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Abstract: Many models have been developed to forecast wind farm power output. It is 

generally difficult to determine whether the performance of one model is consistently 

better than that of another model under all circumstances. Motivated by this finding, we 

aimed to integrate groups of models into an aggregated model using fuzzy theory to obtain 

further performance improvements. First, three groups of least squares support vector 

machine (LS-SVM) forecasting models were developed: univariate LS-SVM models, 

hybrid models using auto-regressive moving average (ARIMA) and LS-SVM and 

multivariate LS-SVM models. Each group of models is selected by a decorrelation 

maximisation method, and the remaining models can be regarded as experts in forecasting. 

Next, fuzzy aggregation and a defuzzification procedure are used to combine all of these 

forecasting results into the final forecast. For sample randomization, we statistically 

compare models. Results show that this group-forecasting model performs well in terms of 

accuracy and consistency.  
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1. Introduction 

Along with science and technology in general, wind power technology has also developed rapidly. 

Because wind power technology is mature, many medium- and large-sized wind farms have been built 

and put into operation. Wind power has become an important source of the entire power system; 

worldwide, the installed wind power capacity was 157.9 GW in 2009, representing an annual growth 

of 20% over the preceding 10 years. Wind energy resources available in China are estimated at  

1000 GW, ranking the country third after Russia and the U.S. In recent years, wind power has 

experienced rapid development in China, as the capacity increased from 0.34 to 25.8 GW between 

2000 and 2009. In 2020, the total installed capacity of wind power is expected to reach 150 GW [1].  

Wind power is always fluctuating because wind is volatile and intermittent. When the power output 

exceeds a certain value, it significantly affects power quality, power system security and the stability 

of operations. If an accurate short-term wind power output forecast is available, the power dispatching 

department can adjust scheduling in accordance with changes in wind power output to ensure power 

quality and reduce the system’s excess capacity and power system cost. Therefore, short-term wind 

power forecasts are of key importance [2–4]. 

Modern wind farms usually incorporate remote monitoring systems in wind turbines so that all 

turbines can capture and record all signals. The real-time output data from wind generators can be used 

directly for wind power forecasts without any additional cost, which reduces the cost and improves the 

quality of data collection, as well as increases forecast accuracy. The existing forecasting methods can 

be classified into two groups. The first group consists of univariate forecasting models based on 

historical and real-time power data, in which changes in wind speed are not considered. The second 

group consists of multivariate models, in which forecasts are based on the relationship between 

weather data and output power [5]. The numerical weather prediction (NWP) model is popular for 

short-term wind power prediction with advantages in accuracy, but, it needs more weather 

information [6]. Detailed algorithms include time series methods, such as the auto-regressive moving 

average (ARMA) and the auto-regressive conditional heteroskedasticity (ARCH) models [7,8], the 

linear regression model [9], the grey theory model [10,11], the support vector machine (SVM) [12,13], 

adaptive fuzzy logic algorithms [14,15] and artificial neural networks (ANNs) [16,17], among 

others [18].  

In the above-mentioned individual models, it is difficult to determine whether the performance of 

one model is consistently better than that of another model under all circumstances. Typically, a 

number of different models are utilised, and the model with the most accurate results is selected. 

However, the selected model may not necessarily be the best for future use because of potentially 

influential factors, such as sampling variation, model uncertainty and structure change. It is almost 

universally agreed upon in the forecasting literature that no single method is best in every situation, 

primarily because a real-world problem is often complex in nature and because any single model may 

not be able to capture different patterns equally well. Therefore, there is a certain optimal combination 

of forecasts to be studied, such as an adaptive combination of forecasts [19] and an optimal 

combination of wind power forecasts [20]. Motivated by this finding, we aimed to integrate multiple 

models into an aggregated model to obtain further performance improvement. Therefore, certain 

intelligent SVM forecasting models were developed. The models are selected by a decorrelation 
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maximisation method, and the remaining models can be regarded as experts in forecasting. Then, the 

fuzzy theory is used to combine all of these forecasting results into the final forecast.  

The remainder of this paper is organised as follows: Section 2 describes three group models. In 

Section 3, real datasets are statistically used for the testing of these models. Finally, conclusions are 

presented in Section 4. 

2. The Forecasting Model 

2.1. Principle of Least Squares SVM (LS-SVM) 

In this study, SVM was selected as the basic algorithm with which to construct forecasting models 

because this algorithm is often viewed as a “universal approximator”. It has been proven to provide a 

good arbitrary approximation of any continuous function. Therefore, the model is used here to simulate 

mutual relationships between historical data and the forecast power output. The models have the ability 

to provide flexible mapping between inputs and outputs. The SVM model of a data set is given by the 

formula described below. 

Consider an n set of data{(x1, y1), …, (xN, yN)}, where xi is the ith input vector and yi is the 

corresponding desired output. Because i = 1, 2, …, N, where N is the size of the sample, the estimating 

function assumes the following form: 

( ) ( )f x w x b    (1) 

where w is the weight vector, b is the bias and ϕ(x) is the high-dimensional feature space nonlinearly 

mapped from the input space, and (·) represents the inner product.  

This leads to the optimisation problem associated with standard SVM:  

21
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2str empR w R   (2) 

where γ is a positive real constant that determines the penalty for estimation errors and 
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For least-squares SVM (LS-SVM), the two norms of the estimation error are adopted as the loss 

function in the objective function and equality constraints instead of inequality constraints. Therefore, 

the optimisation problem is described as:  
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where ξi is a slack variable, ξi ≥ 0. It is a variable added to an inequality constraint to transform it to 

equality. It is non-negative number in this paper. 
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After the introduction of Lagrange multipliers αi, the Lagrange function is constructed as: 
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According to KKT conditions which can transform inequality constraints into equality constraints, 

defined as: 
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The following equation can then be obtained: 
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After eliminating w and γ, we obtain: 
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where Θ = [1, …, 1]1×N, I is a unit matrix, Ω is a square matrix and the element of Ω is expressed as: 

Ωij = ϕ(xi)
T ϕ(xj). In the equation (8), α = [α1, …, αN], y = [y1, …, yN]. 

By solving Equation (7), values of α and b are obtained. According to Mercer's condition, there 

exists a kernel function with a value that is equal to the inner product of the two vectors xi and xj in the 

feature spaces ϕ(xi) and ϕ(xj); that is, K(xi, xj) = ϕ(xi)
T ϕ(xj). Then, the LS-SVM model for regression is 

expressed as:  
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2.2. Group Model Based on LS-SVM  

2.2.1. Group 1: Diversified Univariate LS-SVM Model  

The first group is the univariate forecasting model. It is based on historical and real-time power 

data; other weather data, such as wind speed, are not considered. Many experimental results have 

shown that the generalisation of individual networks is not unique. Even for some simple problems, 

different SVMs with different settings (e.g., different network architectures and different initial 
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conditions) may result in different generalisation results. Diverse models are generated by selecting 

different core learning algorithms, such as the steep-descent algorithm, the Levenberg-Marquardt 

algorithm and other training algorithms [21]. Finally, 10 different univariate least squares support 

vector machine (LS-SVM) models are formulated [22,23]. All of these models use the Gaussian 

function as the kernel function, and the output is the one-hour-ahead forecasted wind power output. 

Other parameters are shown in Table 1.  

Table 1. Ten univariate LS-SVM models. 

Models Inputs γ σ2 

LS-SVM-1 3 previous observations 10 5 
LS-SVM-2 4 previous observations 20 5 
LS-SVM-3 5 previous observations 30 5 
LS-SVM-4 6 previous observations 40 5 
LS-SVM-5 7 previous observations 50 5 
LS-SVM-6 3 previous observations 50 2 
LS-SVM-7 4 previous observations 50 4 
LS-SVM-8 5 previous observations 50 6 
LS-SVM-9 6 previous observations 50 8 

LS-SVM-10 7 previous observations 50 10 

2.2.2. Group 2: Diversified Univariate Hybrid Model of ARIMA and the SVM Model 

2.2.2.1. Brief Introduction of the Hybrid Model 

Because real-world time series are rarely purely linear or nonlinear, researchers have revealed that 

hybrid models that hybridise two or more different algorithms can produce forecasts of higher accuracy 

than those produced by individual models. ARIMA and LS-SVM models have different capabilities of 

capturing data characteristics in linear and nonlinear domains; therefore, the hybrid model proposed in 

this study is composed of an ARIMA component and an LS-SVM component. Thus, the hybrid model 

is expected to capture linear and nonlinear patterns with improved overall forecasting performance. 

Experimental results with real data sets indicate that the hybrid model can be an effective means by 

which to improve forecasting accuracy over that achieved by either of the models separately. In this 

section, a type of hybrid approach using both ARIMA and LS-SVM models is proposed. Because 

ARIMA is a linear model [24] and LS-SVM [22,25] is a nonlinear model, the hybrid approach is 

expected to capture both linear and nonlinear patterns in wind park power time series.  

Based on the structure proposed by [26], the hybrid model (yt) can be represented as: 

t t ty L N   (10) 

where Lt denotes the linear component and Nt denotes the nonlinear component.  

These two components must be estimated from the data. First, ARIMA is used to model the linear 

component, resulting in the residuals from the linear model containing only the nonlinear relationship. 

The residual at time t (from the linear model) is denoted as et, and then: 

ˆ
t t te y L   (11) 
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where ˆ
tL  is the forecast value at time t from the ARIMA models. Specifications of the  

(1, 0, 0) × (0, 1, 1) model are as described in Equation (11): 

4 1 1 5( )t T t tY Y Y Y        (12) 

Residuals are also important. By modelling residuals using LS-SVM, nonlinear relationships can be 

discovered. With n input nodes, the LS-SVM model for residuals will be: 

1 2( , ,... )t t t t n te f e e e      (13) 

where f is a nonlinear function determined by the LS-SVM model and Δt is its corresponding random 

error. Therefore, the forecast of the hybrid model is: 

ˆˆ ˆt t ty L e   (14) 

2.2.2.2. Generating the Diversified Hybrid Model from the ARIMA and LS-SVM Models 

The proposed hybrid method is applied to forecast wind power output, i.e., the LS-SVM model is 

used to model the nonlinearity of residuals obtained from the ARIMA models. As mentioned in 

Section 2.1, to generate the diverse models, the structure of the above LS-SVM can be varied by 

changing the number of nodes in the input layer and the second layer. Because the number of input 

layers is changed, there should be different training data. These data can be acquired by re-sampling 

and pre-processing the data. There are many techniques that can be used to obtain diverse training data 

sets, such as bagging noise injection, cross-validation and stacking. With these different training datasets 

and structures, 10 diverse hybrid models are generated using ARIMA and LS-SVM models as described 

in Table 2. For all of these models, the linear parts use ARIMA (Yt = δ + YT−4 + ϕ1(Yt−1 − Yt−5) and the 

nonlinear parts use different LS-SVMs. All of these LS-SVM models use the Gaussian function as the 

kernel function, and the output is the forecasted error. Other parameters are shown in Table 2.  

Table 2. Ten diverse hybrid models using ARIMA and LS-SVM. 

Models Inputs γ σ2 
H-AR-LS-1 3 previous observations 10 5 
H-AR-LS-2 4 previous observations 20 5 
H-AR-LS-3 5 previous observations 30 5 
H-AR-LS-4 6 previous observations 40 5 
H-AR-LS-5 7 previous observations 50 5 
H-AR-LS-6 3 previous observations 50 2 
H-AR-LS-7 4 previous observations 50 4 
H-AR-LS-8 5 previous observations 50 6 
H-AR-LS-9 6 previous observations 50 8 
H-AR-LS10 7 previous observations 50 10 

2.2.3. Group 3: Diversified Multivariate LS-SVM model 

In this group of multivariate methods, the relationship between weather data and power output is 

considered. There are five fundamental variables that impact wind power output. The first, w1, is the 

wind speed, measured in metres/second (m/s); the second, w2, is the wind direction, measured as the 
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angle between the incoming wind and the north; the third, w3, is the air temperature, measured in °C; 

the fourth, w4, is the atmospheric pressure in Pa; and the fifth, w3a, is the relative humidity. These five 

fundamental variables are used as input data, and the wind power output is the output of the  

LS-SVM model. 

To generate the diverse models, the structure of the above LS-SVM model is varied by changing the 

number of nodes in the second layer. Different initial conditions can also create diversity in models; 

these initial conditions include random weights, learning rates and momentum rates from which each 

network is trained. With these different initial conditions and structures, 10 diverse LS-SVMs are 

generated. All of these models use the Gaussian function as the kernel function, and the output is the 

one-hour-ahead forecasted wind power output. Other parameters are shown in Table 3. 

Table 3. Ten diverse multivariate LS-SVMs. 

Models Inputs γ σ2 

DLS-SVM-1 w1; w2; w3; w3; w4; w5; 2 previous observations 10 5 
DLS-SVM-2 w1; w2; w3; w3; w4; w5; 2 previous observations 20 5 
DLS-SVM-3 w1; w2; w3; w3; w4; w5; 2 previous observations 30 5 
DLS-SVM-4 w1; w2; w3; w3; w4; w5; 2 previous observations 40 5 
DLS-SVM-5 w1; w2; w3; w3; w4; w5; 2 previous observations 50 5 
DLS-SVM-6 w1; w2; w3; w3; w4; w5; 3 previous observations 50 2 
DLS-SVM-7 w1; w2; w3; w3; w4; w5; 3 previous observations 50 4 
DLS-SVM-8 w1; w2; w3; w3; w4; w5; 3 previous observations 50 6 
DLS-SVM-9 w1; w2; w3; w3; w4; w5; 3 previous observations 50 8 

DLS-SVM-10 w1; w2; w3; w3; w4; w5; 3 previous observations 50 10 

2.3. Group Model Based on LS-SVM  

As mentioned above, each group consists of 10 forecasting models. We need to select a subset of 

representatives to improve ensemble efficiency. It is clear that it is a necessary requirement of diverse 

models for making fuzzy group decisions. In this study, a decorrelation maximisation method was used 

to select the appropriate number of ensemble members. As noted previously, the basic starting point of 

the decorrelation maximisation algorithm is the principle of ensemble model diversity; that is,  

the correlations between the selected models should be as small as possible. If there are p models  

(f1, f2, …, fp) with n forecast values, an error matrix (e1, e2, …, ep) of p predictors can be  

represented by: 

11 12 1

21 22 2

1 2
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...

...
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p

n n np n p

e e e

e e e
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e e e
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 
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(15) 

From the matrix, the mean, variance and covariance of E can be calculated as: 

Mean: 
1

1 n

ki
k

e e
n 

   (i = 1, 2, …, p) (16) 
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Variance: 2

1

1
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n

ii ki i
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V e e
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   (i = 1, 2, …, p) (17)

Covariance: 
1
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( )( )
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V e e e e
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Considering Equations (17) and (18), we can obtain a variance covariance matrix: 

( )p p ijV V 
 (19) 

Based on the variance-covariance matrix, correlation matrix R can be calculated using the  

following equations: 

R = (rij) (20) 

ij
ij

ii jj

V
r

V V


 
(21)

where rij is the correlation coefficient, representing the degrees of correlation classifiers fi and fj. 

Subsequently, the plural-correlation coefficient ρfi|(f1, f2, …, fi−1, fi+1, …, fp) between classifier fi and 

other p − 1 classifiers can be computed based on the results of Equations (20) and (21). For 

convenience, ρfi|(f1, f2, …, fi−1, fi+1, …, fp) is abbreviated as ρi, representing the degree of correlation 

between fi and (f1, f2, …, fi−1, fi+1, …, fp). To calculate the plural-correlation coefficient, the correlation 

matrix R can be represented by a block matrix; that is: 

1
i i

T
i

R rafter transformation
R

r
 

 
 

 (22) 

where R − i denotes the deleted correlation matrix. It should be noted that rii = 1(i = 1, 2, …, p). Next, 

the plural-correlation coefficient can be calculated by: 
2 T T
i i i ir R r   (i=1,2,…,p) (23) 

For a pre-specified threshold θ, if ρi
2 > θ, then model fi should be removed from p models. 

Otherwise, model fi should be retained. Generally, the decorrelation maximisation algorithm can be 

summarised in the following steps: 

Computing the variance-covariance matrix Vij and the correlation matrix R with Equations (19)  

and (20). For the ith classifier (i = 1, 2, …, p), the plural-correlation coefficient ρi can be calculated 

using Equation (23). 

For a pre-specified threshold θ, if ρi < θ, then the ith classifier should be deleted from the ρ 

classifiers. Conversely, if ρi > θ, then the ith classifier should be retained. For each group of models, we 

select eight as the representative for the subsequent step. 

2.4. Fuzzy Group Prediction  

For a specified forecasting problem, different experts usually give different estimations based on a 

set of criteria X = (c1, c2, ..., cm). Some experts give optimistic estimates, some prefer pessimistic 

estimates, and others present the most likely estimates. To incorporate these different judgements into 

the final forecasting result and to make full use of the different estimates, a process of fuzzification is 
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used. In this paper, a typical triangular fuzzy number can be used to describe the forecasting results 

provided by the experts; that is: 

1 2 3( , , )I i i iZ z z z  (the lowest forecast value; the most likely forecast value; the highest 
forecast value), where i represents the numerical index of experts. 

Like human experts, individual LS-SVM forecasting groups can also generate different forecasting 

results by using different parameter settings and training sets. For example, the first forecasting group 

(univariate LS-SVM model group) generates eight different forecasting results from the eight models 

(selected from the first 10 models; Section 2.3) of different hidden neurons or different initial weights. 

The entire first group can be considered an expert in forecasting. Assume that this expert produces k 

different results, 1 2( ), ( ),..., ( )i i i
A A k Af X f X f X , for a specified applicant “A” over a set of models of 

different hidden neurons or different initial weights in this group. To make full use of all of the 

information provided by these results, without loss of generalisation, we use the triangular fuzzy 

number to construct the fuzzy opinion for consistency; that is the smallest, average and largest of the k 

forecasting results are used as the left-, medium- and right-membership degrees, respectively. In other 

words, the smallest and largest scores are seen as optimistic and pessimistic evaluations, respectively, 

and the average forecasting result is considered to be the most likely score. Of course, the median can 

also be used as the most likely score to construct the triangular fuzzy number. However, that approach 

can cause the loss of certain useful information because some other scores are ignored. Therefore, the 

average is selected as the most likely power output to incorporate the full information from all of the 

models into the fuzzy judgement. Using this fuzzification method, the expert can make a fuzzy forecast 

for each point. More precisely, the triangular fuzzy number used for forecasting can be represented as: 

1 2 3 1 2

1 2
1
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( ) / , max( ( ), ( ),..., ( ))
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i i i i A A K A
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(24) 

Suppose there are p experts, and let 1 2( , ,..., )i pZ Z Z Z     be the aggregation of p fuzzy judgements, 

where  ()  is an aggregation function. Many methods have been developed to determine the 

aggregation function. Usually, fuzzy judgements of the p group members are aggregated by using a 

common linear additive procedure; that is: 

1 2 3
1 1 1 1

, ,
p p p p

i i i i i i i i
i i i i

Z w Z w z w z w z
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 
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 
    

 
(25) 

where wi is the weight of the ith fuzzy judgement, i = 1, 2, ..., p. The weights usually satisfy the 

following normalisation condition: 

1

1
p

i
i

w



 

(26) 

At this point, the goal is to determine the optimal weight wi of the ith fuzzy expert. In this study, 

three groups of models are used as experts, and we give them the same weight of 1/3 each. After 

completing aggregation, a fuzzy group consensus can be obtained using Equation (25). To obtain a 

crisp value of the credit score, we use a defuzzification procedure to obtain the crisp value for  
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decision-making purposes. According to Bortolan and Degani, the defuzzified value of a triangular 
fuzzy number 1 2 3( , , )i iZ z z z  can be determined by its centroid, which is computed by: 

3
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1

1 2 3
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(27) 

At this point, a final group consensus has been computed using the above process. To summarise, 

the proposed intelligent-agent-based fuzzy group forecasting model is comprised of five steps: 

(1) Three forecasting groups are presented, and each group has eight models with varied structures 

and initial data, for example.  

(2) Based on the datasets, each forecasting group can produce eight different forecasting results 

from the different models. 

(3) For the different forecasting results, Equation (25) is used to fuzzify the judgements of 

intelligent agents into fuzzy opinions. 

(4) The fuzzy opinions are aggregated into a group consensus, using the optimisation method 

proposed above, in terms of the maximum agreement principle. 

(5) The aggregated fuzzy group consensus is defuzzified into a crisp value. This defuzzified value 

can be used as the final forecasting result. 

To illustrate and verify the proposed intelligent-agent-based fuzzy group forecasting model, the 

following section presents an illustrative numerical example of real-world data. The flow chart of the 

entire procedure is shown in Figure 1. 

Figure 1. Procedure flow chart. 
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3. Empirical Analyses  

3.1. Forecasting Results  

In this study, we collected wind power output data from the Changshun wind park in Huade 

County, Inner Mongolia Autonomous Region, China. This wind park is located on the slopes of hills 

and mountains within an area of 260 km2. Details of the park’s geographical information are provided 

in Table 4. This wind park was completed in May 2010 and has a capacity of 49.5 MW. Its wind  

power-out data from 1 January 2011, to 31 December 2011, were collected as shown in Figure 2. The 

short-term forecasting model for predicting hourly power output over a 24-hour horizon was tested. 

Other input data, such as the actual climate information, were collected from local 

environmental stations. 

Table 4. Wind park geographical information. 

Latitude 
(North) 

Longitude 
(East) 

Elevation 
(m) 

Wind speed (m/s) Temperature (°C) 

Mean  Max Mean  Min Max 

41°10'–41°45' 113°49'–114°03' 1500 4.8 29 2.2 −35.9 35.5 

Note: The very low minimum temperature is the extremely low temperature in this area, the lowest 

temperatures in this wind park is −27 °C in January. There is no stop in 2011 due to low temperature. 

Figure 2. Time series plots of hourly wind power output. 
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The data from 1 January 2011, to 31 October 2011, are used for constructing and training the 

models. The data from November 2011 are used to test the models and select the group modes 

according to Section 2.3. The results are presented in Table 5.  
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The data from December 2011 are used in the testing of the models and in the model analysis. 

There are 24 points for each day. To judge the accuracy of the model, individual models and the 

combined fuzzy forecasting model are compared using the following MAPE:  

1

ˆ1
100%

N
i i

i i

p p
MAPE

N p


   (28) 

where ˆ ip  is the forecast data, ip  is the real-time data, and N is the number of time points used in 

determining the forecast.  

Also the relative error is adopted to evaluate the models performance. The error is calculated as  

the follows:  

ˆ
100%i i

i

p p
RE

p


   (29) 

The MAPEs of the individual models and the combined fuzzy forecasting model are calculated. The 

results are shown in Table 5. 

Table 5. The MAPEs of individual models and the combined fuzzy forecasting model. 

Group 1 Group 2 Group 3 

model MAPE model MAPE model MAPE 

LS-SVM-1 19.71% H-AR-LS-1 17.26% DLS-SVM-1 18.06% 
LS-SVM-2 24.03% H-AR-LS-2 21.22% DLS-SVM-2 21.91% 
LS-SVM-3 24.75% H-AR-LS-3 21.85% DLS-SVM-3 20.65% 
LS-SVM-4 19.52% H-AR-LS-4 18.05% DLS-SVM-4 17.62% 
LS-SVM-6 18.94% H-AR-LS-5 17.46% DLS-SVM-5 20.85% 
LS-SVM-7 25.36% H-AR-LS-6 18.50% DLS-SVM-6 16.71% 
LS-SVM-9 22.45% H-AR-LS-7 16.99% DLS-SVM-9 18.31% 

LS-SVM-10 18.08% H-AR-LS-10 19.01% DLS-SVM-10 22.35% 
Average 21.61% Average 18.79% Average 19.56% 
GFSVM 15.27%     

3.2. Statistical Test 

The best individual model is DLS-SVM-6, and the second best is H-AR-LS-7 in terms of MAPE, 

Statistical test is carried out among the GFSVM model and those two models. According to the 

methods mentioned in reference [27], comparison in made between the GFSVM model and the best 

individual model DLS-SVM-6. 

  1

T

it t
y


 is the history data series,   1

ˆ
T

it t
y


 is the results from the GFSVM model,  

1
ˆ

T

jt t
y


 is the result 

from the DLS-SVM-6 model.   1

T

it t
e


 is the error of GFSVM model and  

1

T

jt t
e


 is the error of  

DLS-SVM-6 model. The loss function will be a direct function of the forecast error, that is 

   ˆ,t it itg y y g e .The loss differential is    t it jtd g e g e    . Empirically, the forecast error has 

many features: 1. zero mean 2, Gaussian 3. Serially correlated 4 contemporaneously correlated. The 
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null hypothesis is a positive median loss differential: med(g(eit) − g(ejt)) < 0. So, we introduce two test 

statistics in reference [27], S1 and S2a as the follows:  

    0,2 0d
dT d N f    (30) 

   
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d g e g e
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     (31)
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where  ˆ 0df  is a consistent estimate of  0df : 
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where I+(dt) = 1 if dt > 0; I+(dt) = 0 otherwise: 
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(37) 

The comparison result between the GFSVM model and DLS-SVM-6 the model is shown as  

Figure 3 and Table 6. 

The same comparison is made between the GFSVM model and the H-AR-LS-7 model, and the 

result is shown as Figure 4 and Table 7. 

In Table 6 and Table 7, T is sample size, ρ is the contemporaneous correlation, and θ is the serial 

correlation. All tests are at the 10% level. We perform 260 replications. 

For comparison between the GFSVM model and the DLS-SVM-6 model, we obtain S1 = 11.74,  

S2a = 10.67 which implying a p-value= 0.089, 0.076. Thus, for sample at hand we do not reject at 

conventional level the hypothesis of the accuracy of the GFSVM model is better than the DLS-SVM-6 

model. In the similar way, we can also statistically conclude that the GFSVM model is better than the 

H-AR-LS-7 model. 

From above, we can draw a statistical conclusion that the GFSVM model is better than the  

DLS-SVM-6 model and the H-AR-LS-7 model. 
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Figure 3. Loss Differential (GFSVM - DLS-SVM-6). 

0 20 40 60 80 100 120 140 160
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time

D
iff

er
en

tia
l

 

Table 6. Empirical Size under Quadratic Loss, Test Statistic S1, S2a (GFSVM—DLS-SVM-6). 

  S1 S2a 
T ρ θ = 0 θ = 0.5 θ = 0.9 θ = 0 θ = 0.5 θ = 0.9 

168 0 11.47 11.72 11.89 10.93 10.96 11.06 
168 0.5 11.26 11.62 11.41 10.84 10.94 11.11 
168 0.9 11.53 11.08 11.17 10.41 11.03 10.92 

Figure 4. Loss Differential (GFSVM - H-AR-LS-7). 
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Table 7. Empirical Size under Quadratic Loss, Test Statistic S1, S2a (GFSVM—H-AR-LS-7). 

  S1 S2a 

T ρ θ = 0 θ = 0.5 θ = 0.9 θ = 0 θ = 0.5 θ = 0.9 

168 0 11.45 11.69 11.78 10.87 10.91 11.13 
168 0.5 11.23 11.61 11.37 10.81 10.97 11.12 
168 0.9 11.54 11.11 11.15 10.38 10.92. 10.97 

3.3. Result Discussions 

From Table 5, it can be observed that the fuzzy group forecasting model (GFSVM) performs best in 

terms of MAPE, with a MAPE of only 15.27%. The average MAPEs of these 8 models for groups 1, 2 

and 3 are 21.61, 18.79 and 19.6%, respectively; all of these MAPEs are higher than those of the 

GFSVM. The best and second best individual models are DLS-SVM-6 and H-AR-LS-7, and their 

relative errors for total testing points are shown in Figure 5 and Figure 6 respectively. From these two 

figures, it can be observed that the range of the relative errors from the fuzzy group forecasting model 

GFSVM is smaller than that for DLS-SVM-6 and H-AR-LS-7. This means that the GFSVM is much 

more reliable than the other models. Table 8 represents the number of predictions between ±10%, 

±20%, ±30% and ±40% for DLS-SVM-6, H-AR-LS-7 and GFSVM. For example, for the GFSVM 

model, 47.3% of the predictions have errors between ±10%, whereas for the DLS-SVM-6 model, 

34.1% of the errors are in the same error margin, and for H-AR-LS-7 model, only 30.5% of the errors 

are in the same error margin. Obviously, the accuracy of GFSVM model is the best among these three 

models. From Figure 7, we know that the GFSVM can imitate the actual wind power output with  

high accuracy.  

Figure 5. Wind power forecast relative errors of GFSVM model and DLS-SVM-6 model. 
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Figure 6. Wind power forecast relative errors of GFSVM model and H-AR-LS-7model. 
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Table 8. Wind power forecast errors distribution for three models (% of errors in each margin). 

 GFSVM DLS-SVM-6 H-AR-LS-7 

±10% 47.3% 34.1% 30.5% 
±20% 81.4% 76.6% 74.3% 
±30% 98.2% 92.2% 91.6% 
±40% 100.0% 100.0% 100.0% 

Figure 7. Forecasts derived from the fuzzy model (2011, 12, 01-2011, 12, 07). 
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It is found that there is correlations among the current wind power output and those 1 h before and 

later. It is feasible to use them for predicting. From the Statistical test, it can be proved that the 

performance of the GFSVM model is better than that of DLS-SVM-6 model and H-AR-LS-7 model. It 

is the best in terms of accuracy and reliability among the models of these three groups. Also its 

Robustness is higher than those of the LS-SVM, ARIMA LS-SVM, DLS-SVM models. The overall 

prediction of the proposed method is better, but there is still individual prediction with large error, 

which needs further research. 

4. Conclusions  

In this study, we integrated groups of models into an aggregated model by using fuzzy theory to 

improve forecasting performance. The fuzzy group model overcame the intrinsic defects of single 

models, obtained information from various single models, and then created the optimum combination. 

Therefore, in most cases, we can achieve the purpose of improving forecasting results by combination 

forecasting, which obviously improves accuracy. Combination forecasting can be used to forecast 

wind power output over short time horizons. Through imitation computation and comparison, we 

proved that the forecasting accuracy is improved. Our approach thus offers a new and effective method 

for wind power forecasting. 
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