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Abstract: Lateral tower vibrations of offshore wind turbines are normally lightly damped,
and large amplitude vibrations induced by wind and wave loads in this direction may
significantly shorten the fatigue life of the tower. This paper proposes the modeling and
control of lateral tower vibrations in offshore wind turbines using active generator torque.
To implement the active control algorithm, both the mechanical and power electronic
aspects have been taken into consideration. A 13-degrees-of-freedom aeroelastic wind
turbine model with generator and pitch controllers is derived using the Euler–Lagrangian
approach. The model displays important features of wind turbines, such as mixed moving
frame and fixed frame-defined degrees-of-freedom, couplings of the tower-blade-drivetrain
vibrations, as well as aerodynamic damping present in different modes of motions. The load
transfer mechanisms from the drivetrain and the generator to the nacelle are derived, and the
interaction between the generator torque and the lateral tower vibration are presented in a
generalized manner. A three-dimensional rotational sampled turbulence field is generated
and applied to the rotor, and the tower is excited by a first order wave load in the lateral
direction. Next, a simple active control algorithm is proposed based on active generator
torques with feedback from the measured lateral tower vibrations. A full-scale power
converter configuration with a cascaded loop control structure is also introduced to produce
the feedback control torque in real time. Numerical simulations have been carried out using
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data calibrated to the referential 5-MW NREL (National Renewable Energy Laboratory)
offshore wind turbine. Cases of drivetrains with a gearbox and direct drive to the generator
are considered using the same time series for the wave and turbulence loadings. Results show
that by using active generator torque control, lateral tower vibrations can be significantly
mitigated for both gear-driven and direct-driven wind turbines, with modest influence on the
smoothness of the power output from the generator.

Keywords: offshore wind turbine; active generator control; lateral tower vibration;
feedback control; aeroelastic model

1. Introduction

Modern multi-megawatt wind turbines are designed with increasingly larger rotors and higher towers,
in order to capture more energy throughout their lifetime and, thereby, reduce the cost of energy. As wind
turbines grow in size, the stiffness of the blades and the tower are not increased proportionally, rendering
the structure more sensitive to dynamic excitations. Normally, vibrations in the flap-wise direction
and tower vibration in the mean wind direction are highly damped due to the strong aerodynamic
damping [1]. In contrast, edgewise vibrations and lateral tower vibrations are related with insignificant
aerodynamic damping [1,2]. Hence, these modes of vibrations may be prone to large dynamic responses.
Most offshore wind turbines are placed at shallow water. Due to refraction, the approaching waves tend
to propagate in a direction normal to the level curves of the sea bottom. In turn, this means that the wave
load may act in a different direction of the mean wind direction, and significant lateral tower vibrations
may be initiated by the wave load in combination with the resultant aerodynamic load from the three
blades in the lateral direction.

Some studies have been carried out for the structural control of tower vibrations, most of which
focus on passive structural control techniques. Theoretical investigations have been performed on the
effectiveness of a tuned mass damper (TMD) [3] and tuned liquid column damper (TLCD) [4] for
mitigating along-wind vibrations of wind turbine towers, ignoring the aerodynamic properties of the
blades. To yield more realistic results, an advanced modeling tool has been developed and incorporated
into the aeroelastic code, FAST (Fatigue, Aerodynamics, Structures and Turbulence), allowing the
investigation of passive TMDs in vibration control of offshore wind turbine systems [5]. Recently,
a series of shaking table tests have been carried out to evaluate the effect of the ball vibration absorber
(BVA) on the vibration mitigation of a reduced scale wind turbine model, which proves the effectiveness
of the passive damping device [6]. However, the focus of this study is still on along-wind vibrations
without considering the aerodynamic damping. Active structural control of floating wind turbines is
investigated by Lackner and Rotea [7]. Simulation results in FAST show that active control is a more
effective way of reducing structural loads than the passive control method, at the expense of active power
and larger TMD strokes.

For modern variable speed wind turbines, advanced pitch control and generator torque control
techniques for the mitigation of structural loads are being increasingly investigated. In a basic variable
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speed wind turbine control system, torque control is used in below-rated wind speeds to obtain maximum
energy output. Above the rated speed, a pitch controller is utilized to regulate the rotor speed to the
desired value, and the generator torque is held constant (nominal torque) [8]. Additional pitch control
loops as feedback from measured nacelle fore-aft acceleration are usually used to damp fore-aft tower
vibrations [9], although vibration in this direction is already highly damped due to the aerodynamic
damping. Generator torque control is widely used to provide damping into the drivetrain torsional
vibrations [9–11]. Instead of demanding a constant generator torque above the rated one, an additive
torque as feedback from the measured generator speed is added to the torque demand, which is effective
at damping vibrations of the resonant mode of the drivetrain.

The idea of providing active damping to lateral tower vibration using generator torque was first
proposed by Van der Hooft et al. [12] and was further investigated by de Corcuera et al. [13] and
Fleming et al. [14]. Essentially, the generator torque affects the lateral tower vibration through the
reaction on the generator stator, which is rigidly fixed to the nacelle. By means of modern power
electronics, the generator torque can be prescribed to a certain value with a delay below 10−2 s [15].
By using this property, feedback control of the lateral tower vibrations can be performed. Van der
Hooft et al. [12] simplified the tower by a single-degree-of-freedom (SDOF) representing the lateral
translational motion, and the tower top rotation was neglected. Since the generator torque is affecting
the lateral tower motion via the tower top rotation, this SDOF tower model does not adequately account
for the transfer of the generator torque. De Corcuera et al. [13] demonstrated a strategy to design a
multi-variable controller based on the H∞ norm reduction for reducing both the drivetrain torsional
vibration and the tower side-to-side vibration, with simulations carried out in the GH Bladed software.
This study focuses on the controller design procedure. However, the torque transfer mechanism from the
generator to the tower vibration and the effect of the generator torque on other components of the wind
turbine are not demonstrated. Fleming et al. [14] presented the field-testing results of the effect of active
generator control on the drivetrain and lateral tower vibrations in a 600-kW wind turbine. A multi-SISO
(single-input-single-output) controller is compared with the H∞ controller, and a similar effect for
damping the lateral tower vibration was obtained. Again, the effect of the generator torque on other
components of the wind turbine, such as the blades, was ignored. Actually, the edgewise vibrations of the
blades are coupled to the lateral tower vibration, as well as to the torsional drivetrain vibration through
the collective mode. Since very low, even negative, aerodynamic damping takes place in edgewise
vibration, it is important to investigate the effect of the active generator torque on this mode of vibration.
Moreover, as the basis of implementing active generator control, the load transfer mechanisms from the
drivetrain and the generator to the nacelle, as well as the interaction between the generator torque with
the lateral tower vibration are not clearly demonstrated in the above-mentioned studies. Further, all of the
previous studies focus on the gear-driven wind turbines. With offshore wind turbines becoming larger
and being moved out further at sea, there is huge application potential of direct-driven systems, where
the turbine rotor is coupled directly to the electrical generator without the gearbox. The generators
operate at the same rotational speed as the turbine’s rotor and must therefore be much bigger in size.
However, by using permanent magnets in the generators’ rotor and eliminating the gearbox, the weight
of the nacelle can be significantly decreased compared to that of the gear-driven system, which, in turn,
reduces the shipping and installation costs for offshore wind farms. Further, since the gearbox causes
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the greatest downtime resulting in lost revenue, the use of a direct-driven system definitely avoids the
cost of overhauling, removing and reinstalling the gearbox, thus reducing operating costs over the long
term and making electricity from wind farms more competitive. This is especially important for offshore
wind farms, because doing maintenance at sea is a lot more complex and expensive than on the ground.
For the direct-driven wind turbines, the electric torque in the generator is much larger comparing with
the gear-driven wind turbines, making it possible to damp the lateral tower vibration more effectively.

This paper presents a comprehensive investigation into the modeling and control of lateral tower
vibrations in offshore wind turbines using active generator torque, taking into consideration the
consequences of the control on the edgewise blade vibrations and the quality of the produced power.
The load transfer mechanisms from the generator to the tower are derived in a generalized form for
gear-driven wind turbines with an odd or even number of gear stages, as well as for the direct-driven
wind turbines. The active generator control algorithm is investigated based on a 13-degrees-of-freedom
(13-DOF) wind turbine model developed by the authors, which has been calibrated to the referential
5-MW NREL (National Renewable Energy Laboratory) offshore wind turbine [16]. A three-dimensional
(3D) turbulence field is modeled by a low order auto-regressive (AR) model [17]. The dynamic loading
from the rotational sampled turbulence and the non-linear aeroelasticity is assumed to be quasi-static,
i.e., the changes of aerodynamic forces due to changes of the angle of attack are felt without time delay.
The wave load is modeled by the Morison formula [18] in combination with the first order wave theory
and applied to the tower in the lateral direction. A generator model is proposed with a complete solution
to provide the feedback control torque. Cases of gear-driven and direct-driven wind turbines are both
investigated. Simulation results show that lateral tower vibration can be significantly suppressed, and
the edgewise vibrations are also slightly mitigated by the active generator control, while only modest
influence on the smoothness of the power output are brought about by the additive generator torque.

2. Wind Turbine Model

In this section, a 13-DOF aeroelastic wind turbine model is presented with coupled edgewise, lateral
tower and torsional drivetrain vibrations. The torque transfer mechanism between the drivetrain and the
tower are derived in a generalized manner, which forms the basis for active control of tower vibrations
using the generator torque.

2.1. General Description

Despite its simplicity, the 13-DOF aeroelastic model takes into account several important
characteristics of a wind turbine, including time-dependent system matrices, coupling of the
tower-blades-drivetrain vibration, as well as non-linear aeroelasticity. A schematic representation of
the wind turbine model is shown in Figure 1. The motion of structural components is described either in
a fixed, global frame of reference (X1, X2, X3) or in moving frames of reference (x1, x2, x3), attached to
each blade with the origin at the center of the hub. Neglecting the tilt of the rotor, the X1 and x1 axis are
unidirectional to the mean wind velocity. The (X2, X3) and (x2, x3) coordinate planes are placed in the
rotor plane. The X3 axis is vertical, and the x3 axis is placed along the blade axis oriented from the hub
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towards the blade tip. The position of the moving frame attached to blade j is specified by the azimuthal
angle Ψj(t), which is considered positive when rotating clockwise seen from an upwind position.

Figure 1. Thirteen DOFs model of a three-bladed wind turbine. Definition of fixed and
moving frames of reference and the degrees of freedom q1(t), . . . , q11(t).
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The blades are modeled as Bernoulli–Euler beams with the bending stiffness EI1(x3) in the flap-wise
direction and EI2(x3) in the edgewise direction. The mass per unit length is µ(x3). Each blade is
related with two degrees of freedom (DOFs). q1(t), q2(t), q3(t) denote the flapwise tip displacement
in the positive x1 direction. q4(t), q5(t), q6(t) denote the edgewise tip displacement in the negative
x2 direction. The length of each blade is denoted L. The tower motion is defined by five DOFs
q7(t), . . . , q11(t). q7(t) and q8(t) signify the displacements of the tower at the height of the hub in the
global X1 and X2 directions. q9(t) specifies the elastic rotation of the top of the tower in the negative X1

direction, and q10(t) and q11(t) indicate the corresponding rotations in the positive X2 and X3 directions.
The height of the tower from the base to the nacelle is denoted h1, and the tower base begins at an
elevation of h2 above mean sea level (MSL), with a monopile extending from the tower base to the mud
line. The water depth from the mud line to the MSL is denoted h3, and the horizontal distance from the
center of the tower top to the origin of the moving coordinate systems is denoted s (Figure 1).

The drivetrain is modeled by the DOFs q12(t) and q13(t) (Figure 2). The sign definition shown in
Figure 2 applies to a gearbox with an odd number of stages. q12(t) and q13(t) indicate the deviations
of the rotational angles at the hub and the generator from the nominal rotational angles Ωt and NΩt,
respectively, where N is the gear ratio. Correspondingly, q̇12(t) and q̇13(t) are the deviations of the
rotational speeds at the hub and the generator from the nominal values. In case of an even number of
stages, the sign definitions for q13(t) and f13(t) are considered positive in the opposite direction. Jr and
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Jg denote the mass moment of inertia of the rotor and the generator; and kr and kg denote the St. Venant
torsional stiffness of the rotor shaft and the generator shaft. The azimuthal angle of the blade j (Figure 1)
becomes Ψj(t) = Ω t+ q12(t) + 2π

3
(j − 1), j = 1, 2, 3.

Figure 2. Two DOFs model of flexible drivetrain with an odd number of gear stages.
Definition of degrees of freedom q12(t) and q13(t).
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Further, a full-span rotor-collective pitch controller is included in the model with time delay modeled
by a first order filter. The pitch demand is modeled by a PI controller [19] with feedback from q̇12(t) and
q12(t). A gain-scheduled PI controller is used in this paper, i.e., the controller gains are dependent on the
blade-pitch angle [16].

2.2. Coupled Edgewise, Lateral Tower and Torsional Drivetrain Vibrations

The equations of motion of the 13-DOF wind turbine model can be derived from the Euler–Lagrange
equation [20]:

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+
∂U

∂q
= f(t) (1)

where qT(t) =
[
q1(t), . . . , q13(t)

]
is a 13-dimensional column vector storing all DOFs. T = T (q, q̇)

signifies the kinetic energy, and U = U(q) is the potential energy of the system. The key step in setting
up the coupled equation is to formulate the kinetic energy of each blade with velocity contributions
from both the locally and globally defined DOFs. For example, q̇1(t), q̇7(t), q̇10(t) and q̇11(t) induce the
velocity component of a cross-section of Blade 1 in the x1 direction, while q̇4(t), q̇8(t), q̇10(t), q̇11(t)

and q̇12(t) induce the velocity component of Blade 1 in the x2 direction. f(t) is the force vector
work conjugated to q(t), including structural damping forces, aerodynamic and hydrodynamic forces,
as well as generator control forces.

Assuming linear structural dynamics and substituting the expressions for kinetic and potential
energies into Equation (1), the equations of motion of the 13-DOF wind turbine model are obtained
of the form:

M(t) q̈(t) + C(t) q̇(t) + K(t)q(t) = fe(t) (2)

where M(t) is the mass matrix, C(t) is the damping matrix, including the structural damping and
the gyroscopic damping, and K(t) is the stiffness matrix taking into account the geometric stiffness
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and the gyroscopic stiffness. Both the gyroscopic damping matrix and gyroscopic stiffness matrix are
obtained by substituting the kinetic energy of the system into the Euler–Lagrange equation. Through
this procedure, the coriolis forces and the centrifugal softening effect are taken into account. fe(t) is the
external dynamic load vector work conjugated to q(t), which is composed of the non-linear aerodynamic
loads, the generator torque and the wave loads. All of the indicated system matrices are time dependent,
due to the fact that the DOFs of the blades are formulated in the moving frames of reference, and others
are formulated in a fixed frame of reference.

Next, the DOFs vector q(t) may be partitioned in the following way:

q(t) =

[
q1(t)

q2(t)

]
(3)

qT
1 (t) =

[
q4(t) q5(t) q6(t) q8(t) q9(t) q12(t) q13(t)

]
qT

2 (t) =
[
q1(t) q2(t) q3(t) q7(t) q10(t) q11(t)

] (4)

The main focus of the present study is on the dynamic coupling of edgewise, lateral tower
and torsional drivetrain motions and the effect of active generator torque on these vibrations.
To clearly unfold this coupling, only the sub-system related to DOFs q1(t) is picked out from
Equation (2) and is demonstrated in detail. It should be noted that the numerical simulations in the
subsequent section will always be based on Equation (2), where all of the 13 DOFs are activated. As a
part of Equation (2), the equations of motion related to the above-mentioned sub-system, which show the
coupling of edgewise, lateral tower and torsional drivetrain vibrations, are demonstrated by the following
matrix differential equations:

M1(t) q̈1(t) + C1(t) q̇1(t) + K1(t)q1(t) = fe,1(t) (5)

M1(t) =



m2 0 0 −m1 cos Ψ1 0 m3 0

0 m2 0 −m1 cos Ψ2 0 m3 0

0 0 m2 −m1 cos Ψ3 0 m3 0

−m1 cos Ψ1 −m1 cos Ψ2 −m1 cos Ψ3 m88 +M0 + 3m0 m89 0 0

0 0 0 m98 m99 0 0

m3 m3 m3 0 0 Jr 0

0 0 0 0 0 0 Jg



C1(t) =



c2 0 0 0 0 0 0

0 c2 0 0 0 0 0

0 0 c2 0 0 0 0

2Ωm1 sin Ψ1 2Ωm1 sin Ψ2 2Ωm1 sin Ψ3 c88 c89 0 0

0 0 0 c98 c99 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


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K1(t) =



k2 − kg 0 0 0 0 0 0

0 k2 − kg 0 0 0 0 0

0 0 k2 − kg 0 0 0 0

Ω2m1 cos Ψ1 Ω2m1 cos Ψ2 Ω2m1 cos Ψ3 k88 k89 0 0

0 0 0 k98 k99 0 0

0 0 0 0 0 k0 −k0
N

0 0 0 0 0 −k0
N

k0
N2


(6)

where:

m0 =

∫ L

0

µ(x3)dx3,m1 =

∫ L

0

Φ(x3)µ(x3)dx3,m2 =

∫ L

0

Φ2(x3)µ(x3)dx3,m3 =

∫ L

0

Φ(x3)µ(x3)x3dx3

k2 =

∫ L

0

(
EI2(x3)

(
d2Φ(x3)

dx23

)2

+ F (x3)

(
dΦ(x3)

dx3

)2
)
dx3, kg = Ω2m2, Jr = 3

∫ L

0

µ(x3)x23dx3

(7)

Φ(x3) is the undamped eigenmode in the edgewise direction, when the blade is fixed at the hub. Due to
the definition of qj+3(t) , j = 1, 2, 3, this mode must be normalized to one at the tip, i.e., Φ(L) = 1.
F (x3) = Ω2

∫ L
x3
µ(ξ)ξdξ is the centrifugal axial force on the blade. m0 is the mass of each blade, and

M0 is the mass of the nacelle. c2 = 2ζ2

√
m2k2 is the modal damping coefficient of the edgewise

vibration, calculated from the given damping ratio ζ2.
As shown in Figure 3, the lateral tower vibration is modeled by two DOFs, q8(t) and q9(t), with cubic

shape functions N8(X3) and N9(X3), respectively. The consistent mass and stiffness terms for q8(t) and
q9(t) are calculated from the tower itself without considering the nacelle and the rotor, as given by the
following equation:

m88=

H∫
0

µ0(X3)N2
8 (X3)dX3, m89=

H∫
0

µ0(X3)N8(X3)N9(X3)dX3, m99=

H∫
0

µ0(X3)N2
9 (X3)dX3

k88=

H∫
0

EI0(X3)(
∂N8

∂X3
)2dX3, k89=

H∫
0

EI0(X3)(
∂N8

∂X3
)(
∂N9

∂X3
)dX3, k99=

H∫
0

EI0(X3)(
∂N9

∂X3
)2dX3

(8)

where µ0(X3) and EI0(X3) are the mass per unit length and bending stiffness in the lateral direction of
the tower, respectively. N8(X3) = 3

(
X3

H

)2−2
(
X3

H

)3,N9(X3) = H
((

X3

H

)3 −
(
X3

H

)2
)

,H = h1+h2+h3

is the total height of the tower structure. The related damping terms c88, c89, c98, c99 are specified by the
Rayleigh damping model [21] from the consistent mass and stiffness terms, with given damping ratios
ζ8 and ζ9. k0 indicates an equivalent torsional stiffness of the shaft of the drivetrain, given as:

1

k0

=
1

kr
+

1

N2kg
⇒ k0 =

N2krkg
kr +N2kg

(9)
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Figure 3. Modeling of the lateral tower vibration. (a) Two DOFs model for lateral tower
vibration with wave loads. (b) Shape function for the degree of freedom q8(t). (c) Shape
function for the degree of freedom q9(t).
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From Equation (6), it is noted that the edgewise vibrations are coupled to the lateral tower vibration
through the mass matrix, damping matrix and stiffness matrix and coupled to the drivetrain torsional
vibration through the mass matrix alone. Actually, only the collective mode of the edgewise vibration is
coupled with the torsional vibration of the drivetrain.

2.3. Torque Transfer Mechanism between the Drivetrain and the Tower

In Equation (5), the external dynamic load vector work conjugated to q1(t) is expressed as:

fT
e,1(t) =

[
f4(t) f5(t) f6(t) f8(t) f9(t) (1− µ)f12(t) −f13(t)

]
(10)

where f4(t), f5(t), f6(t) and f12(t) are dynamic loads work-conjugated to the defined DOFs, resulting
from aerodynamic loads. f8(t) is the load work-conjugated to the degree of freedom q8(t), due to
both aerodynamic loads and wave forces. (1 − µ)f12(t) denotes the effective torque on the drivetrain
available for power production due to friction in the bearings and the gear box, as specified by the friction
coefficient µ. f13(t) indicates the generator torque.

Using D’Alembert’s principle, the net torque on the drivetrain in the global X1 direction becomes
(1 − µ)f12(t) − Jrq̈12(t) ± (f13(t) + Jg q̈13(t)), where the plus sign applies for a gearbox with an odd
number of gear stages (as shown in Figure 2) and the minus sign for an even number of stages. The torque
is transferred to the nacelle in the positive X1 direction via the bearings of the shaft and the gearbox. On
the nacelle, the transferred torque is added to the reaction of the friction torque µf12(t) (always in the
positive X1 direction) and the generator torque on the stator f13(t), which is acting in the negative X1

direction for an odd number of stages or acting in the positive X1 direction for an even number of stages.
Hence, the resultant torque on the bottom of the nacelle becomes f12(t)−Jrq̈12(t)±Jg q̈13(t) (plus sign for
an odd number of gear stages). With q9(t) defined as positive when acting in the negative X1 direction,
the torque work-conjugated to q9(t) resulting from the nacelle becomes −f12(t) + Jrq̈12(t) ∓ Jg q̈13(t)
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(minus sign for an odd number of gear stages). Then, together with the contribution from the wave load,
the total load work-conjugated to q9(t) becomes:

f9(t) =

{
f9,w(t)− f12(t) + Jrq̈12(t)− Jg q̈13(t) (odd number of gear stages)

f9,w(t)− f12(t) + Jrq̈12(t) + Jg q̈13(t) (even number of gear stages)
(11)

where f9,w(t) is the load conjugated to q9(t) induced by waves propagating in theX2 direction. As shown
in Figure 3, pw(X3, t) denotes the distributed wave force acting on the tower, which can be calculated
by the Morison formula. Then, the loads conjugated to q8(t) and q9(t) induced by the distributed wave
force can be written as: [

f8,w(t)

f9,w(t)

]
=

∫ h3

0

[
N8(X3)

N9(X3)

]
pw(X3, t)dX3 (12)

The control of the lateral tower vibration is actually applied via the torque f9(t) conjugated to q9(t).
For this reason, the relation between f9(t) and f13(t) is analyzed. The equation of motion of the drivetrain
reads from Equations (5) and (10):[

Jr 0

0 Jg

][
q̈12(t)

q̈13(t)

]
+ k0

[
1 − 1

N

− 1
N

1
N2

][
q12(t)

q13(t)

]
=

[
(1− µ)f12(t)

−f13(t)

]
(13)

The acceleration terms in Equation (11) can be eliminated by means of the equation of motion of the
drivetrain, resulting in the equivalent expression for f9(t):

f9(t) =


f9,w(t)− µf12(t) + f13(t)− k0

(
1 +

1

N

)(
q12(t)− 1

N
q13(t)

)
(odd number of gear stages)

f9,w(t)− µf12(t)− f13(t)− k0
(

1− 1

N

)(
q12(t)− 1

N
q13(t)

)
(even number of gear stages)

(14)

Especially for direct-driven wind turbines, where N = 1, we get from the second equation in
Equation (14) that:

f9(t) = f9,w(t)− µf12(t)− f13(t) (15)

It is seen from the last part of the two sub-equations in Equation (14) that for gear-driven wind
turbines, there are extra coupling terms between the degree of freedom q9(t) and the two DOFs of
the drivetrain, which can be transferred and added to the stiffness matrix in Equation (6). Based on
the relationship between f9(t) and f13(t) in Equations (14) and (15), the lateral tower vibrations
can be controlled by specifying the format of the generator torque f13(t), as will be shown in the
subsequent section.

2.4. Aerodynamic and Wave Loads

In agreement with [22], the turbulence modeling is based on Taylor’s hypothesis of frozen turbulence,
corresponding to a frozen turbulence field that is convected into the rotor in the global X1 direction with
a mean velocity V0, which provides the relation between spatial coordinates and time. The frozen field is
assumed to be a zero mean homogeneous and isotropic stochastic field, with a spatial covariance structure
given by [23]. Calibrated from the theoretical covariance structure, the first order AR model as proposed
by [17] performs a first-order filtering of the white noise input, resulting in continuous, non-differentiable
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sample curves of the turbulence field at the rotor plane in the fixed frame of reference. As shown in
Figure 4, the fixed frame components of the convected turbulence are generated at nn = na ·nr+1 nodal
points at the discrete instants of time t = 0,∆t, 2∆t, · · · , where na is the number of radial lines in the
mesh from the center Node 1 and nr is the number of equidistantly placed nodes along a given radial
line. Next, the fixed frame components of the rotational sampled turbulence vector on each blade with
the azimuthal angle Ψj are obtained by linear interpolation of the turbulence of the adjacent radial lines
according to the position of the blade at each time step. Finally, the moving frame components of the
rotational sampled turbulence are obtained by the following coordinate transformation:v1,j(x3, t)

v2,j(x3, t)

v3,j(x3, t)

 =

1 0 0

0 cos Ψj sin Ψj

0 − sin Ψj cos Ψj


v̄1,j(X, t)

v̄2,j(X, t)

v̄3,j(X, t)

 (16)

where v1,j(x3, t), v2,j(x3, t) and v3,j(x3, t) are rotational sampled turbulence components for blade
j at the position x3, in the moving frames of reference. v̄1,j(X, t), v̄2,j(X, t), v̄3,j(X, t) are rotational
sampled turbulence components at the same position for blade j in the fixed frame of reference with
X = [0,−x3 sin Ψj, x3 cos Ψj]

T. Due to the longitudinal correlation of the incoming turbulence,
a certain periodicity is present as spectral peaks at 1Ω, 2Ω, 3Ω... in the frequency domain representation
of the rotational sampled turbulence. The simple AR model used here does not represent the
low-frequency, large-scale turbulent structures very well, due to the homogeneity and isotropy
assumption. On the other hand, the dynamics of the tower are more related to the frequency component
of turbulence in the vicinity of the tower frequency. In this respect, the rotational sampled effect seems
to be more important and is well accounted for by the present model.

The blade element momentum (BEM) method with Prandtl’s tip loss factor and Glauert correction
is adopted to calculate aerodynamic forces along the blade [24]. Non-linear aeroelasticity is considered
by including the local deformation velocities of the blade into the calculation of the flow angle and the
angle of attack. As a result, high aerodynamic damping is introduced in the blade flap-wise and the
fore-aft tower vibrations, but relatively low aerodynamic damping in the blade edgewise and the lateral
tower vibrations.

Figure 4. Nodal points in the rotor plane of the discretized turbulence field. na = 8, nr = 5.
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Sea surface elevation is modeled as a zero mean, stationary Gaussian process defined by the
single-sided version of the JONSWAP (Joint North Sea Wave Project) spectrum [25], which is
determined by the significant wave height Hs and the peak period Tp. Assuming first order wave theory,
the realization of the stationary wave surface elevation process can be obtained by the following random
phase model:

η(X2, t) =
J∑
j=1

√
2ηj cos(ωjt− kjX2 + φj) (17)

where J is the number of harmonic components in the spectral decomposition, ωj and kj are the angular
frequency and wave number of the j-th harmonic component related through the dispersion relationship
ω2
j = gkj tanh(kjh). φj denotes samples of the random phase Φj , which are mutually independent and

uniformly distributed in [0, 2π]. ηj =
√
Sη(ωj)∆ωj denotes the standard deviation of the j-th harmonic

component, and Sη(ωj) is the single-sided JONSWAP spectrum.
Following the linear wave theory, the horizontal velocity v(X3, t) and acceleration v̇(X3, t) of the

water particle at the position X2 = 0 can be written as:

v(X3, t) =
J∑
j=1

√
2ηjωj

cosh(kjX3)

sinh(kjh)
cos(ωjt+ φj)

v̇(X3, t) = −
J∑
j=1

√
2ηjω

2
j

cosh(kjX3)

sinh(kjh)
sin(ωjt+ φj)

(18)

The distributed wave force acting at the position X3 of the tower can be calculated by the Morison
Equation [18]:

pw(X3, t) =
1

2
ρwCdDv(X3, t) |v(X3, t)|+

π

4
ρwCmD

2v̇(X3, t) (19)

where ρw is the fluid density, Cd is the drag coefficient, Cm is the inertia coefficient andD is the diameter
of the turbine monopile. The total wave forces can then be calculated by Equation (12), which are acting
on the wind turbine tower perpendicularly to the mean wind direction.

3. Active Generator Control

A simple active control algorithm is proposed based on active generator torque with feedback from
the measured lateral tower vibrations. Closed-loop equations are obtained from the active control.
A full-scale power converter configuration with a cascaded loop control structure is also introduced to
produce the feedback torque in real time.

3.1. Closed-Loop Equations from Active Control

Only the above rated region (Region 3 according to [16]) is considered where the mean wind speed
is higher than the rated value, and the wind turbine produces nominal power with the functioning of the
collective pitch controller. In the basic control system for Region 3, the collective pitch controller is
activated to regulate the rotor speed to the nominal value, while the generator torque is held constant [9].
Modern power electronics makes it possible to specify the generator torque within certain limits almost
instantly (time delay below 10−2 s). Then, the generator torque f13(t) can be used as an actuator in the
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active vibration control of the structure. Sometimes, a torsional damping term as feedback control is
included in the generator torque to damp the resonant mode of the drivetrain [10]. Since the focus is
to investigate the effectiveness of active generator control of lateral tower vibrations and the influence
of the controller on the power output, as well as on the responses of other components, the torsional
damping term is not taken into account in the present study. The generator controller with feedback from
lateral tower vibrations is proposed as:

f13(t) = f13,0 + ∆f13,0(t) = f13,0 + caq̇8(t) (20)

where f13,0 = P0

NΩ
is the constant nominal torque and P0 is the nominal power produced by the wind

turbine. With the functioning of the collective pitch controller, f13,0 is balanced by the mean value of the
aerodynamic torque on the rotor. caq̇8(t) is the feedback torque components from lateral tower velocity,
and ca is the gain factor. In practical applications, the feedback signal q̇8(t) is obtained by integrating
the measured tower top acceleration from accelerometers placed in the nacelle.

Then, the generated power becomes:

P (t) =
(
f13,0 + ∆f13,0(t)

)(
NΩ + q̇13(t)

)
= P0(t) + ∆P (t) (21)

where P0 = NΩf13,0 is the nominal power of the wind turbine, and ∆P (t) = ∆f13,0(t) (NΩ + q̇13(t))+

f13,0q̇13(t) indicates a time-varying deviation from the nominal power. In the absence of the
active generator control, i.e., ca = 0, the deviation of power output only contains the term
f13,0q̇13(t). With active generator control, fluctuation of the power output is introduced by the term
∆f13,0(t) (NΩ + q̇13(t)) due to the torque increment ∆f13,0(t). From a power electronic point of view,
it is favorable that ∆P (t) is as small as possible in comparison with P0 in order to have a smooth power
output. From a vibration point of view, it is favorable to have larger ca and, hence, ∆P (t), introducing
higher damping to the lateral tower mode. Consequently, there is a tradeoff between these two objectives.
In this respect, the gain factors ca is chosen such that the following performance criterion is minimized:

J(ca) = W
σq8
σq8,0

+ (1−W )
σP
σP,0

, 0 < W < 1 (22)

where σq8,0 and σP,0 signify the standard deviation of the lateral tower top displacement q8(t) and the
power output without active generator control, i.e., the generator torque is kept constant as f13,0. σq8
and σP denote the standard deviation of q8(t) and the power output, when active generator control is
implemented using Equation (20), and W is the weighting factor for the lateral tower vibration. It is
clear that by increasing the value of W , more importance is placed on maintaining small values for the
lateral tower vibration.

The torque f9(t) work-conjugated to q9(t) for wind turbines with an active generator controller
follows from Equations (14) and (20):

f9(t) =


f9,w(t)− µf12(t) + f13,0 + caq̇8(t)− k0

(
1 +

1

N

)(
q12(t)− 1

N
q13(t)

)
(odd stages)

f9,w(t)− µf12(t)− f13,0 − caq̇8(t)− k0

(
1− 1

N

)(
q12(t)− 1

N
q13(t)

)
(even stages)

(23)
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Substituting Equations (20) and (23) into the load vector (Equation (10)) at the right-hand side of
Equation (5), the equation of motion of the system with active generator controller is given by:

M1(t) q̈1(t) +
(
C1(t) + Ca(t)

)
q̇1(t) + K1(t)q1(t) = fe,1(t) (24)

where:

Ca(t) =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 ∓ca 0 0 0

0 0 0 0 0 0 0

0 0 0 ca 0 0 0


(25)

The system matrices M1(t), C1(t), K1(t) and the load vector fe,1(t) are unchanged, except that an
extra damping matrix Ca(t) is introduced by the active generator controller. Therefore by making use
of the extra damping matrix, it is possible to mitigate lateral tower vibrations, as will be shown in the
following simulation results. The upper sign in Equation (25) refers to the gearbox with an odd number
of stages, while the lower sign corresponds to the case with an even number of gear stages, which also
applies to the direct-driven wind turbines (the number of stages is zero).

3.2. Power Electronic Solution for Torque Control

In order to realize the objective of active control of lateral tower vibration using the generator
torque, a generator model is introduced. As seen in Figure 5, a full-scale power converter configuration
equipped with a permanent magnet synchronous generator (PMSG) or an induction generator (IG) is
considered [15]. Normally, a PMSG-based wind turbine may become a direct-driven system, which
avoids the fatigue-prone gearbox. The principle of the full-scale power converter is the same for both
IG and PMSG. The generator stator winding is connected to the grid through a full-scale back-to-back
power converter, which performs the reactive power compensation and a smooth grid connection. Due to
different positions, the back-to-back power converter is named as the generator-side converter and the
grid-side converter, respectively. The grid-side converter is used to keep the DC-link voltage VDC fixed
and to meet the reactive power demand according to the grid codes [26].

The active generator control scheme for lateral tower vibration is carried out via the generator-side
converter. With the aid of the stator field oriented control (as shown in Figure 5), a cascaded loop
control structure is realized by two controllers: outer speed loop and inner current loop. According to
the maximum power tracking point, the rotor speed demand is calculated by the measured power fed
into grid. Above the rated region, the speed control loop provides a torque demand of f13,0. Along
with additive generator torque demand caq̇8(t), the total torque demand is given in the same form as
Equation (20). The electromagnetic torque Te of the generator can be expressed as [27]:

Te =
3

2
pΨmisq (26)
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where p denotes the number of pole pairs, Ψm denotes the flux induced by the magnet and isq denotes the
stator current in the q axis. It is noted that the electromagnetic torque is only in line with the q axis stator
current. As a consequence, the electromagnetic torque can be simply controlled by the inner current loop
together with the demand of the d axis current setting at zero for minimum power loss.

Figure 5. Control diagram in a wind turbine with a permanent magnet synchronous generator
or an induction generator.
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From the power electronic point of view, direct driven and gear-driven wind turbines are basically
dependent on which kind of generator the manufacturer prefers to use. If the synchronous generator is
selected, due to the relatively low speed of the generator rotor, the wind turbine system could have less
stages of the gearbox or even becomes direct-driven if the poles of the generator are high enough (e.g.,
permanent-magnet synchronous generator). On the other hand, if the induction generator is chosen,
the gearbox must be employed because of its high rotor speed range, which cannot match the speed of
the wind turbine rotor directly.

4. Results and Discussion

Numerical simulations are carried out on the calibrated 13-DOF model subjected to the wave and wind
loads. In all simulations, the same turbulent wind field and wave loads have been used, with the mean
wind velocity V0 = 15 m/s, the turbulence intensity I = 10%, the significant wave height Hs = 2 m
and the time interval ∆t = 0.02 s. The worst case study scenario is considered, i.e., the wave loads are
acting on the tower in the lateral direction perpendicular to the mean wind velocity. Both gear-driven
and direct-driven wind turbines are investigated to evaluate the effectiveness of active generator torque
on mitigating lateral tower vibrations.

4.1. Model Calibration

The NREL 5-MW referential wind turbine [16] together with the monopile-type support structure
documented by [28] are used to calibrate the proposed 13-DOF aeroelastic model. The rotor-nacelle
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assembly of the NREL 5-MW wind turbine, including the aerodynamic, structural and pitch control
system properties, remains the same as in [16]. This wind turbine is mounted atop a monopile foundation
at a 20-m water depth, and the tower base begins at an elevation of 10 m above mean sea level (MSL). As
for the rotor, each blade has eight different airfoil profiles from hub to tip, the lift and drag coefficients of
which are obtained by wind tunnel tests. The related data of the modal shapes, the bending stiffness and
the mass per unit length of the blade are also given by [16]. As for the support-structure, the distributed
properties of the tower and monopile are given by [28]. Based on these data, we can calculate the
parameters of the rotor and the support structure (the geometries, the mass parameters and the stiffness
parameters) in the 13-DOF model, as presented in Table 1. Next, to evaluate the validity and feasibility
of the proposed 13-DOF model, comparisons of some results obtained from the present model and from
the NREL FAST program [16] are carried out. Table 2 shows the results for the natural frequencies of the
blade and the tower, as well as the steady-state responses of the blade, the tower and the pitch controller
at different mean wind speeds. The steady-state responses of the present model are obtained by running
simulations on the 13-DOF system at three given, steady and uniform wind speeds, when the turbulence
field is inactivated. The simulation lengths are long enough to ensure that all transient behavior has died
out. The FAST results for the blade and the pitch controller are given by [16], and the results for the
tower are given by [28]. The agreement between FAST and the 13-DOF model is quite good, which
validates the present model.

Table 1. Parameters in the 13-DOF wind turbine model.

Parameter Value Unit Parameter Vale Unit

L 61.50 m k2 5.80× 104 N/m
h1 77.60 m k88 5.14× 106 N/m
h2 10.00 m k89 −1.77× 108 N
h3 20.00 m k99 8.50× 109 N m
s 2.50 m k0 8.70× 108 N m/rad
Ω 1.27 rad/s ζ2 0.005 −
m0 1.70× 104 kg ζ8 0.01 −
m1 2.80× 103 kg ζ9 0.01 −
m2 1.30× 103 kg µ 0.01 −
m3 1.17× 105 kg m Hs 2.00 m
m88 1.05× 105 kg Tp 6.00 s
m89 −1.76× 106 kg m ρ 1.25 kg/m3

m99 3.65× 107 kg m2 ρw 1000 kg/m3

Jr 3.68× 107 kg m2 Cd 1.20 −
Jg 5.30× 102 kg m2 Cm 2.00 −
M0 2.98× 105 kg D 6.00 m
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Table 2. Results obtained from the 13-DOF model and FAST.

Item 13-DOF FAST
1st flap-wise frequency (HZ) 0.669 0.668

1st edgewise frequency (HZ) 1.062 1.079

1st tower fore-aft frequency (Hz) 0.280 0.280

1st tower lateral frequency (Hz) 0.280 0.280

Mean Wind Speed (m/s) 11.4 15 20 11.4 15 20
Collective pitch angle (degrees) 0.40 10.17 17.24 0.00 10.20 17.50
flap-wise tip displacement (m) 5.70 2.77 1.22 5.65 2.75 1.20

tower fore-aft displacement (m) 0.35 0.21 0.16 0.40 0.20 0.15
tower lateral displacement (m) −0.06 −0.06 −0.06 −0.06 −0.06 −0.06

Based on the the model described in Section 2.4, the rotational sampled turbulence field has been
generated. Figure 6 shows the Fourier amplitude spectrum obtained by FFT (fast Fourier transformation)
of the sample curves of the rotational sampled turbulence, at the middle point of Blade 1. A very clear
1P (1.267 rad/s) frequency component of the turbulence in the x2 direction can be observed in Figure 6b.
Less obviously from Figure 6a, the 1P peak can still be observed in the turbulence acting on the blade
in the x1 direction. Figure 7 shows the influence of aeroelasticity on tower vibrations in the case of a
gear-driven wind turbine with gear ratio N equal to 97. It is seen that the aerodynamic damping almost
completely removes the dynamic response of the fore-aft tower vibration q7(t), while the lateral tower
vibration q8(t) is almost unaffected by aerodynamic damping, justifying the necessity of implementing
active vibration control algorithms in this direction.

Figure 6. Fourier amplitude spectrum of the sample curves of the rotational sampled
turbulence, at the middle point of Blade 1. V0 = 15 m/s, I = 10%. (a) The moving frame
component of the rotational sampled turbulence in the x1 direction. (b) The moving frame
component of the rotational sampled turbulence in the x2 direction.
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Figure 7. Tower responses with and without aerodynamic damping, gear-driven wind
turbine. (a) Fore-aft tower top displacement. (b) Lateral tower top displacement. Blue
curve: aerodynamic damping not considered. Red curve: aerodynamic damping considered.
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Normally, in an irregular sea-state, the mean wind direction and the mean direction of wave
propagation are correlated. Hence, the wave loads and the turbulent wind loads on the structure tend
to be somewhat unidirectional in most cases. However, we are focusing on the lightly damped lateral
tower vibration rather than the along-wind response of the tower with relatively strong aerodynamic
damping. Thus, the most conservative load combination is considered in this study, i.e., the wave loads
are acting on the tower in the lateral direction perpendicular to the mean wind velocity, in order to fully
excite the lateral tower vibration. There is also a clear physical explanation for this load combination.
Due to the relatively shallow water, the waves are occasionally refracted tending to propagate orthogonal
to the level curves of the sea bottom, meaning that sometimes the direction of wave propagation may take
place orthogonal to the mean wind velocity. This load scenario is not expected to take place as often as
the unidirectional case. However, considering an offshore wind farm with many wind turbines, there is a
high chance that at all times there is a certain amount of wind turbines under such a scenario. The related
parameter values used in the aerodynamic and wave loads simulation are also listed in Table 1. In [29],
wave measurements were carried out at the German North Sea coast, where the water depth is 29 m.
During a severe storm surge on 2 October 2009, the measured significant height was 5.23 m. This data
to some extent justify the significant wave height we use (Hs = 2 m) for the 20-m water depth in the
simulations. Extensive load cases with different combinations of V0 and Hs (correlated with each other)
are not considered in the present study.

4.2. Gear-Driven Wind Turbine

Firstly, simulations are performed considering a gear-driven wind turbine with gear ratio N = 97,
which is in accordance with the NREL 5-MW wind turbine. In this case, the rotational speed of the
generator is almost N times that of the rotor, and the magnitude of the generator torque is reduced by N
times comparing with the aerodynamic torque acting at the rotor. The performance of the wind turbine
system is almost the same whether the number of gear stages is odd or even, as long as the gear ratioN is
unchanged. Therefore, only the results of the wind turbine with odd-numbered gear stages are illustrated.

By setting the weighting factor W = 0.5, meaning the same importance is placed on mitigating the
tower vibration, and keeping the smoothness of the power output, the gain factor ca is determined as
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ca = 2.0 × 104 Ns in order to minimize the performance criterion J(ca) in Equation (22).
The following figures compare the performance of the wind turbine system with the basic controller and
with the active generator controller. Figure 8 shows the lateral tower top displacements q8(t) in both the
time and frequency domain, where the blue line denotes the responses without active generator control
and the red line with active generator control. There is a reduction of 17.8% in the maximum responses
and a reduction of 37.6% in the standard deviations. For both cases, the same static displacement equal
to −0.057 m is observed. This is caused by the mean value of the tower torque, which is equal to the
negative mean value of the aerodynamic torque at the rotor, i.e., E[f9(t)] = −E[f12(t)], as explained
by Equation (11). The FFT of the response q8(t) is presented in Figure 8b. For a system without
active generator control, a clear peak corresponding to the tower eigenfrequency (around 1.76 rad/s)
is observed without other visible peaks, owing to the fact that very low aerodynamic damping takes
place in this mode. This peak is reduced to approximately 1

3
by the active generator torque due to the

introduced damping matrix in Equation (25). Further, it is observed that base moment of the tower in
lateral direction is effectively suppressed, as well, with the standard deviation reduced from 5.12 × 106

to 3.32 × 106 Nm and the maximum value reduced from 19.63 × 106 to 15.40× 106 Nm. The stress at
the tower base in the lateral direction is calculated accordingly. There is a reduction of 35.2% (6.80 to
4.41 Mpa) in the standard deviation and a reduction of 21.6% (26.07 to 20.44 Mpa) in the maximum
response, which means the fatigue lives of the tower and the foundation are effectively increased by
active control.

Figure 8. Lateral tower vibration with and without active generator control, gear-driven,
W = 0.5. (a) Time history in 400–500 s. (b) Fourier amplitude of lateral tower vibration.
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Figure 9 shows the impact of the active control on the performance of the drivetrain shafts, the gearbox
and the collective pitch controller. The deviations of the rotational speed at the rotor q̇12(t) and at the
generator q̇13(t) are very slightly affected with the standard deviations increased by 1.0% and 0.92%,
respectively, reflecting a very weak coupling between the torsional vibration of the drivetrain with the
lateral tower vibration. Based on Equation (13), the dynamic torque acting at the gearbox can also be
obtained from q12(t) and q13(t), as shown in Figure 9c. It is seen that the active generator controller
introduces a frequency component corresponding to the tower frequency in the gearbox torque, and a
little more fluctuated torque is observed with an increase of 12.6% in the standard deviation, which
is unfavorable for the fatigue life of the gearbox. By reducing the controller gain ca, the negative
effect can be diminished. Further, the performance of the pitch controller is almost unaffected by the
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active generator control (Figure 9d) with the standard deviation increased by 0.93%. It is observed
from Figure 10a,b that the flap-wise tip displacement q1(t) and tower fore-aft top displacement q7(t)

are also insignificantly affected with the standard deviations increased by 0.85% and 2.2% after the
implementation of active generator control. This is expected, since there is no direct coupling between
these two modes of vibration with the generator torque and the lateral tower vibration. The coupling
is indirectly via the pitch controller performance, which changes the effective angle of attack and the
corresponding aerodynamic loads on the blade sections. Figure 10c shows an interesting result that the
edgewise vibration q4(t) is slightly suppressed by the active generator control due to the coupling of
edgewise vibration to the lateral tower vibration, as shown in Equation (6). The maximum response and
the standard deviation are reduced by 5.5% and 5.0%, respectively. Although the focus is to control the
lateral tower vibration through active generator torque, it is favorable to see that the edgewise vibration
with very low aerodynamic damping is also suppressed a little, rather than being negatively affected.

Figure 9. Influence of the active generator control on the drivetrain, the gearbox and the pitch
controller, gear-driven,W = 0.5. (a) Deviation of rotational speed of the rotor. (b) Deviation
of rotational speed of the generator. (c) Torque on the gearbox. (d) Collective pitch angle.
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The time history of power output from the generator is presented in Figure 11. Since the generated
power is related to the lift forces along the blade and, hence, the longitudinal turbulence, the resulting
power output also presents periodicity around 1P frequency, similarly with that in Figure 6a. Due to the
torque increment caq̇8(t), the generated power becomes more fluctuated with an increase of 1.3% in the
maximum value and an increase of 33.0% in the standard deviation, relative to the values without active
generator control. Since the stiffness and mass of the tower for the offshore wind turbine is very large,
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it is inevitable that effective control of the tower vibration is at the expense of a little more fluctuated
power output, which is unfavorable for the grid side. One possible solution to accommodate this problem
is to increase the energy storage in the power converter by increasing the size of the capacitor in Figure 5.
To give more clear insight into the tradeoff between the structural vibration and the power output, five
different values of weighting factorW are used, i.e.,W is chosen to be 0.1, 0.3, 0.5, 0.7 and 0.9. For each
W , an optimal value of ca can be obtained through the optimization procedure given by Equation (22).
Table 3 presents the optimized ca and the corresponding standard deviations of q8(t) and the power output
in different cases. It is shown that as the value ofW increases, allowing larger values in the control effort,
better structural performance, but worse power quality are achieved. For the extreme case of W = 0.9,
the standard deviation of the lateral tower vibration can be reduced by 60%, but the fluctuation of the
power output is increased by 121.7%. In this case, one solution may be to turn on the active generator
controller merely when large lateral tower vibrations take place.

Figure 10. Influence of the active generator control on the flap-wise, fore-aft tower and
edgewise vibrations, gear-driven, W = 0.5. (a) Flap-wise tip displacement. (b) Fore-aft
tower top displacement. (c) Edgewise tip displacement.
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Figure 11. Time series of power output, gear-driven, W = 0.5.
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Table 3. Performance of the tower controller for the gear-driven case.

Case ca (Ns) σq8 (m) σP (MW)

Basic system 0 0.0330 0.106

W = 0.1 0 0.0330 0.106

W = 0.3 1.0× 104 0.0246 0.121

W = 0.5 2.0× 104 0.0206 0.141

W = 0.7 4.0× 104 0.0167 0.177

W = 0.9 8.0× 104 0.0132 0.235

4.3. Direct-Driven Wind Turbine

Next, simulations of the direct driven wind turbine are carried out. Comparing with the gear-driven
wind turbine, the nominal generator torque is increased by N times, while the nominal rotational speed
of the generator is reduced by N times. Since the magnitude of the generator is increased significantly,
we take the mass moment of inertia of the generator Jg to be N times the original value in the
simulation. This is justified by the data of a 3-MW wind turbine [30], where the mass moment of
inertia of the generator for the direct driven wind turbine is about 150-times that of the gear-driven one
(the total mass is six-times larger and the radius of the stator is five-times larger). The same turbulence
field and wave loads as in the previous case are applied to the wind turbine system in order to make
meaningful comparisons.

Similarly, by setting W = 0.5, the value of the gain factor ca is determined as 2.0 × 106 in order
to minimize the performance criterion J(ca). Figures 12–14 show the results corresponding to similar
parameters studied in the previous case. Results in Figure 12 show the remarkable capability of the
active generator controller in suppressing lateral tower vibrations. The maximum response of q8(t) is
reduced from 0.143 to 0.105 m (reduced by 26.6%), and the standard deviation is reduced by 54.0%.
Again, a static displacement equal to −0.057 m is always present with or without active control. This
value is also unchanged comparing with the gear-driven case, because the mean value of the aerodynamic
torque acting at the rotor is unchanged whether it is a gear-driven or direct-driven wind turbine. Further,
the stress at the tower base is calculated, with the standard deviation reduced from 6.72 to 3.39 Mpa
(49.6%) and the maximum response reduced from 26.12 to 18.90 Mpa (27.6%). The Fourier spectrum
of the lateral tower top displacement (Figure 12b) shows that the peak around 1.76 rad/s, corresponding
to the tower eigenfrequency, is almost totally eliminated by the active generator controller, comparing
with that of the uncontrolled case. The reason for the superior performance is that the nominal generator
torque f13,0 is much larger in the direct-driven wind turbine, and thus, the optimized controller gain ca,
as well as the additive torque are also increased accordingly.

Figure 13 shows the impact of the active generator controller on the responses of other components
of the wind turbine. Similarly, the negative influences on the drivetrain oscillation, the flap-wise
vibration, the fore-aft tower vibration and the performance of the pitch controller are negligible. The
lightly-damped edgewise vibration in Blade 1 (q4(t)) is again slightly suppressed by the active generator
control, due to its coupling to the lateral tower vibration. Similar results have been confirmed for the
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other two blades. It should be noted that the gearbox is eliminated in the direct-driven system, and the
negative impact from the active generator torque on the gearbox as stated in the gear-driven case is no
longer a problem for the direct-driven case.

Figure 12. Lateral tower vibration with and without active generator control, direct-driven,
W = 0.5. (a) Time history in 400–500 s. (b) Fourier amplitude of lateral tower vibration.
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Figure 13. Influence of the active generator control on system responses, direct-driven,
W = 0.5. (a) Deviation of rotational speed of the rotor. (b) Deviation of rotational speed of
the generator. (c) Collective pitch angle. (d) Flap-wise tip displacement. (e) Fore-aft tower
top displacement. (f) Edgewise tip displacement.
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Figure 14 shows the time-history of the power output from the generator. A little negative effect on the
smoothness of the power output is observed after the implementation of the active generator control. The
maximum value of the power output is increased from 5.41 MW to 5.48 MW (increased by 1.3%), and
the standard deviation is increased from 0.108 MW to 0.125 MW (increased by 15.7%), which means
less impact on the grid side than that of the gear-driven case. For direct-driven wind turbines, the value of
f13,0 is significantly increased, and the relative magnitude between caq̇8(t) and f13,0 is smaller comparing
with that of the gear-driven turbine; thus, the smoothness of the power output is less affected by the active
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control. Similarly, the tradeoff between the tower vibration and the power output is illustrated in Table 4,
showing that as the value of the weighting factor W increases, better structural performance, but worse
power quality are obtained. However, acceptable results for the power quality can always be obtained
when the tower vibration is significantly reduced.

Figure 14. Time series of power output, direct-driven, W = 0.5.
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Table 4. Performance of the tower controller for the direct drive case.

Case ca (Ns) σq8 (m) σP (MW)

Basic system 0 0.0328 0.108

W = 0.1 0 0.0328 0.108

W = 0.3 1.0× 106 0.0189 0.116

W = 0.5 2.0× 106 0.0151 0.125

W = 0.7 3.0× 106 0.0132 0.134

W = 0.9 8.0× 106 0.0099 0.175

5. Conclusions

This paper presents a comprehensive investigation into the modeling and control of lateral tower
vibrations of offshore wind turbines using active generator torque. A 13-DOF wind turbine model has
been developed using a Euler–Lagrangian approach, taking into consideration the quasi-static nonlinear
aeroelasticity. The equation of motion was derived, and the coupling of the blade-tower-drivetrain
motion, as well as the load transfer mechanisms from the generator to the tower are demonstrated.
A simple feedback controller was proposed for lateral tower vibrations through the active generator
torque, and a generator model was introduced as the power electronic solution for providing the additive
generator torque in real time.

Numerical simulations have been carried out using data calibrated to the referential 5-MW NREL
offshore wind turbine. Cases of the gear-driven and the direct-driven wind turbines were both considered
to evaluate the effectiveness of the active generator torque for mitigating lateral tower vibrations.
The non-linear time-history results demonstrate that for both gear-driven and direct-driven wind turbines,
the active generator controller is successfully able to reduce the lateral tower vibration induced by the
combined aerodynamic and hydrodynamic loads. The effective control of lateral tower vibration is at
the expense of a little more fluctuated power output, and a tradeoff between the vibration aspect and
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the power electronic aspect should be considered by properly choosing the controller gain. The active
generator controller has negligible affects on the drivetrain oscillation, the flap-wise vibration, the
fore-aft tower vibration and the performance of the controller. It is also favorable to observe that the
lightly-damped edgewise vibration is slightly suppressed by the active generator controller due to its
coupling to the lateral tower vibration. The active generator controller shows superior performance for
the direct-driven wind turbine, since a better vibration control efficacy can be obtained with less impact
on the smoothness of the power output.

In further works, a more sophisticated and realistic consideration of the wind-wave correlation needs
to be investigated. The controller will also be developed in more detail, such as to include filters and to
design the controller when there is a slight rotor imbalance.
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