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Abstract: With a myriad of alternative vehicle powertrain architectures emerging in the 
industry, such as electric vehicles and hybrid electric vehicles, it is beneficial that the most 
appropriate system is chosen for the desired vehicle class and duty cycle, and to minimize a 
given cost function. This paper investigates this issue, by proposing a novel framework that 
evaluates different types of powertrain architectures under a unified modular powertrain 
structure. This framework provides a systematic and objective approach to comparing 
different types of powertrain architectures simultaneously, and will highlight the benefits 
that can be achieved from each architecture, thus making it possible to develop the 
reasoning for manufacturers to implement such systems, and potentially accelerate 
customer take-up of alternative powertrain technology. The results from this investigation 
have indicated that such analysis is indeed possible, by way of identifying the “cross-over 
point” between powertrain architectures, where one powertrain architecture transitions into 
a different architecture with increments in the required travel range. 

Keywords: hybrid electric vehicle; modular powertrain structure; genetic algorithm; 
powertrain optimization 
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CO2 Carbon Dioxide 
CV Conventional Vehicle 
DC Direct Current 
DEFRA Department for Environment, Food and Rural Affairs 
ECMS Equivalent Consumption Minimization Strategy 
EM Electric Machine 
EV Electric Vehicle 
GA Genetic Algorithm 
HEV Hybrid Electric Vehicle 
ICE Internal Combustion Engine 
MPS Modular Powertrain Structure 
NEDC New European Drive Cycle 
OCV Open Circuit Voltage 
PHEV Plugin Hybrid Electric Vehicle 
SOC State of Charge 

 

1. Introduction 

Stricter regulations and evolving environmental concerns have been exerting increasing pressure on 
the automotive industry to produce vehicles that are more fuel efficient and lower in emissions. One of 
the pathways to reducing road vehicle tail pipe emissions is the adoption of full-electric powertrains or 
hybrid powertrains (alternative powertrains). However, with a myriad of alternative powertrain 
configurations that currently exist within the automotive industry, choosing the most appropriate 
powertrain architecture for the target vehicle class and duty cycle can be challenging [1]. 

Hybrid electric vehicles (HEV) are becoming increasingly popular [2], driven by the notion of 
reduced running costs due to lower fuel consumption, when compared to a conventional vehicle (CV) 
with an internal combustion engine (ICE). However, the level of advantage that is gained from reduced 
fuel consumption is dependent on how the vehicle is used, with significantly higher fuel savings 
realized in city driving compared to highway driving. This is a result of the increased opportunities for 
energy recuperation in city conditions because of higher braking occurrences and speed variations. 
A study carried out by Fontaras et al. [3] suggested that HEVs exhibited reduction in CO2 over CVs 
for urban cycles. However, this advantage is diminished as the duty cycle approaches that of a 
highway pattern, i.e., constant high-speed cruising. At this point, it could be argued that a CV could 
have similar overall fuel consumption to a HEV (for a given vehicle class) because of lower 
opportunities for regenerative braking and near steady-state operation of the ICE [4]. 

In the case of a plug-in hybrid electric vehicle (PHEV), its total mass is heavier than that of a 
comparable CV [5]. If the PHEV usage does not exceed its all electric range (AER), then its auxiliary 
power unit (APU) essentially becomes “dead weight”, because its contribution to propulsion power 
would be minimal. Similarly, a pure electric vehicle (EV) also becomes less suitable if the consumer 
requires a vehicle with a relatively long travel range and minimal refuel times [6]. Although the battery 
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can be sized up to meet the requirements of a long travel range, the vehicle will become heavy, and 
may affect other attributes such as handling and tire wear [7]. 

Identifying the options available in terms of powertrain architectures and quantifying the benefits 
that can be achieved makes it possible to develop the reasoning for manufacturers, and hence potentially 
accelerate the implementation, and customer take-up, of alternative powertrain technology [8]. 
Therefore, the objective of this paper is to identify the “cross-over point” between powertrain architectures. 
The cross-over point is defined as the point in which one powertrain architecture transitions into a 
different architecture; for example with increments in the required travel range. 

Using the methodology proposed in this paper, it is now possible to explore the relative characteristics 
and performances of multiple types of powertrain architectures simultaneously. In most literatures, 
such analyses were often carried out by comparing only limited types of powertrain architectures 
at a time [1,9–11]. Collating results from these literatures often produce findings that were discontinuous, 
which made it difficult for drawing conclusions when comparing multiple types of powertrains. 

To investigate and identify the “cross-over point”, we have developed a novel framework for the 
comparative analysis of powertrain architectures. Contrary to what has been done so far, this framework 
combines an optimization algorithm with a modular powertrain structure (MPS), which facilitates the 
simultaneous approach to comparing multiple types of powertrain architectures. The use of this 
framework will provide a clear evaluation of each type of architecture, and illustrates the potential 
impact of powertrain selection towards a given cost function. This framework underscores the novelty 
of this paper, and expands on the work published by Mohan et al. [12] for optimizing EV powertrains. 
To test this framework, the following powertrain architectures will be evaluated: 

• conventional powertrain with an ICE; 
• full-electric powertrain (as used in an EV); 
• series plug-in hybrid powertrain (as used in a PHEV). 

The goals of this investigation are two-fold: 

• select the most appropriate powertrain architecture for a given vehicle class and duty cycle; 
• optimize the component sizes within the powertrain architecture for a given cost function. 

This paper is structured as follows: Section 2 covers the methodology of the investigation, 
whilst Section 3 shows the development of the powertrain components, vehicle model, and drive cycles. 
Section 4 then discusses further on the three powertrain architectures that are used as part of the 
investigation, and leads to Section 5 that discusses their implementation into the MPS. This is then 
followed by Section 6 with results and Section 7 with conclusions. 

2. Methodology 

All powertrain components were created in Matlab and Simulink, and will be described further in 
the next section. Each powertrain component is treated as a module and is designed to be modular and 
scalable in implementation, an example of which was shown by Mason et al. [13]. This allows the 
powertrain components to be interchangeable, and when coupled with an optimization algorithm, 
forms the framework required to achieve the goals stated in the introduction of this paper. 
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To utilize the framework, the details of the target vehicle class and duty cycle are required. The vehicle 
class is described by the following information: 

• glider mass (mass of the vehicle without powertrain components); 
• aerodynamic properties; 
• tire rolling resistance characteristics. 

The duty cycle consists of a speed trace and, optionally, information on geographical elevation. 
With reference to the vehicle class and duty cycle, the proposed framework will select the most 

appropriate powertrain configuration using components from its database, and co-optimize those 
component sizes for a given cost function. 

3. Model Development 

To allow for modular implementation of the powertrain components, the communication between 
each component has to be standardized. This is achieved using power bonds, similar to the concept of 
Bond Graphs [14]. The MPS, which then facilitates the interchangeability between these components, 
is discussed further in the next section. 

The following components will be included into the framework: 

1. ICE; 
2. EM; 
3. battery; 
4. APU; 
5. fuel tank; 
6. battery charger. 

Items 1–4 were based on the models published by Shankar et al. [5], and therefore will not be 
covered in detail in this paper. 

3.1. ICE 

The aim of the ICE model is to be scalable and sufficiently capture the operation and efficiency 
envelopes of an ICE. In this paper, a baseline ICE model that is naturally aspirated and spark ignited 
was selected, as it is widely available on the market today [15,16]. Other configurations, such as forced 
induction and compression-ignited ICEs are possible; however, they were not investigated further due 
to the lack of experimental data at this time. 

The scalable ICE model was made possible using the Willan’s line method, as proposed by 
Guzzella et al. [17] and Rizzoni et al. [18], and implemented by Shankar et al. [5]. Table 1 shows the 
terms used for calculating the ICE’s power and fuel consumption. 

After obtaining the torque-speed curve and efficiency map for a given ICE displacement [5], the 
resultant power is calculated as: 

𝑃𝑒𝑛𝑔𝑖𝑛𝑒 =  
𝑇𝑒 ⋅ 𝜔𝑒
𝜂𝑒

 (1) 
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The mass flow rate of fuel, �̇�𝑓𝑢𝑒𝑙, is then calculated, where Hl is the fuel’s calorific value: 

�̇�𝑓𝑢𝑒𝑙 =
𝑃𝑒𝑛𝑔𝑖𝑛𝑒
𝐻𝑙

 (2) 

The total fuel used in a drive cycle is the integration of �̇�𝑓𝑢𝑒𝑙 over the length of simulation time, 
and this calculation will be carried out in the fuel tank model (covered later). 

Table 1. Terms used for engine calculations. 

Term Definition Units 
Pengine Engine power W 

Te Engine torque Nm 
ωe Engine speed rad/s 
ηe Overall engine efficiency - 

�̇�𝑓𝑢𝑒𝑙 Fuel mass flow rate kg/s 

3.2. EM 

The EM model was developed with data obtained from the Smart Move two EV Trial [12].  
The technical specifications of the smart electric drive (ED) are shown in Appendix A1, Table A1. 

Similar to the ICE model, the goal of the EM model was to be scalable to meet varying power demands. 
The EM is a brushless DC type [19], as utilized in the smart ED. The combined EM and inverter are 
represented as an efficiency map and as a function of torque and speed, as shown in Figure 1. The speed, 
torque, voltage and current measurements of the EM were obtained from the controller area 
network (CAN) interface of the smart ED, and this data was used to construct this efficiency map. 

Figure 1. Efficiency map from Simulink electric machine (EM) model. 

 

For the scope of this paper, the EM is scaled up or down by only extending or shortening the torque 
axis on the efficiency map. The speed axis remains the same, and the efficiency map is extrapolated 
as required. Additionally, a fixed regenerative braking strategy, as employed in the smart ED, is retained. 
In this braking strategy, the maximum amount of regenerative power is limited to 33% of the 
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maximum propulsion power. The available regenerative power is also phased out at lower EM speeds, 
as observed in the negative torque region in Figure 1, for speeds under 200 rad/s. The effects of 
variations in the regenerative braking strategy will be investigated as part of future research. 

3.3. Battery 

The battery model was created based on the work by Tremblay et al. [20]. The schematic 
representation of a single Li-ion cell within the battery model is shown in Figure 2a and consists of the 
open circuit voltage (OCV) connected in series with a single resistor. This relatively simple layout, 
also known as the “Rint” battery model [21], was adopted because the transient characteristics of the 
battery will be negligible given the comparatively large simulation time step of 1 s [5]. This negates 
the necessity to include capacitive elements (such as those found in the Thevenin battery model [21]), 
and hence reduces the overall simulation time. 

Data for parameterization of the battery model was also obtained from the CAN interface of the 
smart ED. The OCV was estimated based on the battery terminal voltage, temperature, and state-of-charge 
(SOC). Figure 2b shows the relationship between the OCV, SOC, and temperature. 

Figure 2. (a) Rint model for a single Li-ion cell; and (b) efficiency map. 

 

 
(a) (b) 

To construct the battery pack model, a string of Li-ion cells were connected in series and in parallel. 
The cells within the battery pack are assumed to be homogeneous in operation, and this allowed for 
scaling the battery pack size by changing the number of parallel strings. In reality, temperature gradient 
and disproportionate aging may affect the performance of individual cells [22]. Each parallel string of 
cells has a capacity of approximately 1 kW h. Therefore, a battery pack rated at 20 kW h, for example, 
contains approximately 20 strings in parallel. The battery pack has an allowable operating window 
between 20% and 90% SOC. 

3.4. APU 

The APU (also called “Range Extender” in some literature [23]) is used in the series hybrid 
powertrain architecture, and it is formed by connecting an ICE to an EM [24]. The series hybrid 
architecture is discussed further in the next section. 

 

  
( )        
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3.5. Battery Charger and Well-to-Wheel Analysis 

After completing a drive cycle, the amount of electrical energy consumed by an EV or PHEV is 
determined by replenishing the charge in the battery back to its initial state from the electric grid. 
Subsequently, the amount of well-to-wheel CO2 emitted is then calculated by converting this 
consumed electrical energy into gram-CO2 using data published by the Department for Environment, 
Food and Rural Affairs (DEFRA), a public UK body [25]. For a PHEV, its well-to-wheel CO2 output 
combines emissions from both its electrical and fossil fuel energy sources. 

According to DEFRA, the CO2 conversion factor for electric energy produced in the UK is estimated 
to be 594 g CO2/kW h for the year of 2011. However, this estimate does not include the following: 

• emissions that result from commissioning and decommissioning of the electrical power plant, 
transmission lines, and charging station [26]; 

• manufacture and end-of-life disposal of the powertrain components within the vehicle. 

These factors are considered beyond the scope of this investigation, but will be part of the authors’ 
future research. 

3.6. Fuel Tank 

The fuel tank connects to the ICE or the APU and calculates the amount of fuel consumed. 
Table 2 shows the terms used for this calculation, along with calculation of well-to-wheel CO2 
emissions for usage of gasoline. 

Table 2. Terms used for fuel tank calculations. 

Term Definition Units 
𝑚𝑓𝑢𝑒𝑙 Fuel mass kg 
�̇�𝑓𝑢𝑒𝑙 Fuel mass flow rate kg/s 

TtW_CO2 Tank-to-Wheel CO2 kg 
WtW_CO2 Well-to-wheel CO2 kg 
WtT_CO2 Well-to-tank CO2 kg/J 

Hl Fuel calorific heating value J/kg 

To calculate the total amount fuel used, the mass flow rate of the fuel consumed by the ICE or the 
APU is integrated over the length of simulation time: 

𝑚𝑓𝑢𝑒𝑙 = � �̇�𝑓𝑢𝑒𝑙

𝑡𝑒𝑛𝑑

0
 (3) 

The tank-to-wheel CO2 emission is then calculated, where 𝑚𝑎𝑠𝑠_𝑟𝑎𝑡𝑖𝑜𝐶𝑂2  is the mass of CO2 
emitted per unit mass of gasoline that undergoes complete combustion (3.17 kg CO2/kg gasoline) [27,28]: 

𝑇𝑡𝑊_𝐶𝑂2 = 𝑚𝑎𝑠𝑠_𝑟𝑎𝑡𝑖𝑜𝐶𝑂2 × 𝑚𝑓𝑢𝑒𝑙 (4) 

Finally, the well-to-wheel CO2 emission is calculated based on the well-to-tank conversion factor of 
14.10 kg CO2/GJ of gasoline used [25]: 

𝑊𝑡𝑊_𝐶𝑂2 = 𝑚𝑓𝑢𝑒𝑙(𝐻𝑙 × 𝑊𝑡𝑇_𝐶𝑂2) + 𝑇𝑡𝑊_𝐶𝑂2 (5) 
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3.7. Energy Supervisory Controller 

For the purpose of this investigation, a thermostatic controller is used as the energy supervisory 
controller for the hybrid powertrain architecture because of its simplicity and well documented use 
in PHEVs [29,30]. The thermostat controller allows the battery to deplete from 90% to 20% SOC 
during charge-depleting mode, and then regulates the battery SOC between 20%–30% during 
charge-sustaining mode. The following are inputs and outputs of the controller: 

• SOC of battery (input); 
• power demand (input); 
• power split (output). 

However, this standardized interface allows more sophisticated controllers to be implemented in the 
future of this research, such as an equivalent consumption minimization strategy (ECMS) controller [31]. 
The authors are also considering the use of Dynamic Programming as a subroutine to optimize the 
trajectory of the power split between the energy converters over the duty cycle [32,33]. This subroutine 
can be encapsulated within the energy supervisory module. 

3.8. Vehicle Model Development 

A backward-facing vehicle model is used for the purpose of this investigation, and it is based on the 
work published by Wipke et al. [34]. An example of a conventional powertrain model created using 
the backward-facing approach is shown in Figure 3. 

Figure 3. Backward-facing vehicle model with conventional powertrain. 

 

Utilization of this modeling technique permitted the use of a relatively large simulation time 
step of 1 s [34], resulting in quicker simulation times when compared to forward-facing models. 

3.9. Drive Cycles 

Three types of drive cycles were used as examples of vehicle duty cycles: 

• new European drive cycle (NEDC) [35]; 
• real world cycle [12]; 
• combined Artemis cycle [12]. 

These drive cycles are shown in Appendix A2, Figure A1. The “Real World” cycle is derived from 
series of real-world EV usage studies undertaken by Cranfield University and supported by the Smart 
Move two EV Trial. It combines speed traces from usage in urban, A-road, B-road and motorway 
sections [12]. 
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3.10. Other Assumptions and Considerations 

The vehicle glider mass is assumed to remain constant at 1000 kg. The glider mass is defined as the 
total mass of the vehicle minus the mass of the powertrain. In reality, it may be necessary to vary the 
glider mass depending on the level of structural reinforcements required to support different 
powertrain sizes. This is considered beyond the scope of this paper. 

The MPS utilizes the “switchable subsystem” in Simulink and this necessitated a uniform, 
power-based interface between powertrain components. To address this, the components were 
developed by the authors’ research team, where the electrical powertrain were derived from and 
validated with the smart ED [4] and the ICE was validated based on the work by Guzzella et al. [17]. 
The use of this uniform power-based interface will also allow for implementation of further energy 
converters and energy storages in the future, such as fuel cells, flywheel, and battery models that 
include aging, which are currently being developed by the authors’ research team. 

The method of powertrain component sizing optimization used in this investigation is widely 
accepted within the literature [36,37]. However, it is also considered as “off-line” because the duty 
cycles are known a priori, and therefore the powertrain selection and sizing is fully constrained on the 
energy and power requirements of the duty cycle. 

4. System Architectures 

The high-level structure and hierarchy of the framework is shown in Figure 4. All powertrain 
architectures have at least one type of energy storage and energy converter respectively [24]. Using the 
powertrain components that were discussed in the previous section, the energy storages and energy 
converters are organized within the MPS, and based on this hierarchy. The optimizer interfaces with 
the MPS, and selects and sizes the powertrain components. The optimizer utilizes a genetic 
algorithm (GA), and its development will be discussed further in the next section. 

Figure 4. Structure of the framework along with energy storages and energy converters. 

 

4.1. Single Source Powertrain Architecture 

CVs and EVs are examples of vehicles with single source powertrain architectures. These two 
powertrain architectures are represented in Figures 5 and 6 respectively. In these figures, the power 
flow is from left to right; it begins at the energy source and flows into the “wheel”. For clarity, the energy 
source from the electrical grid (battery charger) has been omitted in Figure 6. 
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Figure 5. Schematic of a conventional internal combustion engine (ICE) powertrain 
with transmission [24]. 

 

Figure 6. Schematic of a battery electric vehicle (EV) powertrain [24]. 

 

The abbreviations shown in Table 3 apply to these figures. 

Table 3. Abbreviations used for diagrams. 

Term Definition 
C Chemical energy 

DC Direct Current 
AC Alternating Current 
T Torque 

Trn Transmission 
INV Inverter 
M Electrical Machine 

Batt Battery Pack 

4.2. Series Hybrid Architecture 

The series hybrid architecture is defined as having two (or more) power sources that are connected 
electrically, via an electric bus or “DC bus” [38]. Series HEVs have dedicated electric drive(s) which 
draws electrical power from this DC bus. Usually, one of the energy sources is rechargeable (such as a 
battery or ultracapacitor), whereas the other energy source is non-rechargeable (such as the fuel tank). 

The hybrid powertrain used in this investigation is a series of hybrid architecture with plug-in capability, 
as outlined by Chan [6], and shown in Figure 7. 

Figure 7. Schematic of series hybrid architecture with auxiliary power unit (APU) and battery. 
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The drive system (downstream of the DC bus) is an electric machine coupled with power 
electronics (INV). Similar to Figure 6, the energy path from the electrical grid has also been omitted 
for consistency. 

5. Optimizer Development 

The MPS is the backbone of this investigation, and when coupled with an optimizer, forms the 
framework that underscores the novelty of this paper. The relationship between the MPS and the 
optimizer was shown in Figure 4. The MPS facilitates switchable powertrain architecture during the 
optimization, and for this investigation, it is capable of switching between three variants of powertrain 
architecture as shown in Table 4. 

Table 4. Powertrain architectures simulated by model framework. 

Component Single power source Series hybrid 
Architecture Type Conventional (Variant 1) EV (Variant 2) PHEV (Variant 3) 

Energy converter #1 ICE EM EM 
Energy storage #1 Fuel tank Battery Battery 

Energy converter #2 - - APU 
Energy storage #2 - - Fuel tank 

Reference Figure 5 Figure 6 Figure 7 

The key feature of the MPS is the layout of the powertrain component placeholders, which can be 
seen in the high-level block diagram in Figure 8. This feature allows permutations of different energy 
converters and energy storages. This was made possible by having a clear distinction between the 
energy storage and energy converter, as discussed in the previous section, as well as the power 
transformer (consisting transmission/gearbox). The full implementation of the MPS in Simulink can be 
seen in Appendix A3, Figure A2. 

Figure 8. High-level block diagram for layout of the powertrain component placeholders 
in the modular powertrain structure (MPS). 
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5.1. Optimizer Algorithm 

Discontinuities and non-linarites will inevitably be present during the optimization routine, 
especially when switching between the three variants of powertrain architecture. This entails an 
optimizer that is non-gradient-based. Therefore, a GA type optimizer was utilized for this purpose. 
It has been observed that the GA is a widely used tool to optimize complex constrained non-linear 
problems within the domain of automotive powertrain sizing [11,39–41]. 

The optimizer is responsible for sizing the powertrain components and for selecting the most 
appropriate powertrain architecture to minimize the cost function, ϕ, as defined in the next section. 

A description of the GA was covered in detail by Goldberg [42], and this technique will be 
extended for the use of powertrain selection and sizing. The GA initiates by seeding a homogeneous 
population of “individuals”, spread over a solution space that is bounded by the constraints of the 
decision variables. The decision variables are: 

• energy converter size (normalized from 1% to 100%); 
• energy storage size (normalized from 1% to 100%); 
• powertrain variant (one to three, as shown in Table 4). 

Therefore, each individual, X, contains three decision variables, which can be denoted as an array in 
the form of Equation (6): 

X = [energy converter size, energy storage size, architecture variant] (6) 

Each “population” will then be a collection of individuals. Each “generation” contains one 
population. For each generation, inferior powertrain configurations are discarded, leaving only good 
and feasible configurations to be selected into the next generation, thus adhering to the principles of 
natural selection in the GA. The normalization of the powertrain components are shown in Table 5. 

Table 5. Normalization of powertrain component sizes for optimizer. 

Powertrain component Dimension Minimum size (1%) Maximum size (100%) 
ICE displacement 0.5 L 5 L 
EM power 10 kW 100 kW 

Battery capacity 8 parallel strings (~8 kW h) 80 parallel string (~80 kW h) 
APU power 10 kW 100 kW 

Fuel tank capacity 10 L 100 L 

6. Results 

The investigation methodology for testing the framework is shown in Figure 9. The purpose of 
“Case Study 1” is to illustrate the operation of the GA alone, and how it optimizes powertrain 
component sizing for a given cost function. Therefore, the powertrain switching capability within the 
MPS is disabled for this case study, and locked to only the EV powertrain architecture. 

After reviewing the results from the this first case study, the purpose of “Case Study 2” is to then 
showcase the complete workings of the novel framework for comparative analysis of powertrain 
architectures. Therefore, the MPS is unlocked in this second case study, and all three powertrain 
architecture variants (shown in Table 4) are evaluated. 
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Figure 9. Investigation methodology for testing the framework. 

 

6.1. Further Drive Cycle Analysis 

As discussed previously, there are three types of drive cycles that are being used to evaluate the 
powertrain architectures. Each drive cycle has a different range: 

• NEDC (11 km); 
• real world (29.8 km); 
• Artemis (73 km). 

To evaluate the vehicle performance over an extended range, each drive cycle was repeated 
back-to-back. An example is shown in Appendix A2, Figure A1, where the NEDC was repeated twice. 

Based on Figure 10a, the Artemis cycle has the highest top speed whist the Real World cycle has 
the highest average speed. The NEDC has the largest discrepancy between top speed and average speed. 

Figure 10. Comparison of speed and acceleration in each drive cycle: (a) maximum and 
average speeds; and (b) peak accelerations. 

  
(a) (b) 

When observing the acceleration profiles in Figure 10b, the Real World cycle has the highest 
acceleration level, whilst the Artemis cycle has the highest deceleration level. The NEDC has the 
lowest peak accelerations, but has similar average acceleration and deceleration levels to the real 
world cycle, seen in Figure 11a. 

Figure 11b shows the spread of acceleration occurrences for the three drive cycles. It is observed 
that the NEDC is less transient than the Real World and Artemis cycles. Based on Figure 11b, the real 
world cycle would require a powertrain with an energy converter (EM or ICE) that has a relatively 
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higher power output when compared to the other drive cycles. This is to allow the vehicle to sustain a 
larger spread of positive acceleration. In any case, both Real World and Artemis cycles provide more 
opportunity for regenerative braking when compared to the NEDC, due to the larger spread of 
deceleration events. 

Figure 11. Analysis of accelerations in each drive cycle: (a) average accelerations; and 
(b) spread of acceleration occurrences. 

 
 

(a) (b) 

6.2. Case Study 1: Optimizing Powertrain Sizing Only 

In this case study, only the EV powertrain will be optimized for each of the three drive cycles. 
Within this case study, two investigations were carried out using the following cost functions [31]: 

1. minimizing well-to-wheel CO2; 
2. minimizing vehicle mass. 

Each cost function was evaluated separately. The decision variables (X) and constraints (G) are 
shown in Table 6. 

Table 6. Decision variables (X) and constraints (G). 

Term Definition Units 

X 
No. of battery strings in parallel - 

EM size kW 

G 
1000 < total vehicle mass < 2000 kg 

10 < EM size < 100 kW 
8 < battery strings in parallel < 80 - 

After completing the simulations, there were differences observed in the powertrain sizing as a 
result of the two different cost functions, and this will be discussed next. 

6.2.1. EV Powertrain Optimized for Lowest Well-to-Wheel CO2 

In this investigation, the cost function (ϕ) is well-to-wheel CO2. The results of the optimization are 
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travel range is achieved during the Artemis drive cycle. Similarly, the highest well-to-wheel CO2 
emission also points to the Artemis drive cycle. 

Figure 12. Optimization results for lowest well-to-wheel CO2: (a) battery pack size; and 
(b) EM size. 

  
(a) (b) 

Figure 13. (a) CO2 emission per km; and (b) vehicle mass when optimized for lowest  
well-to-wheel CO2. 

  
(a) (b) 
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(approximately 6 MJ for the first 10 km). This correlates with the observation made in Figure 11a, 
where the NEDC has similar average acceleration and deceleration levels to the Real World cycle. 
Conversely, the size of the EM is different due to higher absolute acceleration level in the Real World 
drive cycle when compared to the NEDC, as seen in Figure 10a. 
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the next section. Other trends are observed to be similar between the two cost functions, with the 
vehicle optimized for the Artemis drive cycle once again having the lowest travel range for a given 
vehicle mass. 

Figure 14. Optimization results for lowest vehicle mass: (a) battery pack size; and (b) total 
vehicle mass. 

  
(a) (b) 

6.2.3. Comparing the Results of the Two Cost Functions 

The first comparison aims to identify the differences observed in the optimized EM size for the two 
cost functions, using the Artemis cycle as an example. Figure 15a shows the EM sizes with respect to 
increments in travel range, with blue and red lines reflecting optimized sizes for lowest well-to-wheel 
CO2 and lowest vehicle mass respectively. When taking a travel range of 200 km as an example 
(green line in Figure 15a), the resultant efficiency map and scatter of EM power usage over the drive 
cycle is created (Figure 16). Figure 15b shows the difference in brake regeneration ability between the 
two different EM sizes. The EM optimized for well-to-wheel CO2 has a higher power rating, and therefore 
recovers more braking energy when compared to the EM optimized for vehicle mass. This is further 
illustrated in Figure 16. 

Figure 15. Comparison of EM characteristic over the Artemis drive cycle: (a) EM size; 
and (b) Percentage of recovered braking energy. 
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The white scatters in the negative torque region are braking points encountered during the drive cycle. 
To minimize well-to-wheel CO2, the EM has to recover as much braking energy as possible. Given the 
regenerative braking strategy imposed, this necessitated a larger EM to accommodate as much of the 
regenerative energy as possible. 

Conversely, when optimized for smaller mass, the EM was sized just large enough to be able to 
handle the positive torque demands of the drive cycle, at the expense of regenerative braking abilities. 
This can be observed in Figure 16b, where the white scatter plots in the positive torque region are 
closer to the power limits of the EM. 

Figure 16. Comparison of EM efficiency and usage over the Artemis drive cycle:  
(a) optimized for lowest well-to-wheel CO2; and (b) optimized for lowest mass. 

  
(a) (b) 

The second comparison aims to identify the differences observed in the optimized battery size for 
the two cost functions, using the NEDC as an example. For a travel range of 66 km (green line in 
Figure 17a), it is observed that the vehicle that was optimized for well-to-wheel CO2 features a larger 
battery pack compared to the vehicle that was optimized for mass. This is further validated in 
Figure 17b for the same travel range, where the vehicle that was optimized for mass has a higher CO2 
output per kilometer, despite having the smaller battery (and therefore lighter) of the two vehicles. 

Figure 17. Comparison of battery pack size and CO2 emission over the new European drive 
cycle (NEDC) drive cycle: (a) battery pack size; and (b) well-to-wheel CO2 per kilometer. 
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The reasoning to support this finding can be inferred from the histograms in Figure 18. In Figure 18a, 
a smaller battery pack encounters a higher C-rate to provide the same amount of propulsion power. 
Therefore, although the battery pack is lighter, it is less efficient because of higher power losses 
associated with P = I2R, where P is electrical power; I is current; and R is the internal resistance of 
the battery. This difference in efficiency is reflected in Figure 18b. 

Figure 18. (a) Battery C-rate; and (b) efficiency histogram for EV sized for 66 km of NEDC. 

  
(a) (b) 

However, for travel range greater than 150 km, the influence of the battery pack’s mass becomes 
more dominant. Therefore, the resultant battery pack sizes from both cost functions converge and yield 
almost identical CO2 emissions, as observed in Figure 17b. Here, it is also noteworthy that the lowest 
point for CO2 output per kilometer occurs at around 175 km. This finding is not crucial for this 
investigation, and is therefore discussed in Appendix A4. 

The results so far has given some insight on EV powertrain sizing according to drive cycle and range. 
In the next section, this method of optimization will be extended to other powertrain architectures, 
as well as giving the optimizer the ability to select the most appropriate powertrain for a given drive 
cycle and range. 

6.3. Case Study 2: Optimizing Powertrain Sizing and Architecture Selection 

In Case Study 2, all powertrain architecture variants, as listed in Table 4, will be investigated. 
The cost function (ϕ) is minimizing well-to-wheel CO2 only. The framework’s role is to 
simultaneously optimize the powertrain sizing and architecture selection, while meeting the power and 
energy demands of the respective drive cycle. In this case study, a total vehicle mass limit of 1600 kg 
is imposed, as the target vehicle class is an E-segment vehicle [43]. 

The simulation is run in multiples of each drive cycle, up to a maximum range of about 450 km. 
In each run, the powertrain is required to complete the entire range of the drive cycle. 
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6.3.1. Optimization for Lowest Well-to-Wheel CO2 

Based on Figure 19, the EV powertrain was selected by the optimizer for travel range increments of 
up to 230 km on the NEDC. In the Real World and Artemis drive cycle however, this reduces to about 
210 km and 140 km, respectively. 

Figure 19. Well-to-wheel CO2/km emission: (a) NEDC; (b) real world; and (c) Artemis. 

  
(a) (b) 

 
(c) 

The EV powertrain offers the lowest well-to-wheel CO2/km when compared to the CV and 
PHEV powertrains, for a given drive cycle and range. As a result, the optimizer has selected the EV 
powertrain for the initial increments of each drive cycle. The crossover from EV powertrain to a 
different type of powertrain occurred when the vehicle mass limit of 1600 kg was reached or exceeded. 
The EV powertrain could no longer support a battery large enough to cover the necessary range within 
the mass limit. This is observed in Figure 20, which shows the total vehicle mass of the respective 
powertrain and for the range that it was sized for. 

To cater for a travel range of over 140 km on the Artemis cycle, for example, a vehicle with an EV 
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function of travel range is steeper for the EV when compared to the CV and PHEV. This is because the 
energy density for batteries is smaller than that of fossil fuels by two orders of magnitude [44]. 
Similarly, the mass of the battery as a percentage of the total vehicle mass is greater than that of the 

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

Distance (km)

W
el

l-t
o-

W
he

el
 C

O
2 e

m
is

si
on

 (g
/k

m
)

 

 
CV
EV
PHEV

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

Distance (km)

W
el

l-t
o-

W
he

el
 C

O
2 e

m
is

si
on

 (g
/k

m
)

 

 

CV
EV
PHEV

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

Distance (km)

W
el

l-t
o-

W
he

el
 C

O
2 e

m
is

si
on

 (g
/k

m
)

 

 

CV
EV
PHEV



Energies 2013, 6 5526 
 

 

fuel tank. This is observed in Appendix A5, Figure A4, which shows the breakdown of the vehicle 
masses from Figure 20. The definitions of the respective energy converters and energy storages for 
each type of powertrain architecture in Figure A4 were covered in Table 4. 

Figure 20. Total vehicle mass for the respective architectures selected by the optimizer. 
(a) NEDC; (b) real world; and (c) Artemis. 

  
(a) (b) 

 
(c) 

In Case Study 1, where only the EV powertrain was optimized, the results indicated that the vehicle 
had a longer travel range on the NEDC than the Artemis cycle for a given powertrain size, as observed 
from Figure 13b. This is because the overall power and energy requirements of the NEDC are lower 
than those of the Artemis cycle. Referring back to Figure 20, it can be inferred that this is the reason 
for the transition to happen at a longer range in the NEDC than in the Artemis and Real World cycles. 

6.3.2. Power and Energy Analysis 

As mentioned in the model development section, the current regenerative braking strategy limits the 
maximum amount of regenerative power of the EM to 33% of the maximum propulsion power. 
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To minimize well-to-wheel CO2, the EM has to recover as much braking energy as possible. 
Any deceleration event on the drive cycle that exceeds the maximum regenerative power of the EM 
will be blended with the friction brakes, which dissipate the energy to the environment as heat. 

At minimum, the EM has to be sized just large enough to be able to handle the positive power 
demands of the drive cycle. This would result in an EM with the lowest possible mass, and subsequently 
allow the use of a smaller battery, due to the lower C-rates encountered. However, as discussed during 
Case Study 1, the disadvantage of this approach is that a smaller EM would not be able to capture all 
deceleration events, thus sacrificing energy that could have been recovered via regenerative braking. 
It is therefore the role of the optimizer to choose between the following: 

• sizing the EM for lowest overall powertrain mass; 
• sizing the EM for maximizing energy recovery via regenerative braking. 

In Figure 21, a combination of this decision can be seen. For the Real World cycle, the EM has 
been sized to maximize on regenerative braking, which resulted in an EM with higher power rating 
than the maximum positive power encountered in the drive cycle. Conversely for the Artemis cycle,  
the EM was sized just enough to meet the positive power demands, sacrificing on the recuperation of 
braking energy. A direct consequence of this can be observed in Figure 22b,c, where the percentage of 
recovered braking energy in the Real World cycle is higher than that of the Artemis cycle. 

Figure 21. Drive cycle and energy converter power: (a) NEDC; (b) real world; and  
(c) Artemis. 

  
(a) (b) 

 
(c) 
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Figure 22. Percentage of recovered braking energy: (a) NEDC; (b) real world; and  
(c) Artemis. 

  
(a) (b) 

 
(c) 

For the NEDC, the result was mixed; the EM was sized for maximum regenerative braking for 
travel range of up to 120 km, and then it was sized for maximum positive power thereafter, as seen in 
Figure 21a. After the EV powertrain transitioned to conventional powertrain, however, there was no 
more regenerative braking, and the ICE was sized to minimize its fuel consumption instead. 

One reason to suggest the tendency of the optimizer to scale the EM for minimizing mass or 
maximizing regenerative braking can be inferred from Figure 23. The total energy (positive and 
negative) required by the Artemis cycle is higher than the NEDC cycle for a given range. This 
correlates back to Figure 11b, where there is a larger spread of acceleration events (evident from the 
longer distance between 25th and 75th percentile lines on the box plot). Therefore, sizing the EM (and 
subsequently the battery) to maximize braking energy recuperation in the Artemis cycle would have 
resulted in a powertrain that is very heavy, and this would have caused the vehicle to emit more 
well-to-wheel CO2 per km, despite the increase in regenerative braking capability. 

One reason to suggest the tendency of the optimizer to scale the EM for minimizing mass or 
maximizing regenerative braking can be inferred from Figure 23. 
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Figure 23. Total energy from drive cycle and recovered braking energy: (a) NEDC;  
(b) real world; and (c) Artemis. 

  
(a) (b) 

 
(c) 

The total energy (positive and negative) required by the Artemis cycle is higher than the NEDC 
cycle for a given range. This correlates back to Figure 11b, where there is a larger spread of 
acceleration events (evident from the longer distance between 25th and 75th percentile lines on the 
box plot). Therefore, sizing the EM (and subsequently the battery) to maximize braking energy 
recuperation in the Artemis cycle would have resulted in a powertrain that is very heavy, and this 
would have caused the vehicle to emit more well-to-wheel CO2 per km, despite the increase in 
regenerative braking capability. The authors acknowledge that the results presented here are based on 
the assumptions made during the development of the powertrain components. These results may vary 
if further uncertainties are introduced into the model, such as component degradation and performance 
variation caused by changes in operating temperature. Additionally, the regenerative braking strategy 
is expected to play an important role in deciding the point of transition between the powertrain 
architectures. Sensitivity studies based around these uncertainties and assumptions can be included into 
the framework, and are currently being investigated. 
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supplementing the drive cycle to include such power demands. It ought to be mentioned that the 
well-to-wheel CO2 data used for the generation of electrical energy was based on data from the UK grid, 
and therefore the results will vary based on the grid mix in different countries. 

7. Conclusions 

Using the novel framework proposed in this paper, investigations have identified the “cross-over point” 
between powertrain architectures, based on the duty cycle and required travel range. The proposed 
methodology, supported by this finding, opens a way for vehicle manufacturers to quantify the benefits 
that can be achieved from each type of powertrain architecture, and potentially accelerate the 
implementation and customer take-up of alternative powertrain technology. Although this investigation 
was limited to three types of powertrain architecture, the flexibility of the Modular Powertrain 
Structure will enable additional types of energy converters and energy storages to be included, thus 
creating further permutations of powertrain architectures. In Case Study 1, the influence of different 
cost functions towards powertrain sizing was more evident when the vehicle was optimized for lower 
travel ranges. In Case Study 2, only one cost function was used to illustrate the workings of the framework; 
however more comprehensive cost functions are currently being investigated as part of this research, 
including the use of weighted cost functions for multi-objective optimization. In Case Study 2, it was 
also interesting to note that the Conventional Vehicle was selected instead of the PHEV for travel 
ranges above 250 km on the NEDC cycle. The NEDC is a less demanding cycle when compared to the 
real world and Artemis cycles, and does not offer as good an opportunity for regenerative braking. 
As a result, using a PHEV would have resulted in a heavier vehicle without the benefits of  
reduced emissions. 

Appendix 

Appendix A1 

Table A1. Data from the smart electric drive (ED) [45]. 

Make Smart (Mercedes Benz) 
Model Fortwo ED (Electric Drive) 

Electric machine Zytek Automotive 55 kW (limited to 30 kW propulsion, 10 kW regenerative braking) 
Battery pack 16.5 kWh Li-ion (Panasonic NCR18650 cells) 
Top speed 27.7 m/s (62 miles/h) 

Weight 965 kg unladen weight 
Range 135 km (NEDC drive cycle) 

Well-to-wheel CO2 107 g/km (NEDC drive cycle) (DEFRA report) 
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Appendix A2 

Figure A1. The three types of drive cycle used in the investigation. 
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Appendix A3 

Figure A2. Simulink model of the MPS. 
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Appendix A4. Further discussion on behavior of normalized well-to-wheel CO2 emission  
per kilometer 

To aid this discussion, Figure A3a shows the well-to-wheel CO2 emissions for the EV used in 
Case Study 1. The EV was optimized for lowest well-to-wheel CO2 over an incremental travel range 
on the NEDC. Extended travel range was obtained by repeating the NEDC back-to-back. An example 
of this can be seen in Figure A3, where the NEDC was repeated twice. In Figure A3a, the blue line 
represents the normalized well-to-wheel CO2 output in grams per kilometer, whereas the green line 
represents the accumulated (total) well-to-wheel CO2 output in kilograms. 

Figure A3. (a) Well-to-wheel CO2; and (b) end-of-journey battery state of charge (SOC) 
as a function of travel range. 

  
(a) (b) 

Referring to Figure A3a, it is noteworthy that the lowest point for the normalized CO2 output occurs 
when the EV is optimized for a travel range of 175 km. When the EV is optimized for a larger 
travel range (more than 175 km), the normalized CO2 emission rises accordingly. This is caused by the 
increase in vehicle mass, which is mainly driven by the increase in battery size to satisfy the larger 
travel range. Consequently, as the vehicle mass increases, more energy is required to propel the EV 
over the drive cycle. Hence, the larger the travel range that the EV is optimized for, the greater the 
amount of CO2 is emitted per kilometer. 

However, it is also noticeable that the normalized CO2 output rises again when the EV is optimized 
for travel ranges smaller than 175 km. In this scenario, the battery was identified to be “oversized” for 
travel ranges below 175 km. This is validated in Figure A3b, where it is observed that the battery does 
not discharge to the minimum limit of 20% SOC during such shorter travel ranges. If the battery were 
made smaller to maximize on its SOC range, its C-rate limit will be approached or exceeded, 
because the peak power demand from the drive cycle is almost constant, regardless of travel range. 
Therefore, although the accumulated well-to-wheel CO2 emission is lower for shorter travel ranges, 
the normalized CO2 emissions is inevitably higher because the battery is underutilized and its extra 
capacity is considered as “dead weight”. A similar trend is also observed in Figure 19a. However, it ought 
to be mentioned that the characteristics shown in Figure A3 will vary depending on the battery C-rate 
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capability and vehicle glider mass, along with other assumptions made in this investigation such as the 
regenerative braking strategy. 

Appendix A5. 

Figure A4. Breakdown of vehicle mass for each powertrain architecture (correlates with 
Figure 20). 

  
(a) NEDC (b) Real World 

 
(c) Artemis 
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