1. Introduction 

The traditional method of load monitoring is based on supervisory control and data acquisition 

(SCADA). Sensors are installed at every load, and a communication network is required for 

monitoring, communication, and control. Once the load recorder receives a sensor message, it 

immediately records the load data and delivers them to the data center for further analyses. However, 

the traditional load monitoring method is too complicated to implement in an ordinary household [1]. 
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Schweppe and Hart proposed non-intrusive load monitoring (NILM) [2]. An NILM system does not 

require a voltage or current sensor at every load, and it determines the operating schedule of the major 

electric loads in a building at the power service entrance. Compared with the traditional load 

monitoring system, NILM systems offer simple hardware installation. Therefore, an NILM system is a 

wide load monitoring scheme and a powerful energy management system [3–6]. Figure 1 shows the 

overall scheme of an NILM system. Three-phase or one-phase electricity powers the loads, which are 

representative of important load classes in a residence. A meter data management system (MDMS) 

connects to the NILM system to manage and measure the operation, load quality, and power demand 

of each load using a wire or wireless sensor network. The client computers can also read all the 

information from the MDMS through the Internet or Web systems. 

Figure 1. Data collection and load identification system for an NILM system. 

 

Hart proposed a load identification method that monitors the steady-state behavior of loads. Hart 

conceptualized a finite state machine to represent a single appliance in which power consumption 

varies discretely with each step change. Although this method performs well, it has some limitations. 

For example, this method cannot monitor small appliances or appliances that are always on or have 

non-discrete changes in power [2,5]. Cole [7,8] presented a data extraction method and a steady-state 

load identification algorithm for NILM. The algorithm developed by Cole can be used for load 

switching between individual appliances when one or more appliances are switched on or off. 

However, this algorithm requires an extended period of time to accumulate real power (P) and reactive 

power (Q) data, and cannot recognize any appliance power consumption that does not change [8]. 
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Several recent studies have proposed new power signature analyses [9–11] and load identification 

methods [12–15] to recognize loads and to solve classification problems. In 2005, Lee presented an 

estimation technique using unique harmonic signatures to monitor variable-speed-drive (VSD) power 

consumption in a NILM system. Furthermore, to indicate the time-varying nature of VSD power 

demand makes it difficult to keep the track of the ON/OFF status of other constant loads [10]. Many 

load identification papers aiming to improve recognition performance using artificial neural networks 

(ANNs) for an NILM system have been published. For example, Srinivasan et al. [14] proposed a 

neural-network-based approach to identify non-intrusive harmonic sources. Their method does not 

incorporate the various operational modes of each load and operation under different voltage sources. 

Practical power systems contain many harmonics. Previous research has demonstrated how harmonics 

affect the results of an NILM system [16]. However, harmonic content for constant linear loads is very 

small [10], therefore, features other than harmonics and steady-state signatures are necessary for load 

identification in commercial buildings and residential customers. 

To mitigate the disadvantages of steady-state signatures in previous research, this study proposes a 

new analysis method for load identification in an NILM system. This method uses the transient energy 

signature (UT) and transient response time (tTR) to improve the recognition accuracy and reduce 

computational requirements. The proposed improvement technique is unrelated to operational mode, 

voltage variations, and power consumption change. This proposed method is suitable for different 

loads with the same real and reactive power or with simultaneous starting times. Experimental results 

show that the proposed method for the NILM system achieves efficient recognition of commercial or 

industrial loads and improves computational requirements. 

This paper is organized as follows: the proposed methods such as the calculation of transient 

response time of WT and transient energy of power features are described in Section 2. The effects of 

transient power features and feature analysis for load identification are addressed in Section 3. Based 

on the feature analysis techniques, tTR and UT, and the load recognition method, and a series of 

experiments such as software simulation and measurement on site are analyzed and discussed in 

Section 4 to prove the feasibility of the method proposed in this paper. 

2. Proposed Methods 

The traditional non-intrusive load monitoring system uses P and Q as power signatures. However, 

false identification occurs when the power of a certain load equals the total power of the other loads in 

the NILM system [1]. To counteract this problem, this method uses turn-on/off transient waveforms to 

identify loads and analyze their characteristics. 

2.1. Transient Response Time 

Morlet and Grossman proposed the concept of WT to overcome the problems of the STFT, such as 

difficult choice of window functions and proper range of frequency [17]: 
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where )(, tba  is called the daughter wavelet and )(
a

bt
g


 is the dilated and translated mother wavelet. 

Parameter a is the scale factor, and b is the shift factor. The wavelet transform essentially uses scale 

and shift factors to decompose the signal being analyzed into a series of mother wavelets. Therefore, it 

is better suited to analyze transients [18]. A wavelet transform includes the continuous wavelet 

transform (CWT) and DWT. CWT is defined as: 






 dtttxCWT baba )()( ,,   (2)  

where x(t) is the original signal. To obtain the DWT, it is necessary to discretize the scale factor and 

shift factor: 
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Substituting Equation (3) into Equation (2) leads to Equation (4): 
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Setting: 
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the result becomes: 
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The DWT decomposes the original signal into detailed and approximate signals using high-pass 

filter (h[n]) and low-pass filter (g[n]), respectively. The DWT algorithm of multi-resolution 

decomposition is illustrated in Figure 2. Equation (7) shows the relationship between high-pass and 

low-pass filters. Daubechies wavelets are widely used to solve a broad range of problems (e.g.,  

self-similarity properties of a signal or fractal problems, signal discontinuities, noise suppressions). 

][)1(]1[ ngnLh n  (7)  

Figure 2. Discrete wavelet transform scheme. 
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Steady-state signatures, such as P and Q, are additive when two loads occur simultaneously. The 

power of an unknown load can equal that of other composite electrical loads when these loads exist 

simultaneously. Thus, it is not possible to identify the unknown load from these composite electrical 

loads based only on the real power. In addition, the values of these steady-state signatures change 

when electric equipment is used for a long time because operation temperature (e.g., hair dryers and 

vacuum cleaners). Figure 3 shows the real power of a 1200 W vacuum cleaner operating for 

approximately 6 min. In contrast to steady-state properties, transient properties are not additive [3] and 

are unaffected by operation temperature. 

Figure 3. Real power waveform of a 1200 W vacuum cleaner. 

 

Transient response time is related to the time constant of the physical properties of load. The time 

constant directly results from the resistance, inductance, and capacitance of electric load. These 

parameters change with the operation temperature, and therefore influence the physical behavior of 

load and some power signatures (e.g., P, Q, and harmonics) if the electric load is used for a long time. 

Conversely, these parameters do not affect the recognized pattern for an extremely short time such as a 

transient state. 

Equation (8) shows the transient response time, tTR. The following sections discuss and describe the 

detection of transient ending time and starting time of the discrete wavelet transform (DWT) and  

short-time Fourier transform (STFT): 

startendTR ttt   (8)  
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where tend is a derivative of transient ending time from STFT or DWT, and tstart is detected by the 

transient starting time of the STFT or DWT. 

The starting time can be searched for using the maximum value in the scale 1 details (d1) of DWT 

and the first non-steady state frequency band of STFT, respectively. The ending time can be found 

using the maximum value in the scale 5 details (d5) of DWT and the first steady state frequency band 

of STFT, respectively. 

2.2. Transient Energy Algorithms 

The transient properties of a typical electrical load are primarily determined by the physical task 

that the load performs [19,20]. For example, estimating current waveform envelopes at the utility 

service entrance of a building allows accurate transient event detection using NILM [19]. Therefore, 

load classes performing different tasks can be distinguished by their transient behavior [19,20]. 

Because the envelopes of turn-on/off instantaneous transient power are closely linked to unique 

physical quantities, they can serve as reliable metrics for load identification. However, the transient 

state is the dominant state directly after load inception. The one-phase transient energy can be 

determined as follows: 
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where V(k) is derived from the transient voltage for sample k, I(k) is average transient current for 

sample k, v(k) is voltage sampled for sample k, v(k − 1) is voltage sampled for sample k − 1, i(k) is 

current sampled for sample k, i(k − 1) is current Sampled for sample k − 1, and K is number of samples, 

k = 1, 2,…,K. 

The three-phase transient energy can be computed as follows: 
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where )(),(),( kVkVkV cba  are derivatives of transient voltage in phases a, b, and c for sample k; 

)(),(),( kIkIkI cba are the average value of transient current in phases a, b, and c for sample k. 

2.3. Multi-Layer Feedforward Neural Network 

A backward error-propagation algorithm updates interconnecting weights and thresholds until it 

attains proper recognition capability. The back-propagation classifier (BP) in this study is generally 

used as a trainable classifier for a multi-layer feedforward neural network (MFNN). “Classification” in 

this context denotes a mapping from a feature space to the set of class labels—the names of 

commercial or industrial load combinations. 
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Bayesian regularization (mean square error, MSE) typically provides better generalization 

performance than early stopping because Bayesian regularization does not require a validation dataset 

to be separated from the training dataset. On the other words, the input training data uses all training 

datasets. This advantage is particularly important when the dataset is small. 

A supervised MFNN generally consists of three layers: input, hidden, and output, including 

neurons. The neurons are connected by links with weights that are selected to meet the desired 

associations between the input and output neurons. These weights must be trained with existing  

input-output pairs using an appropriate algorithm. The purpose of the MFNN in this study is to identify 

the load of an NILM system. This study adopts an MFNN based on the back-propagation method and 

this ANN can identify the similarities between given data and known data [21]. The input, output, and 

hidden layers of the ANN are described as follows: 

(1) Input Layer: The number of input neurons is the same as that of the power signature 

information, including the real and reactive power (PQ), PQ and total harmonic distortion of 

the voltage and current (PQVTHDITHD), or transient response time and the transient energy 

signature (tTRUT) for comparisons. These power signatures are taken as input data from an 

electrical service entrance. 

(2) Output Layer: The number of output neurons is the same as that of the identified individual 

appliances. Each binary bit serves as a load indicator for the turn-ON/OFF status. 

(3) Hidden Layer: The proposed method uses only one hidden layer. Researchers have proposed 

various heuristic approaches to determine the number of neurons in the hidden layer [22]. The 

common number of neurons for the hidden layer is (number of input neurons + number of 

output neurons)/2 or (number of input neurons + number of output neurons)0.5. Simulation 

results show no significant difference between these two options. 

3. Transient Analyses 

3.1. Data Acquisition and Measurement 

The primary data in an NILM system are the voltage and current of aggregate loads from the point 

of common coupling (PCC) at the utility service entrance. The turn-on/off transients of the load were 

simulated by the Electromagnetic Transient Program (EMTP), and the data of the turn-on/off transients 

of the experimental load were measured on site using a Tektronix digital phosphor oscilloscope. The 

time duration for retrieving transient power signatures depends on different sampling frequency for 

NILM. This study adopts a 4 s time duration. A sample of 521 data samples for each cycle is 

sufficient, and therefore, the sampling frequency is approximately 30 kHz. A representative sample of 

the loads should be monitored to compile data for training purposes. The results of the STFT and 

DWT, along with the recognition of NILM system, were calculated using the MATLAB program. The 

program was run on a DELL PC equipped with an Intel 2.33 GHz Core 2 Duo CPU. 
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3.2. Analysis and Comparison 

This study compares and analyzes the results of the STFT and DWT of the turn-on transients of 

three loads. Figure 4a–c show the current waveforms of turn-on transients for a 160 hp induction 

motor, a 123 hp induction motor driven by variable-voltage drives, and a bank of loads supplied by a 

six-pulse thyristor rectifier for AC power, respectively. Figure 5a–c show the results of the STFT for 

the turn-on current transients of the same loads in Figure 4a–c, respectively.  

Figure 4. The current waveforms of turn-on transients. (a) a 160 hp induction motor; (b) a 

123 hp induction motor driven by variable-voltage drives; (c) a bank of loads supplied by a 

six-pulse thyristor rectifier for AC power. 

(a) (b) 

(c) 
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Figure 5. The STFT results of turn-on current transients. (a) a 160-hp induction motor;  

(b) a 123-hp induction motor driven by variable-voltage drives; (c) a bank of loads 

supplied by a six-pulse thyristor rectifier for AC power. 

(a) (b) 

(c) 

Figure 6a–c show the instantaneous transient power waveforms of turn-on transients for the same 

loads in Figure 4a–c, respectively. Figure 7a–c show the results of the DWT for the turn-on 

instantaneous transient power of the same loads in Figure 4a–c, respectively. 

The turn-on transient waveforms clearly show the physical behaviors of the three electrical loads 

regardless of the current or instantaneous transient power waveforms. Comparing the turn-on transient 

waveforms with the steady-state waveforms for the same load indicates that the turn-on transient 

waveforms provide more physical characteristics than the steady-state waveforms. Figure 6a,b are 

different from turn-on instantaneous transient power waveforms because their start-up methods are 

different from each other. In Figure 6c, the instantaneous transient power waveform of the load slowly 

increases to the rated power because of the control method of the thyristor rectifier. 

Figures 5 and 7 show the STFT and DWT results for turn-on transients, respectively. The transient 

response time of each load can be identified from the ending time and the starting time. For the STFT 

results, the starting times are 0.0126 s, 0.0128 s, and 0.0128 s in Figure 5a–c, respectively. The ending 
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times in Figure 5a–c are 0.2, 0.2, and 0.03 s, respectively. The starting times shown in Figure 4a–c are 

0 s. However, the STFT uses a fixed window frame that cannot accurately identify the time. Moreover, 

any window function is subject to a certain degree of leakage. 

In the results of DWT, the starting times in Figure 7a–c are 0 s. The ending times in Figure 7a–c are 

0.1 s, 0.23 s, and 0.18 s, respectively. The starting time can be searched for using the maximum value 

in the scale 1 details (d1) of DWT, and the ending time can be found using the maximum value in the 

scale 5 details (d5) of DWT. This study uses Daubechies as the mother wavelet for WT. The event 

detection method uses the Daub4 WT of the envelope of instantaneous transient power waveform. 

Wavelet transform uses the scale factor and shift factor to resolve the original signal into 

approximation and details. Therefore, the wavelet transform results are better than those of the STFT. 

Figure 6. The instantaneous power waveforms of turn-on transients. (a) a 160 hp induction 

motor; (b) a 123 hp induction motor driven by variable-voltage drives; (c) a bank of loads 

supplied by a six-pulse thyristor rectifier for AC power. 

(a) (b) 

(c) 
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Figure 7. The DWT results of turn-on instantaneous power transients. (a) a 160 hp 

induction motor; (b) a 123 hp induction motor driven by variable-voltage drives; (c) a bank 

of loads supplied by a six-pulse thyristor rectifier for AC power. 

 
(a) 

 
(b) 
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Figure 7. Cont. 

 
(c) 

The wavelet transform technique has been applied to detect a transient disturbance in NILM 

systems. The traditional method of detecting disturbances is to empirically establish a threshold for the 

transformed signal. However, this process often confuses the transient signals and the noises on the 

signals in real applications. Because the signal under analysis contains noises, and especially white 

noise with a flat spectrum, the threshold is usually difficult to set. Because of the nature of the flat 

spectrum, a filter cannot remove the noise without removing the significant disturbance signals 

together. To process the noise-riding signals, the experimental cases in this study use an existing  

noise-suppression algorithm from the author’s previous paper in [23]. Consequently, the proposed 

method can avoid most noise effects during the detection of the transient signals. 

4. Experimental Results 

Experimental data sets were generated by preprocessing the data on the voltage and current 

waveform of the total load. Each final sample consists of (tend × 60 × 521) samples obtained over a 

period of tend. Each example of the power feature includes a voltage variation from −5% to +5% at 1% 

intervals, yielding eleven examples of power feature for each scenario and (N + N2) × 11 raw data of  

(N + N2) scenarios for given N loads in a power system network. Only one load turns on or off after the 

other loads have operated in steady state in the experiments for each example, the scenarios are  

(N + N2). To confirm the inferential power of the neural networks, the raw data examples are 

categorized into (N + N2) × 11/2 learning and test data sets, respectively. The full input data set 

comprises a (N + N2) × 11 × (tend × 60 × 521) matrix, which functions as both the training data set and 
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the test data set. The learning data and test data are selected randomly from all data. In this operational 

mode, the power signatures PQUT proposed by the author’s previous paper in [24] are different to 

assign the target outputs of MFNN. 

Each entry in the table represents 10 different trials, and each trial uses random initial weights. In 

each case, the network is trained until the mean square error is less than 0.0001 or the number of 

iterations reaches 3000. 

4.1. Case 1, EMTP Simulation 

Case Study 1 of the NILM system identifies three loads with transient and steady-state signatures 

observed during the operation of a 480 V common bus. These loads include a 160 hp induction motor, 

a 123 hp induction motor driven by line frequency variable-voltage drives, and a hank of loads 

supplied by a six-pulse thyristor rectifier for AC power to simulate an exhaust fan, an air conditioning 

condenser, and DC lamps in commercial buildings, respectively. 

Table 1 shows that training and test recognition accuracy values for load identification in multiple 

operations are 100% for real power and reactive power (PQ), P and Q and total harmonic distortion of 

voltage and current (PQVTHDITHD), and transient response time and turn-on transient energy (tTRUT) as 

the power signatures. In the computation requirements of training time, the time of tTRUT is less than 

that of PQ or PQVTHDITHD. 

Table 1. The results of load identification in Case Study 1. 

Features 

Items 

PQ PQVTHDITHD tTR UT (STFT) tTR UT (DWT) 

Training Test Training Test Training Test Training Test 

Recognition  

Accuracy (%) 
100 100 100 100 100 100 100 100 

Time (s) 1.7845 0.00562 2.685 0.0058 1.0781 0.00566 1.0779 0.00565 

Number of Iterations 123.1 224.3 80.1 79.7 

4.2. Case 2, EMTP Simulation for Different Loads with the Same Real Power and Reactive Power 

The neural network in the NILM system of Case Study 2 identifies three loads with transient and 

steady-state signatures operating on a 220 V common bus. These loads include a 2.6 hp  

induction motor, a 4.7 hp induction motor, and an R-L linear load with P and Q equivalent to that of a 

4.7 hp induction motor to simulate a fan, a washing machine, and a heater in a commercial  

building, respectively. 

Figure 8 shows the turn-on instantaneous transient power waveforms of the three loads. Figure 8a,b 

clearly shows different turn-on transient waveforms for the small and medium-size induction motors. 

Although the cases in Figure 8b,c have the same powers for different loads; they show different  

turn-on instantaneous transient power waveforms.  
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Figure 8. Simulation of load turn-on instantaneous transient power for case 2. (a) a 2.6 hp 

induction motor; (b) a 4.7 hp induction motor; (c) an R-L linear load with P and Q 

equivalent to that of a 4.7 hp induction motor. 

(a) (b) 

(c) 

Table 2 shows that the training and test recognition accuracy values for load identification in 

multiple operations are 100% and 92.1%, respectively, if the proposed tTR and UT are used for the 

DWT method. However, the training and test recognition accuracy of load identification in multiple 

operations are only 66.7% and 53.0%, respectively, if only P and Q are used. These loads do not have 

enough distinct characteristic harmonics, and the total harmonic distortion of voltage and current 

cannot improve the test recognition accuracy. The loads that cannot be identified by P and Q are the 

second and third loads, combinations of the first and second loads and combinations of the first and 

third loads. In other words, test recognition for those loads in multiple operations is quite low when 

using only P and Q as power signatures. The transient features tTRUT also require less training time 

than steady-state features. 
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Table 2. The results of load identification in Case Study 2. 

Features 

Items 

PQ PQVTHDITHD tTR UT (STFT) tTR UT (DWT) 

Training Test Training Test Training Test Training Test 

Recognition 

Accuracy (%) 
66.667 53.030 85.56 60.683 96.970 83.333 100 92.121 

Time (s) 14.2089 0.00567 19.56 0.0060 1.7895 0.00564 1.7888 0.00566 

Number of Iterations 3000 3000 182.5 155.2 

4.3. Case 3, Experiment 

The NILM system in Case Study 3 monitors the voltage and current waveforms of a three-phase 

electrical service entrance powering representative loads in a laboratory. The neural network algorithm 

in the NILM system identifies three actual loads with transient and steady-state signatures on a 220 V 

common bus. These loads include a three-phase R-L linear load, a one-phase 0.2 hp induction motor, 

and a three-phase 1 hp induction motor to simulate a heater, a fan, and an ice cube machine in a 

residential building, respectively. 

The load in Figure 9a is a bank of three-phase R-L linear loads. The transient response time depends 

on the time constant of resistance and inductance. After three cycles, 0.05 s, the load current enters the 

steady state. The real power is approximately 5 kW. 

Figure 9b,c shows a one-phase 0.2 hp induction motor and a three-phase 1 hp induction motor, 

respectively. These motors have different turn-on transient waveforms. The more horse power they 

have, the more current the induction motor requires to start. 

Table 3 shows that the training recognition accuracy values of load identification in multiple 

operations can reach up to 100% when using PQ, PQVTHDITHD, or tTRUT as the power signatures. In the 

test recognition accuracy of load identification, the values exceed 92% for PQ and other power 

signatures. The test recognition accuracy of the proposed DWT method for signature tTRUT is higher 

than that of other methods. 

Table 3. The results of load identification in Case Study 3. 

Features 

Items 

PQ PQVTHDITHD tTR UT (STFT) tTR UT (DWT) 

Training Test Training Test Training Test Training Test 

Recognition 

Accuracy (%) 
98.485 92.424 100 94.69 98.485 93.940 100 96.970 

Time (s) 1.8502 0.00568 2.032 0.006 1.0782 0.00569 1.0783 0.00566 

Number of Iterations 201.5 211.2 80.9 81.3 
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Figure 9. Experiment of load turn-on instantaneous transient power for case 3. (a) a  

three-phase R-L linear load; (b) a one-phase 0.2 hp induction motor; (c) a three-phase 1 hp 

induction motor. 

(a) (b) 

(c) 

4.4. Case 4, Experiment for Different Loads with the Same Real Power and Reactive Power 

The NILM system in Case Study 4 monitors the voltage and current waveforms of a one-phase 

electrical service entrance powering representative loads in a laboratory. The neural network algorithm 

in this NILM system identifies three actual loads with transient and steady-state signatures on a 110 V 

common bus. These loads include a 119 W dehumidifier, a 590 W vacuum cleaner, and an R-L linear 

load with P and Q equivalent to that of a 590 W vacuum cleaner. 

Figure 10a,b clearly shows different turn-on transient waveforms for the different types of electrical 

equipment with induction motors. Figure 10b,c shows that the different loads have different 

instantaneous transient power waveforms even though they have identical P and Q. 
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Table 4 shows that the training and test recognition accuracy values for load identification in 

multiple operations exceed 98% and 83%, respectively, if the tTR and the UT are selected as the power 

signatures for the proposed DWT method. However, the training and test recognition accuracy of load 

identification in multiple operations are only 68.2% and 48.5%, respectively, when P and Q are 

selected. For the same reasons as those listed in Case Study 2, test recognition accuracy in multiple 

operations is quite low using only P and Q as power signatures. Because the loads in this case have 

sufficiently distinct harmonics, the total harmonic distortion of voltage and current can increase the test 

recognition accuracy when using PQVTHDITHD as power signatures. In addition to recognition accuracy 

of load identification, the steady-state features require more computation time than transient features. 

Figure 10. Experiment of load turn-on instantaneous transient power for case 4. (a) a 119 W 

dehumidifier; (b) a 590 W vacuum cleaner; (c) an R-L linear load with P and Q equivalent 

to that of a 590 W vacuum cleaner. 

(a) (b) 

(c) 
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Table 4. The results of load identification in Case Study 4. 

Features 

Items 

PQ PQVTHDITHD tTR UT (STFT) tTR UT (DWT) 

Training Test Training Test Training Test Training Test 

Recognition 

Accuracy (%) 

68.182 48.485 90.561 70.230 98.485 78.788 98.485 83.333 

Time (s) 17.354 0.00567 20.542 0.0055 1.952 0.00561 1.885 0.00566 

Number of Iterations 3000 3000 210.2 190.4 

4.5. Case 5, Turn-off EMTP Simulation 

A householder can know the power consumption of electrical load by observing the time of 

operation for each load monitored by an NILM system. When an undetermined electrical load is turned 

off, it is necessary to keep track of how often each electrical load is turned on and off. The neural 

network in the NILM system of Case Study 5 identifies three loads with transient and steady-state 

signatures observed during operation of a 480 V common bus. These loads are the same as those in 

Case Study 1. In this case study, the time of turning-off electrical loads is 100.2 s. 

Figure 11 shows the turn-off instantaneous transient power waveforms of the three loads. The 

different turn-off instantaneous transient power waveforms in these figures clearly show different 

physical characteristics for these three loads. The loads in Figure 11a,b has different steady-state 

powers. The load in Figure 11c is combined with a bank of resistance and inductance driven by a  

six-pulse thyristor rectifier. The turn-off instantaneous transient power waveform of Figure 11c differs 

from that of Figure 11a,b because of the controller of the six-pulse thyristor rectifier. 

Figure 11. The instantaneous power waveforms of turn-off transients. (a) a 160 hp 

induction motor; (b) a 123 hp induction motor driven by variable-voltage drives; (c) a bank 

of loads supplied by a six-pulse thyristor rectifier for AC power. 

(a) (b) 
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(c) 

Table 5 shows that the training and test recognition accuracy values of load identification in 

multiple operations are all 100% for the signatures of transient response time (tTR) and turn-off 

transient energy (UT-OFF). However, the analysis technique is the DWT or STFT. 

Table 5. The Results of Load Identification in Case Study 5. 

Features 

Items 

tTR UT-OFF (STFT) tTR UT-OFF (DWT) 

Training Test Training Test 

Recognition Accuracy (%) 100 100 100 100 

Time (s) 1.0578 0.0056 1.0385 0.00552 

Number of Iterations 78.5 73.6 

5. Conclusions 

The method proposed in this study allows a user to monitor the power consumption of electrical 

loads by observing the operation and time of use for loads monitored by the NILM. Furthermore, this 

allows users to improve their electricity consumption habits to save electricity energy and reduce 

carbon emissions from a viewpoint of power consumption in the future. In the analyses and 

comparisons of the transient analyses, this study compares and analyzes the results of the STFT and 

DWT of the turn-on transients of typical representative loads. Moreover, this study proposes transient 

features, including the transient response time and the transient energy, to be analyzed by the DWT for 

the power signatures. Experimental results show the transient features (tTRUT) are better than  

steady-state features for improving recognition accuracy and reducing the computation requirements of 

non-intrusive power demand morning and load identification. 
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