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Abstract: On the basis of the shifting process of automated mechanical transmissions 

(AMTs) for traditional hybrid electric vehicles (HEVs), and by combining the features of 

electric machines with fast response speed, the dynamic model of the hybrid electric AMT 

vehicle powertrain is built up, the dynamic characteristics of each phase of shifting process 

are analyzed, and a control strategy in which torque and speed of the engine and electric 

machine are coordinatively controlled to achieve AMT shifting control for a plug-in hybrid 

electric vehicle (PHEV) without clutch is proposed. In the shifting process, the engine and 

electric machine are well controlled, and the shift jerk and power interruption and 

restoration time are reduced. Simulation and real car test results show that the proposed 

control strategy can more efficiently improve the shift quality for PHEVs equipped  

with AMTs. 

Keywords: plug-in hybrid electric vehicle; AMT; shifting without clutch; dynamic 

coordinated control 

 

1. Introduction 

Compared with traditional hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs) 

have larger capacity energy storage device which can be charged from the grid, increasing the pure 
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electric driving distances, and greatly decreasing fuel consumption and exhaust emissions [1–3]. 

PHEVs, which have been listed in the development plans for new generation automobiles by  

many countries, will be one of the important technical ways to achieve vehicle energy savings and 

emission reductions. 

In vehicles equipped with an automated mechanical transmission (AMT) which has a fixed 

transmission ratio, there exists the problem of shift jerk and inevitable power interruptions due to its 

structure. By using the auxiliary dynamic action of the motor, the power source can be quickly 

controlled in the shifting process, and the shift quality can be improved for a hybrid electric vehicle 

equipped with AMT. To improve the shift quality and reduce the power interruption time and 

synchronize torque during the shifting process, Baraszu et al. [4] used the motor to drive the vehicle 

directly for shifting in parallel hybrid electric vehicles equipped with an AMT, which reduced the 

power interruption time during the AMT shifting process. Jo et al. [5] proposed a control strategy to 

reduce the synchronous speed difference of the synchronizer and synchronization time by controlling 

the engine and motor. Liao and Zhang [6] studied the shifting process of an HEV system in which the 

motor was installed at the back of the clutch, and introduced a control strategy to reduce the 

synchronizing torque of the synchronizer and synchronization time by controlling the torque and speed 

of the engine and motor. 

However, in the AMT shifting process, the transmission ratio will change. Input speed and output 

speed of the clutch are different due to the ratio change and jerk occurs. Generally, the method for 

reducing shift jerk is to extend the friction time of the clutch for traditional AMT vehicles, but this can 

increase the power restoration time and decrease the service life of the clutch. Therefore, in order to 

extend the service life of the clutch and shift without releasing the clutch, Petterson et al. [7] proposed 

a shifting method without the use of clutch in which the engine torque was controlled to achieve gear 

shifting automatically. The Eaton company designed a AutoShift transmission [8] for shifting without 

releasing the clutch in which a braking device (the eddy current brake) installed in the transmission 

and the engine were controlled to achieve engine speed regulation, which can achieve the 

synchronization of shifting driving and driven parts to complete the shifting action. 

This paper studies the single driveshaft parallel hybrid electric vehicle in which the motor is 

installed in front of the AMT. The role of the inertia brake installed in the AutoShift transmission can 

be achieved by controlling the motor torque. In the shifting process, torque and speed of the engine and 

motor are well controlled to reduce the shift jerk and power restoration time. On the basis of analysis 

of the shifting process, a vehicle dynamic model is built up, the dynamic characteristics of each phase 

of shifting process are analyzed, and a control strategy in which torque and speed of the engine and 

electric machine are coordinatively controlled to achieve AMT shifting control for PHEVs without 

clutches is proposed. The simulation platform of a parallel HEV with AMT is built up in 

Matlab/Simulink software, and a real car test is completed simultaneously. The test results show that 

the proposed control strategy can more efficiently reduce the shift jerk and power interruption and 

restoration time, and improve the shifting quality. 
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1 2 3 4 5 6max( , )shft t t t t t t    
 (1) 

(2) The Shift Jerk 

The shift jerk is the rate of change of vehicle longitudinal acceleration, which is the important 

parameter for evaluating the shifting quality. The equation of shift jerk is as follows: 

2

2

( ) ( )da t d v t
j

dt dt
 

 
(2) 

where a(t) is the vehicle longitudinal acceleration, and v(t) is the vehicle longitudinal velocity. 

3. Dynamic Analysis of AMT Shifting without a Clutch 

3.1. Dynamic Model for AMT Shifting 

The process of AMT shifting without a clutch can be divided into five phases [10]: (1) decreasing 

the engine and motor torque; (2) shift off; (3) adjusting engine and motor speed; (4) shift on; (5) 

restoring the engine and motor torque. To analyze the dynamic characteristics of each phase of the 

shifting process, a dynamic model for AMT shifting without a clutch is built up as shown in Figure 2. 

Figure 2. Dynamic model for AMT shifting without a clutch. 

 

where C is the mode clutch, which is connected in hybrid driving mode and disconnected in motor 

driving mode; S is the synchronizer, Je is the equivalent moment of inertia of the engine and the 

driving parts of the clutch, Jm is the moment of inertia of the motor, Jc is the equivalent moment of 

inertia of the driven parts of the clutch and the transmission input shaft, Jt_o is the equivalent moment 

of inertia of the transmission output shaft, Te is the engine torque, ωe is the engine speed, Tm is the 

torque transmitted by the motor, Tc is the torque transmitted by the clutch, ωc is the speed of the driven 

parts of the clutch, Tt_r is the external resistance torque of the transmission output shaft, ωt_o is the 

speed of the transmission output shaft, ig(n) is the transmission ratio of the n gear (n = 1st, 2nd, …, 5th), 

Tt_io is the torque transmitted from the input shaft to the output shaft, Tt_oi is the torque transmitted 

from the output shaft to the input shaft. The relationship between Tt_oi and Tt_io is as follows: 
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(3) 

where ηT is the transmission efficiency. 

3.2. Dynamic Analysis of AMT Shifting without Clutch 

Taking the upshift from 1st to 2nd gear as an example, the dynamic characteristics of the shifting 

process are analyzed [11–13]. In the normal driving and shifting process without clutch, there is  

ωe = ωc = ωt_o · ig(n). When the vehicle is driving on the 1st gear, the ig(n) is i1, and the dynamic 

equations can be expressed as follows: 

 

_ _

2
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=
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(4) 

where i0 is the main reducer ratio, r is the wheel radius. The equation of shift jerk is as follows: 

 
  _

10 1 _ 1/
t re m

e m c t o

dTd T Tda r
j

dt dt i dti J J J i J i

 
           

(5) 

Due to the short shift time, the external resistance is assumed to be constant when the shifting action 

is performed on flat road, i.e.: 

_ 0t rdT

dt


 
(6) 

So Equation (5) can be simplified as follows: 

 
 

0 1 _ 1/
e m

e m c t o

d T Tda r
j

dt dti J J J i J i


 

      
(7) 

From the Equation (7) we can know that the shift jerk value is related to the change of the synthetic 

torque of the engine and motor. According to the reference value of the shift jerk, the equation of value 

range for the synthetic torque of the engine and motor can be obtained as follows:  

   0
1 _ 1/e m

ref e m c t o

d T T i
j J J J i J i

dt r


     

 
(8) 

where jref is reference value of the shift jerk. The recommended values are 10 m/s3 and 17.64 m/s3 

respectively in Germany and China. 

3.2.1. Dynamic Analysis of Pre-Shifting 

The dynamic characteristics of this phase are the same as that of normal driving. When the 

transmission input torque becomes zero, the transmission can shift off to the neutral gear. Otherwise, 

the engine speed will increase sharply due to the abrupt decrease of the load. Additionally, when the 

_
_
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t io
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T
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meshing gears are loaded, shifting off can lead to excessive wear of the gear faces. Shifting off can be 

easily achieved without excessive wear of the gear faces when zero torque is transmitted to the driving 

shaft of the synchronizer. 

3.2.2. Dynamic Analysis after Shifting off 

The power is interrupted after shifting off. In this phase, the transmission does not transmit the 

torque, i.e., Tt_io = 0. The equations of kinematics and dynamic relationship are as follows: 

 
_ 1

_ _ _

e c

c t o

e m c e e m

t o t o t r

i

J J J T T

J T

 
 





  
    
   





(9) 

3.2.3. Dynamic Analysis of Synchronization 

Because the speed regulating performance of the motor is better than the engine, the motor is used 

to adjust the speed of the driving parts for the synchronizer.  

(1) The active synchronization of the motor 

In this phase, the dynamic equations of the input parts of the transmission are as follows: 

 
2
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e m c
syn

e m

J J J T T

J J J
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



 

(10) 

where ω1 is the input speed of the transmission before synchronization, ω2 is the input speed of the 

transmission after synchronization. 

In the synchronizing process, the engine and motor torque do not change, so Equation (10) can be 

simplified as follows: 

 2 1

1 1 _ 1

2 2 _ 2

e m c
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e m

t o

t o

J J J
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T T
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i

 
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 

       
  
  

(11) 

where ωt_o1 is the output speed of the transmission before synchronization, ωt_o2 is the output speed of 

the transmission after synchronization. 

In the shifting process, the change of vehicle speed is very small, so we can consider ωt_o1 is 

approximately equal to ωt_o2, so the equations of the input speed relationship are as follows: 
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The synchronizing process includes two phases: the active synchronization of the motor and the 

synchronization of the synchronizer. The equations of speed difference of the driving and driven parts 

for the synchronizer are as follows: 
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(13) 

where ∆ωt_o1 is the speed difference removed by the motor, ∆ωt_o2 is the speed difference removed by 

the synchronizer. 

Thus, using Equations (11) and (13), the active synchronization time of the motor is: 

  2 _
1

e m c t o
syn

e m

J J J i
t

T T

   


  
(14) 

(2) The synchronization of the synchronizer 

In this phase, the dynamic equations of the input parts of the transmission are as follows: 
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(15) 

The equation of the synchronizing torque is as follows: 

sin
a

syn

F fR
T




 
(16) 

where Tsyn is the synchronizing torque in the synchronizer cone, Fa is the shifting force applied to the 

synchronizer, R is the average effective radius, f is the friction coefficient between the friction surfaces 

of the ring and the ring gear, and α is the cone angle of the ring. 

Using the Equations (15) and (16), we can obtain that: 
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a
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i
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(17) 

The synchronization time of the synchronizer is:  

  2
2

2
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(18) 

The total synchronization time of the synchronizing process is: 
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(19) 

In traditional vehicles, the only way of reducing the synchronization time is to increase the 

synchronizing torque in the synchronizer or the shifting force applied to the synchronizer. As shown in 

Equation (19), for HEVs, the motor can output a large synchronizing torque to remove the larger speed 

differences of the synchronization process. 

3.2.4. Shift on 

After the synchronization, the speed difference of the driving and driven parts of synchronizer is 

zero. The shift on action can be performed soon after the output torques of the engine and motor  

are zero. Shifting on can be easily achieved when zero torque is transmitted to the driving shaft of  

the synchronizer. 

3.2.5. Restoring the Engine and Motor Torque  

After shifting, the engine and motor torque should be restored to the commanded level at an 

appropriate rate to avoid affecting the shift quality. 

4. Coordinated Torque Control of the Engine and Motor 

To meet the needs of the shifting control, the engine and motor output torques are coordinately 

controlled to the target torques. As shown in Figure 3, the target output torque for the engine is 

determined by the engine map data in the current state. By calculating the throttle opening in the 

current state and the actual limited throttle opening after a change, the actual engine output torque can 

be estimated [13,14].  

(1) The target throttle opening θe_tar 

According to the vehicle demand torque, the vehicle controller calculates the corresponding target 

engine output torque in the current state. In the steady condition, through the accurate bench 

calibration, the engine output torque is determined by the engine speed and the target throttle  

opening, i.e.: 

 _ _ ,e tar e tar ef T n 
 (20) 

(2) The engine output torque on the limited throttle opening state  

According to the engine output torque in the current state and the target throttle opening θe_tar, the 

variable quantity ∆θ of the throttle opening needs to be limited. According to the limited throttle 

opening θe_act, the actual output torque for the engine can be calculated:  

 
 

_ _

_ _

,

,

e act e tar

e act e act e

f

T f n
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(21) 
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(3) As the throttle opening is kept constant, the engine output torque can be obtained from the 

curve of steady output torque and speed acquired from the engine controller.  

(4) Based on the above engine output torque, the total output torque of the engine and the motor is 

controlled to be zero by controlling the motor output torque.  

(5) The shifting off action can be performed soon after the total output torque of the engine and the 

motor becomes zero. 

Figure 4. Flow chart of AMT shifting control without clutch. 

 

5.2.2. The Speed Synchronization Control 

After shifting off, the input speed of the transmission can be adjusted to the target speed by 

regulating the motor speed. The synchronization process is completed when the speed difference of the 

driving and driven parts for synchronizer is zero. 

5.2.3. The Coordinated Control of the Engine and Motor Torque before Shifting on 

To improve the shift quality and reduce the shift jerk, the shifting on action can be performed only 

when the input torque of the transmission is zero. So the following actions will be performed: 
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(1) After the speed synchronization, the operating mode of the electric machine switches from the 

motor to the generator. 

(2) The throttle opening is kept on the threshold value αmin, the engine output torque can be 

obtained from the curve of steady output torque and speed acquired from the engine controller. 

(3) Based on the above engine output torque, the total output torque of the engine and the motor is 

controlled to be zero by controlling the motor output torque. 

(4) The shifting on action can be performed soon after the total output torque of the engine and the 

motor becomes zero. 

5.2.4. The Engine and Motor Torque Restoration after Shifting 

After shifting, the engine and motor torque should be restored to the commanded level at an 

appropriate rate to avoid affecting the quality of the shift. 

6. Simulation Analysis 

Based on the Matlab/Simulink software, a PHEV simulation model is built up to analyze the above 

discussed shifting control strategy [15]. The vehicle and powertrain parameters are shown  

in Table 1. 

Table 1. The vehicle and powertrain parameters. 

Parameters Value 

Unloaded/full load gross mass m/kg 1320/1845 
Air resistance coefficient Cd 0.36 
Frontal area A/m2 2.53 
Tire radius r/m 0.299 
Main reducer ratio i0 3.894 
Transmission ratio (AMT-5 gears) [3.615 2.042 1.257 0.909 0.902; 4.298] 

Engine displacement/L 1.124 
Maximum power (kW)/speed (r/min) 58/6000 
Maximum torque (Nm)/speed (r/min) 101/4000 

Motor Permanent magnet synchronous motor 
Rated/peak power (kW) 18/35 
Rated/peak torque (Nm) 86/167 

Battery Lithium ion battery 
Capacity (Ah)/Rated voltage (V) 40/360 

The diagram of the PHEV simulation model, which includes the driver model, the control system 

model, the engine model, the motor model, the transmission model, the battery model and the vehicle 

dynamic model, is shown in Figure 5. 
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results prove that shifting without clutch is feasible and has the potential to overcome the 

disadvantages of the AMT. 
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