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Abstract: Bidding competition is one of the main transaction approaches in a deregulated 

electricity market. Locational marginal prices (LMPs) resulting from bidding competition and 

system operation conditions indicate electricity values at a node or in an area. The LMP reveals 

important information for market participants in developing their bidding strategies. Moreover, 

LMP is also a vital indicator for the Security Coordinator to perform market redispatch for 

congestion management. This paper presents a method using a principal component analysis 

(PCA) network cascaded with a multi-layer feedforward (MLF) network for forecasting LMPs 

in a day-ahead market. The PCA network extracts essential features from periodic information 

in the market. These features serve as inputs to the MLF network for forecasting LMPs. The 

historical LMPs in the PJM market are employed to test the proposed method. It is found 

that the proposed method is capable of forecasting day-ahead LMP values efficiently. 
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1. Introduction 

There are two main transaction modes in a deregulated electric power industry, namely, competitive 

bidding and bilateral contract. Competitive biddings are used in the energy, spot, firm-transmission-right 

and ancillary service markets while bilateral contract is adopted outside the competitive market for any two 

individual entities, buyer and seller [1,2]. For either transaction mode, the electricity price information 

serves as an essential signal for all entities to adjust their offers/bids and/or contract prices. In particular, 
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locational marginal pricing (LMP) is one of the most popular modes for pricing electricity in a deregulated 

electricity market. LMPs can reflect the electricity value at a node and may be discriminated at different 

nodes in a power network [3]. LMPs provide information that is helpful to market participants in 

developing their bidding strategies. It is also a vital indicator for the Security Coordinator to mitigate 

transmission congestion [4]. LMPs reveal important information for both the spot market and entities 

with bilateral contracts. 

Past studies have investigated short-term System Marginal Price (SMP) forecasting [5,6]. Because the 

SMP is irrelevant to transmission constraints, forecasting LMPs subject to transmission constraints is more 

difficult than forecasting Market Clear Prices (MCPs). Current methods for short-term LMP forecasting 

can be classified at least into three groups: hour-ahead, day-ahead and week-ahead forecastings. 

The recurrent neural network integrated with fuzzy-c-means was proposed for hour-ahead LMP 

forecasting in [7]. Linguistic descriptions in the PJM market were transformed into fuzzy membership 

functions associated with the recurrent neural network for forecasting volatile hour-ahead LMP 

variations when contingency occurs [8]. This paper investigates the more difficult problem related to 

the day-ahead price forecasting, which may be applied to the day-ahead market and will be discussed 

in the next paragraph. 

In recent years, Contreras et al. [9] used the ARIMA model and Nogales et al. [10] used the 

dynamic regression approach and transfer function approach to predict the next-day (day-ahead) 

electricity prices. However, there is no discussion on extracting the market features for usage of these 

approaches in [9,10]. Li et al. [11] integrated the fuzzy inference system with least-squares estimation 

to conduct the day-ahead electricity price forecasting. The “week day”, “yesterday price” and “local 

demand” were considered in the 18 antecedent (premise or condition) parts of the fuzzy rules in [11]. 

Giving the membership functions of these three linguistic variables is quite heuristic. Moreover, the 

“local demand” for the fuzzy rules is not a forecasted but an actual value, which is generally not available 

in the day-ahead market. Amjady and Keynia [12] combined a mutual information technique (MIT) 

with the cascaded neuro-evolutionary algorithm (NEA) for the day-ahead electricity price forecasting. 

In [12], 14 features in the market were selected by MIT for 24 feedforward neural networks trained by 

the NEA. No reasonable explanation was found for these 14 features. Moreover, many (24) neural 

networks make the method impractical for industrial application. Garcia et al. [13] presented an 

approach to predicting next-day electricity prices using the Generalized Autoregressive Conditional 

Heteroskedastic (GARCH) methodology, which is an extended auto-regressive integrated moving 

average (ARIMA). Amjady [14] presented a fuzzy neural network with an inter-layer and feedforward 

architecture using a new hypercubic training mechanism. The proposed method predicted hourly 

market-clearing prices for the day-ahead electricity markets. Again, there is no discussion on 

extracting the market features for usage of the GARCH in [13,14]. Coelho and Santos [15] proposed a 

nonlinear forecasting model based on radial basis function neural networks (RBF-NNs) with Gaussian 

activation functions. Partial autocorrelation functions (PACF), which relies on the mutual linear 

dependency among studied parameters, was used to identify the market features. However, the relation 

among power market features is very nonlinear. 

The problem of week-ahead price forecasting is generally easier than that of day-ahead price 

forecasting because the price pattern of a day is similar to that of its corresponding week-ahead day. 

Catalao et al. [16] proposed a wavelet-based Sugeno type fuzzy inference system to predict the 
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electricity price in the electricity market of mainland Spain. However, the selection of numbers of 

membership functions in [16] is a trade-off between refining and sparseness. Che and Wang [17] 

presented a method based on support vector regression and ARIMA modeling; however, only the 

MCPs of California electricity market were used to examine the accuracy of the proposed method. The 

method has not been applied to forecasting LMPs, whose pattern is more nonlinear than MCPs’. 

Because LMPs vary dramatically, it is difficult to analyze the related data with traditional techniques 

(e.g., regression analysis). Like other forecasting problems [18–20], the LMP forecasting needs feature 

extraction incorporating a powerful approach. As described above, the neural network is suitable for 

nonstationary time-series prediction, providing satisfactory results. In this paper, a principal component 

analysis (PCA) neural network cascaded with the multi-layer-feedforward (MLF) neural network is 

proposed for day-ahead LMP forecasting. The PCA neural network is used to extract essential features in 

the electricity market. It also helps reduce high-dimensional data into low-dimensional ones, which serve 

as inputs for the MLF neural network. 

The rest of this paper is organized as follows: the PJM real-time market data will be described in 

Section 2. The proposed PCA neural network cascaded with the MLF neural network for forecasting 

day-ahead LMPs will be given in Section 3. Simulation results obtained using the PJM data are presented 

in Section 4. Concluding remarks are provided in Section 5. 

2. Volatile LMPs in a Day-ahead Market 

The PJM energy market comprises day-ahead and real-time markets. The day-ahead market is a forward 

market in which hourly LMPs are calculated for the next operating day using generation offers, demand 

bids and scheduled bilateral transactions. The real-time market is a spot market in which current LMPs are 

calculated at five-minute intervals according to actual grid operating conditions. PJM settles transactions 

hourly and issues invoices to market participants monthly. Figures 1 and 2 illustrate the LMPs in Fisk 

(4 kV) and Byberry (13 kV), respectively, on 1–7 July 2008. As can be seen, LMPs vary dramatically over 

a wide range. 

Figure 1. Daily LMPs in Fisk (4 kV) on 1–7 July 2008. 
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Figure 2. Daily LMPs in Byberry (13 kV) on 1–7 July 2008. 

 

3. The Proposed Method 

The hybrid PCA neural network is developed by combining the unsupervised PCA and supervised MLF 

neural networks to conduct day-ahead LMP forecasting. The PCA neural network is employed to extract 

essential features in the electricity market. The PCA neural network can also reduce high-dimensional 

data into low-dimensional ones, which serve as inputs of the MLF neural network to reduce the training 

CPU time. 

3.1. Principal Component Analysis Neural Network 

The purpose of the PCA neural network is to find a set of P orthonormal vectors (OVs) in a  

Q-dimensional space (Q  P), such that these OVs will account for as much variance of the input data 

as possible. OVs are actually P eigenvectors associated with the P largest eigenvalues of the E( txx ), 

where x denotes the Q-dimensional input column vector, i.e., x = (x1 x2 … xQ)t. The direction of the q-th 

principal component will be along the q-th eigenvector, q = 1, 2, .., Q. 

Let symbol t be the training index. This paper used Sanger’s method [21] to update the weightings 

between the neurons of the PCA network as follows: 
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to train a neural network consisting of P linear neurons so as to find the first P principal components. 

More specifically, Generalized Hebbian Algorithm was able to make  ),(twp p = 1, 2, …, P, converge to 

the first P principal component directions, in sequential order: ( )  ,p iw t v   where vi is a normalized 

eigenvector associated with the i-th largest eigenvalue of the correlation matrix. It was shown that if 
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correlation matrix of x, i.e., C ≡ E( txx ), respectively. Consequently, neuron p can find the p-th 

normalized eigenvector of C. Detailed explanations can be found in [21]. 

It was shown that )(t should be smaller than the reciprocal largest eigenvalue of E( ) to ensure the 

convergence of training a PCA neural network. When the training process is convergent, pw ,  

p = 1, 2, …, P, converges to the p-th eigenvector of E( ). 

Figure 3 shows the configuration of the hybrid PCA neural network: The left part of Figure 3 is the 

unsupervised PCA neural network while the right part is the supervised MLF neural network. Because the 

training time of unsupervised PCA neural network is trivial while that of supervised MLF is considerable, 

PCA neural network is adopted to reduce both the dimension of training data and the training time for the 

cascaded MLF network trained by the back-propagation algorithm, which is well known and ignored here. 

In the proposed hybrid PCA, the new hidden layer consists of 20 neurons. The number (p) of 

orthonormal vectors is 24 or 48, depending on the numbers of inputs. After training the unsupervised PCA, 

the supervised MLF is trained, using the frozen weights of the unsupervised PCA. The training sets are 

identical for both unsupervised and supervised NNs. 

Figure 3. The proposed hybrid PCA neural network. 
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3.2. Features for Inputs of PCA Neural Network 

The performance of a neural network depends strongly on the adopted features at the input layers. As 

shown in Figures 1 and 2, variations of system load affect LMPs. Assume that the h-th LMP is to be 

forecasted. Let P(h) and L(h) be the LMP and MW demand at hour h, respectively. 

Below are 4 alternatives for considering input features x1, x2, …, xQ: 

(1) The features of the past 2 days: F1(h)  (P(h − 47), P(h − 46), …, P(h − 25), P(h − 24) and  

L(h − 47), L(h − 46), …, L(h − 25), L(h − 24)). That is, Q = 48. 

(2) The features of the same day of the last week and those of the past 2 days: F2(h)  (P(h − 168), 

P(h − 167), …, P(h − 146), P(h − 145), P(h − 47), P(h − 46), …, P(h − 25), P(h − 24) and  

L(h − 168), L(h − 167), …, L(h − 146), L(h − 145), L(h − 47), L(h − 46), …, L(h − 25), L(h − 24)). 

That is, Q = 96. 
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(3) The features of the past 2 days and the designated day: F3(h) = F1(h) ׫ (D|D is one of the 

seven days in a week). This implies Q = 49. 

(4) The features of the same day of the last week, those of the past 2 days and the designated day: 

F4(h) = F2(h)  ׫ (D|D is one of the seven days in a week). This means Q = 97. 

The symbol D for the designated day here means Monday, …, Saturday or Sunday. Because the 

neural network cannot deal with symbols, 30, 50, …, 150 stand for Monday, …, Saturday and Sunday, 

respectively, in this paper. 

3.3. Moving Data Windows for Forecasting 

P(h) at the output layer is paired with F1(h), F2(h), F3(h) or F4(h). More specifically, assume that 

F1(h) is considered and the 24 LMPs on Wednesday (next day) are forecasted. Figure 4 illustrates the 

moving data window corresponding to the forecasted LMP. Hence, the paired training data are as follows: 

(F1(h), P(h)), (F1(h + 1), P(h + 1)), …, (F1(h + 23), P(h + 23)). In Figure 4, the first data set involves only 

Monday and Wednesday. The last 23 data on Monday and the first data on Tuesday will be paired with 

P(h + 1) for the second data set. Restated, forecasting 24 LMPs on Wednesday will be completed at 

23:00 p.m. on Tuesday. 

When the proposed hybrid PCA neural network is used in the day-ahead market or in the testing stage, 

the input data for the past day (e.g., Monday in Figure 4) and this day (e.g., Tuesday in Figure 4) are known 

and output (forecasted) data for the next day (e.g., Wednesday in Figure 4) is unknown. 

Figure 4. Moving data window (F1(h)) corresponding to forecasted P(h). 

 

Assume that this day is Tuesday and LMPs on Wednesday are to be forecasted. Figure 5 shows the 

moving data window for F2(h) paired with P(h). The paired training data are as follows: (F2(h), P(h)), 

(F2(h + 1), P(h + 1)), …, (F2(h + 23), P(h + 23)). As shown in Figure 5, the first data set involves only the 

last Wednesday, Monday and Wednesday. The time index h will be increased by one at a time until h + 23. 

Restated, forecasting 24 LMPs on Wednesday will be completed at 23:00 p.m. on Tuesday. 

Figure 5. Moving data window (F2(h)) corresponding to forecasted P(h). 
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3.4. Numbers of Neurons in Different Layers 

The numbers of input, output, second, and fourth layers are discussed as follows: 

(1) The numbers of input neurons for the hybrid PCA neural networks are 48, 96, 49 and 97 for F1(h), 

F2(h), F3(h) and F4(h), respectively. That is, subscript Q in Figure 3 can be 48, 96, 49 or 97. 

(2) The number of neurons in the MLF output layer is one (i.e., P(h)), regardless of F1(h), F2(h), 

F3(h) and F4(h) being considered.  

(3) Because the purpose of the PCA neural network is to find a set of P orthonormal vectors (OVs) 

in a Q-dimensional space, P is expected to be smaller than the corresponding number of inputs. It is 

intuitive to consider P in Figure 3 to be 24 for the studied problem with Q = 48 or 49 because there 

are 24 hours in a day. Similarly, P = 48 while Q = 96 or 97. 

(4) The common number of neurons for the fourth (hidden) layer is (P + number of output neurons)/2 

or (P  number of output neurons)0.5. The simulation results show no significant difference between 

these two alternatives. 

4. Simulation Results 

In order to demonstrate the applicability of the proposed hybrid PCA neural network, the LMPs for 

the Fisk (4 kV) and Byberry (13 kV) areas in the PJM system were studied. Two sets of 366  24 data  

(1 January–31 December 2008) for Fisk and Byberry from the PJM web site were employed to 

train/validate and test the proposed hybrid PCA neural network. The entire data set includes four seasons. 

The data of each season are further divided into three groups: training data, validation data (in total 2/3), 

and test data (1/3). The training data were used for training the neural network and updating the biases and 

weights. The validation data were utilized to monitor the training process. The remaining data were 

employed to test the proposed hybrid PCA neural network after they were well trained. A C++ code was 

developed using a PC equipped with a Pentium(R) Dual-Core E5200 2.5 GHz CPU and 4-GB RAM 

for showing the applicability of the proposed method. 

4.1. Comparison between Hybrid PCA and Back Propagation-Based Neural Networks 

In this subsection, the performance of the proposed hybrid PCA neural network is compared with that of 

traditional back propagation-based (BP-based) neural network for the Fisk area. The traditional BP-based 

neural network can be taken as a neural network in which there are no second and third layers as seen 

in Figure 3. Tables 1–4 display the CPU time (minute: second), correlation coefficient (R2) and mean 

absolute error (MAE, $/MWh) obtained by these two methods for Fisk. The correlation coefficient 

represents the resemblance between the actual and the forecasted values. The value of one for the 

correlation coefficient indicates that the actual values are identical to the forecasted ones. The average 

value and corresponding standard deviation (sd, $/MWh) of actual LMPs in each season are also shown 

in the second and third columns of Tables 1–4. Figure 6 shows the comparisons among actual, BP-based 

and hybrid PCA-based LMPs for Fisk (1–7 July 2008). 
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Table 1. Performance comparison between the proposed hybrid PCA and BP-based neural 

network (Fisk, spring). 

Dimension of  
input vector 

LMP ($/MWh) Hybrid PCA Network BP-based Network 

Q average sd time R2 MAE time R2 MAE 

48 

52.89 25.17 

03:50 0.749 14.96 04:21 0.707 15.85 
49 03:36 0.814 13.11 04:28 0.777 14.72 
96 06:20 0.838 14.19 07:05 0.767 15.19 
97 06:34 0.838 13.78 08:19 0.769 15.10 

Table 2. Performance comparison between the proposed hybrid PCA and BP-based neural 

network (Fisk, summer). 

Dimension of  
input vector 

LMP ($/MWh) Hybrid PCA Network BP-based Network 

Q average sd time R2 MAE time R2 MAE 

48 

55.61 40.52 

04:06 0.793 21.35 04:35 0.759 21.36 
49 04:39 0.823 20.68 04:50 0.800 21.42 
96 08:48 0.826 21.15 12:00 0.824 21.16 
97 08:53 0.843 20.51 12:59 0.829 20.74 

Table 3. Performance comparison between the proposed hybrid PCA and BP-based neural 

network (Fisk, fall). 

Dimension of  
input vector 

LMP ($/MWh) Hybrid PCA Network BP-based Network 

Q average sd time R2 MAE time R2 MAE 

48 

53.23 32.43 

03:45 0.840 15.57 04:50 0.840  16.42  
49 03:55 0.858 15.34 04:55 0.847  15.81  
96 13:41 0.901 13.06 14:34 0.875  16.22  
97 13:55 0.904 13.66 14:44 0.876  15.42  

Table 4. Performance comparison between the proposed hybrid PCA and BP-based neural 

network (Fisk, winter). 

Dimension of  
input vector 

LMP ($/MWh) Hybrid PCA Network BP-based Network 

Q average sd time R2 MAE time R2 MAE 

48 

42.36 19.15

03:53 0.706 11.02 04:16 0.683 12.19 
49 03:57 0.765 10.69 04:24 0.725 12.58 
96 08:03 0.818 10.13 12:26 0.786 10.71 
97 08:21 0.822 10.03 12:40 0.780 11.28 
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Figure 6. Comparisons among actual, BP-based and hybrid PCA-based LMPs for Fisk. 

 

According to Tables 1–4, the following comments can be made: 

(1) The most volatile LMPs with an average of 55.61 $/MWh and a standard deviation of  

40.52 $/MWh occurred in summer. The most steady LMPs with an average of 42.36 $/MWh and a 

standard deviation of 19.15 $/MWh occurred in winter. 

(2) For the same neural network, the R2 obtained by 49 inputs is better (larger) than that by 48 inputs; 

for the same reason, the neural network with 97 inputs has better performance than that with  

96 inputs in terms of R2. 

(3) For the same neural network, the R2 obtained by 96 (97) inputs is much better (larger) than that 

by 48 (49) inputs; however, the CPU times required by 96 (97) inputs are longer. 

(3) For the same number of inputs, the R2 and MAE $/MWh obtained by the hybrid PCA neural 

network are better than those obtained by the BP-based neural network. 

(4) For the same number of inputs, the CPU time required by the hybrid PCA neural is shorter than that 

required by the BP-based neural network. 

Tables 5–8 show the comparison of performance between the proposed hybrid PCA neural network and 

the traditional BP-based neural network for the Byberry area. The same conclusions can be made for both 

Byberry and Fisk areas. Figure 7 shows the comparisons among actual, BP-based and hybrid PCA-based 

LMPs for Byberry (1–7 July 2008). 

Table 5. Performance comparison between the proposed hybrid PCA and BP-based neural 

network (Byberry, spring). 

Dimension of  
input vector 

LMP ($/MWh) Hybrid PCA Network BP-based Network 

Q average sd time R2 MAE time R2 MAE 

48 

73.95 42.05

03:28 0.681 25.89 04:01 0.634 28.15 
49 03:39 0.734 25.41 04:05 0.669 28.56 
96 06:00 0.784 24.60 07:05 0.673 28.40 
97 06:07 0.793 24.22 07:35 0.681 29.22 
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Table 6. Performance comparison between the proposed hybrid PCA and BP-based neural 

network (Byberry, summer). 

Dimension of  
input vector 

LMP ($/MWh) Hybrid PCA Network BP-based Network 

Q average sd time R2 MAE time R2 MAE 

48 

87.22 52.73

03:41 0.797 28.06 04:32 0.789 28.15 
49 03:52 0.842 26.36 04:58 0.827 26.96 
96 08:25 0.859 25.10 14:47 0.852 25.73 
97 08:30 0.868 24.37 14:51 0.848 26.50 

Table 7. Performance comparison between the proposed hybrid PCA and BP-based neural 

network (Byberry, fall). 

Dimension of  
input vector 

LMP ($/MWh) Hybrid PCA Network BP-based Network 

Q average sd time R2 MAE time R2 MAE 

48 

88.41  50.30 

03:08 0.765 25.01 04:15 0.725 25.66 
49 03:15 0.769 24.73 04:36 0.761 25.24 
96 08:06 0.848 23.48 11:41 0.823 23.59 
97 08:11 0.874 23.17 11:54 0.864 23.62 

Table 8. Performance comparison between the proposed hybrid PCA and BP-based neural 

network (Byberry, winter). 

Dimension of  
input vector 

LMP ($/MWh) Hybrid PCA Network BP-based Network 

Q average sd time R2 MAE time R2 MAE 

48 

56.73 25.26 

03:28 0.725 14.72 04:29 0.688 14.98 
49 03:58 0.779 13.94 04:53 0.709 15.24 
96 09:53 0.830  12.96 11:22 0.754 13.62 
97 09:58 0.837 12.99 11:54 0.757 16.03 

Figure 7. Comparisons among actual, BP-based and hybrid PCA-based LMPs for Byberry. 
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4.2. Investigation of Number of Output Neurons for PCA Network 

The second layer of the proposed hybrid PCA neural network shown in Figure 3 denotes the features 

of the electricity market. The number (i.e., P) of neurons at this layer hence plays a crucial role in 

developing the proposed method. Tables 9 and 10 show the impact of different P’s at the second layer on 

R2 and MAE for Fisk and Byberry areas, respectively, in fall. In order to show the effectiveness of the 

proposed method, only 97 inputs (i.e., Q) in Figure 3 were studied. The following remarks can be 

made according to Tables 9 and 10: 

(1) The larger the P, the longer the CPU time is required due to the supervised MLF neural network 

at the third, fourth and fifth layers in Figure 3. 

(2) A larger P will result in a better performance in terms of R2 and MAE obtained. Hence, there is a 

trade-off between performance and CPU time. In general, performance is more important. 

Table 9. Comparison between different P’s when Q = 97 (Fisk, fall). 

P CPU R2 MAE 

48 13:55 0.904  13.66 
36 04:28 0.896  13.86 
24 03:37 0.890  13.91 
12 02:48 0.863  15.01 

Table 10. Comparison between different P’s when Q = 97 (Byberry, fall). 

P CPU R2 MAE 

48 08:11 0.874 23.17 
36 07:47 0.840 23.94 
24 06:25 0.826 23.95 
12 05:52 0.811 23.99 

4.3. Comparison between Hybrid PCA Network and ARIMA 

Traditional nonstationary time-series prediction method using ARIMA [9] is employed to study the 

same PJM day-ahead market. Because the hybrid PCA neural network with 97 inputs gained the best 

performance as described in Section 4.1, it was compared with the ARIMA. The general ARIMA 

formulation was given as follows [9]: θ(B)ε(h)φ(B)P(h)   where P(h) is the LMP at time h, φ(B) and 

)(B  are functions of the backshift operator B: BkP(h) ≡ P(h − k), and ε(h) () is the error term. This paper 

adopted the functions φ(B)and θ(B)given in [9] for comparisons. In [9], the load factor was not 

considered as a regressor in the ARIMA. Twenty four LMPs were used as lagged regressors in the 

ARIMA. Tables 11 and 12 show the correlation coefficient (R2) and mean absolute error (MAE, $/MWh) 

obtained for all four seasons by the two methods. 

The following comments could be made according to the results shown in Tables 11 and 12: 

(1) For either Fisk or Byberry, the performances of the proposed hybrid PCA neural network are 

always better than those of the ARIMA in terms of both R2 and MAE obtained. 

(2) The R2’s obtained by the ARIMA for both Fisk and Byberry in winter are very low (0.488 and 

0.419) while those obtained by the proposed method are much higher (0.822 and 0.837). 
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(3) The LMPs in the Byberry area are more volatile than those in the Fisk area in terms of average R2 

(0.566 with respect to 0.725). However, the proposed method is more reliable regardless of the 

studied areas; that is, 0.843 for Byberry is close to 0.852 for Fisk. 

Table 11. Comparison between the proposed hybrid PCA and ARIMA [9] (Fisk). 

Seasons 
Hybrid PCA Network ARIMA [9] 

R2 MAE R2 MAE 

Spring 0.838 13.78 0.808 15.89 
Summer 0.843 20.51 0.757 21.33 
Autumn 0.904 13.66 0.846 16.31 
Winter 0.822 10.03 0.488 11.68 

Average 0.852 14.50 0.725 16.30 

Table 12. Comparison between the proposed hybrid PCA and ARIMA [9] (Byberry). 

Seasons 
Hybrid PCA Network ARIMA [9] 

R2 MAE R2 MAE 

Spring 0.793 24.22 0.578 28.10 
Summer 0.868 24.37 0.743 27.81 
Autumn 0.874 23.17 0.522 26.86 
Winter 0.837 12.99 0.419 15.04 

Average 0.843 21.19 0.566 24.45 

4.4. Diebold and Mariano Test 

Diebold and Mariano proposed and evaluated explicit tests of the null hypothesis of no difference in 

the accuracy of two competing forecasts [22]. The loss function does not need to be quadratic, and 

even to be symmetric, and forecast errors can be non-Gaussian, nonzero mean, serially correlated, and 

contemporaneously correlated in this method. This subsection utilizes Diebold and Mariano test to evaluate 

the performance of the proposed hybrid PCA network, the BP-based network, and ARIMA. The loss 

function used in this paper is based on “mean squared error” (MSR) [23]. 

Let H0 be the null hypothesis of no difference in the accuracy of the proposed hybrid PCA network 

and the BP-based network. The alternative hypothesis is the union of H1 and H2, which mean that the 

proposed hybrid PCA network is significantly better than the BP-based network and that the BP-based 

network is significantly better than the proposed hybrid PCA network, respectively. Under the null 

hypothesis, the test statistic S1 defined in [22] and used to test H0, H1 and H2 has an asymptotic standard 

normal distribution. Let the confidence level be 95%. If S1 is greater than 1.96, than H1 is accepted and H0 

is declined. If S1 is smaller than −1.96, than H2 is accepted and H0 is declined. When S1 is within 

[−1.96, 1.96], H0 is accepted and there is no significant difference in forecasting accuracy between the 

two models. According to Tables 13 and 14, the proposed hybrid PCA network has better performance 

in 9 out of 16 tests while 7 tests accept H0. H2 has never been accepted. 

Similarly, Diebold and Mariano test is conducted to compare the performance between the proposed 

hybrid PCA network and ARIMA. Based on the same comparisons given in Tables 11 and 12, Table 15 

shows that the proposed hybrid PCA network is significantly better than ARIMA. 
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Table 13. Diebold and Mariano test between the proposed hybrid PCA and BP-based neural 

network (Fisk). 

Seasons Number of Input Q S1 Results 

spring 
48 2.8701 accept H1, decline H0 
96 3.2559 accept H1, decline H0 

summer 
48 1.5524 accept H0 
96 0.2173 accept H0 

fall 
48 0.7640 accept H0 
96 3.4976 accept H1, decline H0 

winter 
48 3.1032 accept H1, decline H0 
96 3.1033 accept H1, decline H0 

Table 14. Diebold and Mariano Test between the proposed hybrid PCA and BP-based neural 

network (Byberry). 

Seasons Number of Input Q S1 Results 

spring 
48 2.7228 accept H1, decline H0 
96 3.2615 accept H1, decline H0 

summer 
48 0.7169 accept H0 
96 1.5594 accept H0 

fall 
48 0.5016 accept H0 
96 0.8247 accept H0 

winter 
48 2.7702 accept H1, decline H0 
96 4.1360 accept H1, decline H0 

Table 15. Diebold and Mariano Test between the proposed hybrid PCA and ARIMA [9]. 

Seasons 
FISK Byberry 

S1 Results S1 Results 

Spring 3.2055 accept H1, decline H0 6.5186 accept H1, decline H0 
Summer 3.5084 accept H1, decline H0 4.2310 accept H1, decline H0 
Autumn 3.1485 accept H1, decline H0 10.000 accept H1, decline H0 
Winter 7.3961 accept H1, decline H0 11.678 accept H1, decline H0 

5. Conclusions 

In this paper, a new method using the hybrid principal component analysis (PCA) neural network for the 

day-ahead LMP forecasting in a deregulated market is proposed. The purpose of the PCA neural network 

is to find a set of 24 or 48 orthonormal vectors in a Q-dimensional space (24 for Q = 48, 49, and 48 for 

Q = 96 and 97 in this paper). The PCA can extract more essential features of the power market and hence 

reduce the training time required for the cascaded multi-layer feedforward neural network. 

Simulation results show that the features of the same day of the last week and of the designated day 

provide crucial information serving as inputs of the PCA neural network. Simulation results also show 

that the performance of the proposed method is always better than that of the back-propagation-based 

neural network and ARIMA by evaluating R2 and MAE. The results of the Diebold and Mariano test 

show that the proposed method is better than the back-propagation-based neural network for most of 
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the studied cases. The proposed hybrid PCA network is significantly better than the ARIMA according 

to the Diebold and Mariano test. 
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