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Abstract: Solar radiation is an important input for various land-surface energy balance 

models. Global solar radiation data retrieved from the Japanese Geostationary 

Meteorological Satellite 5 (GMS-5)/Visible and Infrared Spin Scan Radiometer (VISSR) 

has been widely used in recent years. However, due to the impact of clouds, aerosols, solar 

elevation angle and bidirectional reflection, spatial or temporal deficiencies often exist in 

solar radiation datasets that are derived from satellite remote sensing, which can seriously 

affect the accuracy of application models of land-surface energy balance. The goal of 

reconstructing radiation data is to simulate the seasonal variation patterns of solar 

radiation, using various statistical and numerical analysis methods to interpolate the 

missing observations and optimize the whole time-series dataset. In the current study, a 

reconstruction method based on data assimilation is proposed. Using a Kalman filter as the 

assimilation algorithm, the retrieved radiation values are corrected through the continuous 

introduction of local in-situ global solar radiation (GSR) provided by the China 

Meteorological Data Sharing Service System (Daily radiation dataset_Version 3) which 

were collected from 122 radiation data collection stations over China. A complete and 

optimal set of time-series data is ultimately obtained. This method is applied and verified 

in China’s northern agricultural areas (humid regions, semi-humid regions and semi-arid 

regions in a warm temperate zone). The results show that the mean value and standard 

deviation of the reconstructed solar radiation data series are significantly improved, with 
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greater consistency with ground-based observations than the series before reconstruction. 

The method implemented in this study provides a new solution for the time-series 

reconstruction of surface energy parameters, which can provide more reliable data for 

scientific research and regional renewable-energy planning. 

Keywords: Kalman filter; solar radiation; time series; remote sensing; reconstruction 

 

1. Introduction 

The parameters of surface energy balances are important inputs for research on global  

climate change, crop-yield assessment and ecological environment evaluation. At present, remote 

sensing-derived radiation, temperature and other data sets on a global scale have already been used as 

standardized products in research and applications. Satellite remotely sensed information is convenient 

and easily accessed over a large area. However, due to the impact of clouds, aerosols, solar elevation 

angle and bidirectional reflection, the surface energy parameters retrieved from remote-sensing data 

are often interrupted on the spatial and temporal scales. A complete dataset for a large region is always 

difficult to obtain [1,2]. In addition, an indirect retrieval method and the instantaneous features of 

monitoring have varying degrees of impact on the accuracy of surface-parameter retrieval [3,4]. To 

reduce such impacts, a time-composite method is generally adopted. For example, the hourly 

parameters retrieved from geostationary meteorological satellite data are combined into daily average 

data, and 8-day Moderate Resolution Imaging Spectroradiometer (MODIS) radiation products are 

combined from daily data. Despite these interpolation methods, the problems of missing data or 

unstable data quality are still very serious at the regional scale [5], and this limitation will eventually 

affect the accuracy of land surface-energy balance analyses and simulations [6].  

Fitting surface energy parameter time series is a fundamental task for further study [7].  

For surface energy parameters, the time-series fitting and noise-removal methods commonly used 

include the mean diurnal variation and nonlinear regression methods [8–10]. Moffat et al. [11] 

reviewed 15 techniques for estimating the missing values of net ecosystem CO2 exchange in eddy 

covariance time series and evaluated their performance for different artificial gap scenarios. Different 

reconstruction methods have their respective advantages and disadvantages. The nonlinear regression 

method, look-up table method, dynamic linear regression method and artificial neural networking 

require in situ meteorological data [4,12]. Meteorological data are usually not required for the mean 

diurnal variation method, therefore, this method can be used even when meteorological data are 

missing. However, under significant changes of environmental conditions, the modeled results often 

cannot represent the actual situation [3,13].  

In recent years, data-assimilation methods have been adopted in the reconstruction of time-series 

data. Gu et al. [14] designed a simplified NDVI time-series reconstruction method based on data 

assimilation, and the results showed that the quality and efficiency of long NDVI time-series data 

processed using this method were superior to those processed using the threshold removal and 

nonlinear fitting methods. Zhou et al. [15] verified the effects of using an ensemble Kalman filter 

algorithm to calculate the soil moisture and depth of the frozen soil during soil freezing and thawing in 
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an improved model. Assimilation results based on the data at the testing points showed that an 

ensemble Kalman filter algorithm improved the calculations of energy and moisture variables using the 

model. Alavi et al. [16] applied the data-assimilation method to reconstruct missing latent heat-flux 

data using the Penman-Monteith equation as the model operator for the assimilation algorithm and an 

ensemble Kalman filter as the reconstruction method. A data assimilation experiment of the Spinning 

Enhanced Visible and Infrared Imager (SEVIRI) land surface temperature (LST) into the Joint UK 

Land Environment Simulator (JULES) land-surface model via an Ensemble Kalman Filter shows an 

improvement in the modeled LST, soil moisture and latent and sensible heat fluxes. The results 

indicate that data assimilation can indeed prove to be a consistent and reliable method of constraining 

the simulations of complex land surface models [17]. Kawai et al. [18] did some research on validating 

and improving satellite-derived downward surface shortwave radiation which is calculated from  

GMS-5/VISSR data in 0.05° × 0.05° grids over the northwestern Pacific Ocean using abundant in situ 

data. The cloud attenuation coefficient that was used in the study was affected by satellite-measured 

albedo, solar zenith angle and even the latitude. In addition, this comparison was only performed at the 

point scale and could not be used in the regional scale. In this paper, GSR data primarily derived from 

GMS-5/VISSR are used. The major objective is to establish a time-series reconstruction method based 

on an ensemble Kalman filter. The method was tested with in situ solar radiation measurements. Using 

climate-zoning information, the method could be applied at a large regional scale to produce a refined 

solar radiation time-series dataset. 

2. Study Area and Data Acquisition 

2.1. Data Source  

In this study, daily solar radiation data retrieved from a geostationary meteorological satellite (the 

Japanese Geostationary Meteorological Satellite 5, GMS-5) were used as the main data source. The 

GMS-5 satellite was launched in March, 1995 into geostationary orbit, located at nominal geodetic 

coordinates of 0° latitude and 140° E longitude. Full disk images are relayed to ground receiving 

stations approximately 25–28 times per day, providing up to half-hourly temporal coverage during 

some periods of the day. The full-width scan angle subtended at the satellite is about 19.6°, which 

includes some space view. Earth-view data are obtained over a full-scan angle width of 17.4°. The 

GMS-5 Visible and Infrared Spin Scan Radiometer (VISSR) has four channels: one visible, two 

thermal infrared channels and a channel sensing thermal radiation emitted by the strong water vapor 

rotation band at 6.3 μm. Some characteristics of the VISSR are listed in Table 1 [19]. 

With the support of the China-Netherlands cooperative project Establishment of a Chinese Energy 

and Water Balance Monitoring System for Desertification and Food Security Applications, the China 

National Satellite Meteorological Centre (CNSMC) and the Institute of Geographic Science and 

Natural Resources Research (IGSNRR) jointly established the China Energy and Water Balance 

Monitor System (CEWBMS). The system has now been updated to Version 2.0 (with additional  

data-processing capacity from China’s FengYun-series Weather Satellite), operationally running at 

IGSNRR, and offering standard satellite-derived GSR data products and services. The GSR data of the 

research area in 2002 were selected for further study. However, the design life of GMS-5 was five 
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years, and VISSR had a declining performance. The parameters and models used for the calibration 

and atmospheric correction have the unavoidable problem of uncertainty, which will affect the data 

accuracy. In the CEWBMS, two calibration coefficients were introduced in the radiation transfer 

model to decrease errors mention above. Detailed description can be found in [20].  

Table 1. Characteristics of the VISSR on GMS-5. 

Function Visble channels Infrared channels 

Number 4 (+4 redundant ) 3 (+3 redundant ) 

IFOV 35 × 31 μrad 140 × 140 μrad 

Band 0.55–0.90 μm 

10.5–11.5 μm (IR1) 

11.5–12.5 μm (IR2) 

6.5–7.5 μm (IR3) 

Resolution 1.25 km 5 km 

Noise performance 
S/N ≥ 84 (albedo = 100%) 
S/N ≤ 6.5 (albedo = 25%) 

NE∆T (300 K) NE∆T (220 K) 

IR1 ≤ 0.35K ≤ 1.00K 

IR2 ≤ 0.35K ≤ 0.90K 

IR3 ≤ 0.22K ≤ 1.50K 

Digitization 6-bit 6-bit 

Calibration Preflight On board blackbody and space view 

The in situ GSR data which were measured at each meteorological station were provided by the 

China Meteorological Data Sharing Service System. There are 122 radiation data collection stations 

over China where the GSR has been measured since 1957. The daily radiation dataset_(Version 3) was 

used in this paper which was set up at 28 June 2005. The geographic extent is between latitudes 4.00° 

and 53.52° N, and longitudes 73.60° and 135.08° E. The in situ data were obtained using the surface 

induction automatic telemetering radiometer and the original data have a relative error of 0.5. The 

dataset used has been modified by the quality control method. The data type was integer with units of 

0.01 MJ/m2.  

2.2. Study Area  

The study area, which is located in North China, is one of China’s important agricultural areas, with 

humid, semi-humid and semi-arid climates in a warm temperate zone. Six climatic sub-regions are 

included in the research area: a sub-humid region in a warm temperate zone in the North China plain 

and Dongshan Mountain of central Shandong, a sub-humid region in a warm temperate zone in Fenwei 

Plain, a sub-humid region in a warm temperate zone of the Yanshan mountains, a humid region in a 

warm temperate zone in the Liaodong hilly area, a semi-arid region in a warm temperate zone in the 

Taihang mountains on the east of the Loess Plateau, and a sub-humid region in a warm temperate zone 

in the southern part of the Loess Plateau (Figure 1). 
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Figure 1. Study area and distribution of observation sites. 

 

3. Method  

A time-series reconstruction of the satellite-derived GSR data was conducted as follows: 

1. Time-series reconstruction based on a single observation site (point scale):  

 The in situ GSR data at meteorological stations in the research area were processed;  

 Daily GSR retrieved from GMS-5 (VISSR) were extracted corresponding to the location 

information of the meteorological stations ;  

 The time series of GSR retrieved from GMS-5(VISSR) were reconstructed using an 

ensemble Kalman filter. 

2. Verification of the time-series reconstruction based on single site-pixels. 

3. Application of the method to the whole research area: taking the climatic sub-regions as the 

basic unit, the measured radiation data at representative sites in the sub-regions were assimilated 

using the methods noted above for each pixel in the research area. 

4. Regional verification: using the measured radiation values at the sites of (3) as “true values”, the 

application results of our method were verified over the whole research area. 

3.1. Kalman Filter-Based Reconstruction Algorithm 

A Kalman filter was used as the reconstruction algorithm in this study. In 1960, Kalman et al. [21] 

proposed the concept of a Kalman filter for the state estimation of stochastic processes. The method 

has been modified and widely applied in many fields of research and has been adopted as one of the 

most traditional data assimilation algorithms [22–24]. The Kalman filter addresses the general problem 
of trying to estimate the state kX  of a discrete-time-controlled process that is governed by the linear 

stochastic-difference equation [25,26]: 

, 1 1 , 1 1k k k k k k kX X W− − − −= Φ + Γ  (1) 

with a measurement kZ  that is defined as follows: 
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k k k kZ H X V= +  (2) 

The random variables 1kW −  and kV  represent the process and measurement noise, respectively. 

These factors are assumed to be independent (of each other), composed of white noise, and with 

normal probability distributions. In practice, the process noise-covariance and measurement  

noise-covariance matrices ( , 1k k −Φ  and , 1k k −Γ ) might change with each time step or measurement; 

however, here, we assume that they are constant. The matrix kH  in the measurement Equation (2) 

relates the state to the measurement. In practice, kH  might change with each time step or 

measurement, but here, we assume it is constant, H =1. 

We assume the following relations:  

[ ]
[ ]

0 , 

0 , 

0  

T
k k j k kj

T
k k j k kj

T
j

E W E W W Q

E V E V V R

E WV

δ

δ

  = =   = =  


  =  

 (3) 

where kQ  is the nonnegative covariance matrix of kW  and kR is the positive covariance matrix of kV ; 

kjδ  is the function of kerKronec δ− . 

We define N as the number of days of measurement, then: 

( )( )  0.5*cov randn 1, NkQ =
 (4)

( )( ) 0.5*cov randn 1, NkR =
 (5)

We define 
1kX

∧

−  to be our a priori state estimate at step k, given knowledge of the process prior to 

step k, and 
kX

∧
 is our a posteriori state estimate at step k, given measurement kZ . We can then define 

the a priori state as follows: 

, 1 , 1 1k k k k kX X
∧ ∧

− − −= Φ  (6) 

and the a posteriori state as follows: 

, 1 , 1+ [ ]k k k k k k k kX X K Z H X
∧ ∧ ∧

− −= −  (7) 

The a priori estimate of the error covariance is as follows: 

, 1 , 1 1 , 1 , 1 1 , 1
T T

k k k k k k k k k k k kP P Q− − − − − − −= Φ Φ + Γ Γ  (8) 

The a posteriori estimated error covariance is as follows: 

, 1[ ] [ ]T T
k k k k k k k k k kP I K H P I K H K R K−= − − +  (9) 

The matrix I is the unit matrix. The matrix K in Equation (5) is chosen to be the gain or blending 

factor that minimizes the a posteriori estimated error covariance. One form of the resulting K that 

minimizes (1.6) is given by the following relations:  
1 1

, 1 , 1[ ]    or  T T T
k k k k k k k k k k k k kK P H H P H R K P H R− −

− −= + =  (10) 

1 1 1
, 1 , 1[ ]    or   + T

k k k k k k k k k k kP I K H P P P H R H− − −
− −= − =  (11) 
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The calculation process of a Kalman filter is a constant “forecast-correction” process. Within a filter 

cycle, in view of the sequence of using systematic and observed information, a Kalman filter has two 

distinct information-updating processes: a time-update process and an observation-update process.  

In the time-update process, the predicted values at the current state of the present moment are 

generated according to the state of the preceding moment. In the observation-update process, the  

in situ GSR is introduced, and the state is re-analyzed by estimating the minimum variance; through 

several iterations, the global optimum is reached. We can draw the Kalman filter process as presented 

in the diagram of Figure 1 using Equations (4–9). 
In Figure 2, is the initial estimated state of the satellite GSR. is the in situ GSR, where is 

one day of the year of 2002 which has the measured GSR. Then the gain matrix  can be calculated. 

The a posteriori estimated error covariance can be obtained later. The time and the in situ GSR

will update during the processes of “Time update” and “Measurement update”, meanwhile, the 

previous optimal GSR has been estimated. 

Figure 2. Algorithm Diagram of the Kalman Filter. 

0 , 1P k =

, 1 , 1 1 , 1 , 1 1 , 1
T T

k k k k k k k k k k k kP P Q− − − − − − −= Φ Φ + Γ Γ

1
, 1 , 1[ ]T T

k k k k k k k k kK P H H P H R −
− −= +

, 1[ ]k k k k kP I K H P −= −

0 , 1X k
∧

=

, 1 , 1 1k k k k kX X
∧ ∧

− − −= Φ

, 1 , 1+ [ ]k k k k k k k kX X K Z H X
∧ ∧ ∧

− −= −

1kQ −

kP

kR
1k k+ →

kX
∧
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3.2. From Sites to the Regional Scale 

After the time-series reconstruction based on a single observation site, the algorithm is applied to 

the whole research area. First, it is assumed that the altitude, temperature, rainfall, aridity, topography 

and other conditions are basically the same in each climatic sub-region [27]. In addition, the solar 

0X
∧

kZ k

kK

kP k

kZ
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radiation values retrieved from remote-sensing data represent the unit values for approximately 25 km2 

of land area. Therefore, the solar radiation values corresponding to pixels of the entire research area 

can be reconstructed using the in situ GSR at the representative sites in each climatic sub-region to 

obtain a spatial distribution map of the solar radiation at different dates after reconstruction over the 

entire research area. 

4. Result and Analyses 

4.1. Results and Analysis of Reconstruction on the Single Site-Pixel Scale 

At each radiation-observation site, which is located near the center of the corresponding climatic 

sub-region, the in situ GSR can be obtained and applied to reconstruct the daily GSR retrieved from 

the GMS-5 (VISSR) in 2002 by using the Kalman filter-based algorithm mentioned in Section 3. The 

GMS-5 (VISSR) derived GSR, the mean square error (MSE) and the differences of each pair (retrieved 

GSR minus in situ GSR, reconstructed GSR minus in situ GSR and reconstructed GSR minus retrieved 

GSR) are shown in Figure 3.  

Figure 3. Reconstructed GSR, in situ GSR, retrieved GSR, differences and the MSE of the 

three datasets at (a) Taiyuan; (b) Chaoyang; (c) Xi’an; (d) Jinan; and (e) Shenyang 

meteorological stations in 2002. 

(a1) (a2) (a3) 

(b1) (b2) (b3) 
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Figure 3. Cont. 

(c1) (c2) (c3) 

(d1) (d2) (d3) 

(e1) (e2) (e3) 

Panels A to E in Figure 3 presented the meteorological stations of Taiyuan, Chaoyang, Xi’an, Jinan 

and Shenyang, respectively, which were used for reconstruction and their precise positions were shown 

in Figure 1. The first column is the time series of retrieved, in situ and reconstructed GSR.  

The second column is the MSE which is an estimator to determine the extent to which the model fits 

the data. In this paper, MSE is used to quantify the difference between the reconstructed GSR and the 

in situ GSR [Equation (12)]. It is about 2.5 at the beginning of reconstruction of GSR by Kalman  

filter and decreased to less than 1.5 and stayed stable, which means the variance of the two dataset 

became stabilized: 
2

1

1
( )

n

k k

k

MSE insitu reconstruct
n =

= −  (12) 
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The third column is the time series of retrieved GSR minus in–situ GSR (the red line), reconstructed 

GSR minus in situ GSR (the blue line) and reconstructed GSR minus retrieved GSR (the green line). 

From this column we can found that most of the differences are near the line of zero. Most of the 

differences in the winter (the first fifty days and the last fifty days in 2002) are lower than 10 W/m2. 

The differences between reconstructed GSR and in situ GSR are higher than the other two, and are less 

than 20 W/m2. 

The statistics in Table 2 show that the standard deviations of the solar radiation data for each site 

are significantly improved after the reconstruction using the Kalman filter. Meanwhile, the means 

(mean before reconstruction, mean of in situ data, and mean after reconstruction) of the reconstructed 

dataset show more consistent variation with those of in situ dataset (Table 1).  

Table 2. Comparison of GMS-5(VISSR) derived GSR, in situ GSR and the  

reconstructed GSR. 

Meteorological 

stations 

Mean of GMS-5 

(VISSR) derived 

GSR (w/m2) 

Mean of  

in situ GSR 

(w/m2) 

Mean after 

reconstruction 

(w/m2) 

Standard deviations 

of GMS-5 (VISSR) 

derived GSR 

Standard 

deviations of  

in situ GSR 

Standard 

deviations after 

reconstruction 

Chaoyang 88.13  84.52  84.50  44.89  39.17  42.77  

Taiyuan 87.65  86.09  86.16  44.37  41.20  42.00  

Xi’an 86.50  82.50  82.45  51.35  48.31  49.88  

Shenyang 84.20  78.56  78.57  45.73  40.70  44.94  

Jinan 93.37  93.17  93.14  44.08  47.44  47.99  

The spatial variation of the solar radiation data was relatively stable (on scales of pixels of dozens 

of meters or a few kilometers), and the temporal variation was significant. Such a variation pattern of 

the time series is obviously seasonal, which can be used as the basis for precision analyses and the 

reconstruction of time series of radiation data products retrieved from remote sensing data. 

4.2. Reconstruction on the Research-area Scale 

The reconstruction results of the solar radiation values retrieved from the remote-sensing data in 

each climatic sub-region on the representative dates in the four seasons of 2002 are shown as follows 

(Figure 4). 

Figure 4. The distribution of global solar radiation on (a) 15 February; (b) 15 May;  

(c) 15 August; and (d) 15 November, 2002.  

 
(a1) (a2) (a3) 

  



Energies 2013, 6 2814 

 

 

Figure 4. Cont. 

 
(b1) (b2) (b3) 

 
(c1) (c2) (c3) 

 
(d1) (d2) (d3) 

In Figure 4, columns 1–3 represent the distributions of the retrieved GSR, reconstructed GSR and 

the differences between them, while rows a–d show four different days (15 February, 15 May, 15 

August and 15 November, 2002) corresponding to four seasons in China. From Figure 4, we can see 

that in the four seasons, two dates show significant variation of the solar radiation values before and 

after reconstruction: 15 February and 15 November. On 15 February, after the reconstruction of the 

spatial distribution of the solar radiation over the research area, except the semi-humid regions in the 

warm temperate zone of the Yanshan mountains, there is a considerable reduction in the radiation 

values in all of the climatic sub-regions. On 15 November, the radiation values show an increasing 

trend in the semi-humid regions in the warm temperate zone of the Yanshan mountains and in the 

semi-arid regions of the warm temperate zone of the Taihang mountains on the eastern Loess Plateau. 

On 15 May and 15 August, the high solar radiation values show less variation, both in degree and 

scope. In the c column, the differences for dates 1–4 is 0.39~6.7, 1–7.32, −1.1–16 and −4.9–5.7 w/m2, 

respectively. The biggest difference of 16 w/m2 occurred on 15 August in the humid region. 

Except for the data at the radiation observation sites that were used to establish the fitting equation, 

the data at the remaining observation sites were used to verify the reconstructed results over the 

research area. Data at the observation sites in Yan’an, Houma, Beijing, Tianjin, Leting, Zhengzhou, Ju 
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County and Fushan were selected for verification. Statistical analysis was conducted for the solar 

radiation values of 2002 retrieved from the VISSR data (before reconstruction) at these sites, the in situ 

GSR and the solar radiation values after reconstruction (Table 3). 

Table 3. Comparison of the remotely sensed solar radiation data before and  

after reconstruction. 

Meteorologi

cal stations 

Mean of GMS-5 

(VISSR) derived 

GSR (W/m2) 

Mean of  

in situ GSR 

(W/m2) 

Mean after 

reconstruction 

(w/m2) 

Standard deviations 

of GMS-5 (VISSR) 

derived GSR 

Standard 

deviations of  

in situ GSR 

Standard 

deviations after 

reconstruction 

Yan’an 86.17  84.16  84.64  47.22  42.15  47.70  

Houma 88.04  82.41  83.95  47.92  43.21  47.34  

Beijing 87.94  84.69  87.49  44.84  43.13  43.45  

Tianjin 90.09  87.28  89.42  45.84  43.20  44.42  

Leting 88.56  84.84  88.13  46.93  42.84  45.47  

Zhengzhou 88.90  88.00  88.48  49.18  46.96  47.65  

Jvxian 93.81  91.27  93.55  46.93  42.75  45.55  

Fushan 89.47  87.28  89.07  47.04  41.79  45.58  

From Table 3, we can see that the means of the reconstructed solar radiation values are close to 

those of the measured values before the reconstruction. Meanwhile, the standard deviations of the solar 

radiation values at the majority of the radiation-observation sites are smaller than those before the 

reconstruction, which means the scatter of the data set has been reduced. In the verification points of 

Yan’an, the standard deviations of the data after reconstruction are slightly larger than those before 

reconstruction, but the numerical change is small. The possible causes of error are analyzed in the 

following section. 

4.3. Error Analysis 

Based on the analysis of the reconstruction results using the Kalman filter in Section 3.2 and the 

verification of the reconstruction results over the whole research area in Section 4.2, our method for 

time-series reconstructions of short-term solar radiation data achieves good results on the whole. 

However, at some sites, the accuracy fails to be significantly improved. The possible sources of error 

are analyzed as follows:  

1. Errors from the satellite data source. The global solar radiation data for 2002 came from Japan’s 

GMS-5(VISRR), launched in 1995. The satellite had been running beyond its intended service 

life even by 2000, and the sensor performance has been declining. The parameters and models 

used during the calibration and atmospheric correction have the unavoidable problem of 

uncertainty, which affects the data accuracy. However, the products we used in this paper have 

been modified by two calibration coefficients. 

2. The retrieval algorithm is an indirect method. The radiation signals received by the sensor are the 

results of the entire process of atmospheric reflection, absorption, transmission to the ground and 

reflection back to the sensor, which is very complex. The satellite remote-sensing retrieval 

involves many unknown parameters, and empirical or semi-empirical formulas are often 

adopted. Therefore, a precise quantification is almost impossible.  
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3. Errors may inevitably arise from the reconstruction method established in this study in the 

following two aspects: during the reconstruction process using the Kalman filter, the setting of 

the initial values is uncertain and requires experience. The accuracy of the initial value setting 

will impact the reconstruction results. We used the first in situ GSR as the initial estimated state 

in this paper, and the MSE of the first day of 2002 was the largest. Moreover, there are scale 

differences between the ground-observation sites and the satellite pixels, which is another source 

of error. The in situ GSR obtained at the point scale while the GMS-5(VISRR) derived GSR 

were retrieved at the resolution of 5 km. We used MSE in this study to quantify the difference 

between the reconstructed GSR and the in situ GSR. It is about 2.5 at the beginning of 

reconstruction of GSR by Kalman filter and decreased to less than 1.5 to the end. 

5. Conclusions 

In this study, based on daily solar radiation retrieved from remote-sensing data, a complete set of 

time-series reconstruction methods for solar radiation values was proposed. The following main 

conclusions are reached: 

1. The spatial variation of the GMS-5 solar radiation data was relatively stable on scale of pixels of 

25 km2 in this paper, and the temporal variation was significant. Such a variation pattern of the 

time series is obviously seasonal, which can be used as the basis for precision analyses and the 

reconstruction of time series of radiation data products retrieved from remote-sensing data. 

2. On the site-pixel scale, the accuracy and consistency of the entire time series was effectively 

improved by reconstruction using a Kalman filter. The MSE which can quantify the difference 

between the reconstructed GSR and the in situ GSR is about 2.5 at the beginning of 

reconstruction of GSR by Kalman filter and decreased to less than 1.5 later to the end. Some 

representative sites in the research area were selected, and the measured solar radiation values 

were constantly introduced as “true values” to reconstruct the retrieved data using a Kalman 

filter. The means and standard deviations of the solar radiation data after reconstruction were 

significantly improved which can be seen from Table 2; From the third column of Figure 3, most 

of the differences of the pairs were near zero: lower than 10 W/m2 in winter and lower than 20 

W/m2 in other days. This finding indicates that the time-series reconstruction method established 

in this study for solar radiation data based on Kalman filtering is effective for applied research.  

3. Apart from the Kalman filter algorithm and the improved algorithm, other new data-assimilation 

methods can also be used in further studies. Through comparative analysis of the application 

effects of various methods, we can obtain the desired reconstruction results. With respect to the 

conversion method for data on the point scale to data on the regional scale, data-assimilation 

techniques using a land surface-process model as the model operator and a Kalman filter as the 

assimilation algorithm have been rapidly developed. However, there have been few reports on 

the application of data-assimilation techniques in time-series reconstruction for surface 

parameters. Therefore, this technology has great application potential and research value in  

this respect. 
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