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Abstract: False data injection (FDI) is considered to be one of the most dangerous 

cyber-attacks in smart grids, as it may lead to energy theft from end users, false dispatch in 

the distribution process, and device breakdown during power generation. In this paper, 

a novel kind of FDI attack, named tolerable false data injection (TFDI), is constructed. 

Such attacks exploit the traditional detector’s tolerance of observation errors to bypass 

the traditional bad data detection. Then, a method based on extended distributed state 

estimation (EDSE) is proposed to detect TFDI in smart grids. The smart grid is 

decomposed into several subsystems, exploiting graph partition algorithms. Each subsystem 

is extended outward to include the adjacent buses and tie lines, and generate the 

extended subsystem. The Chi-squares test is applied to detect the false data in each 

extended subsystem. Through decomposition, the false data stands out distinctively from 

normal observation errors and the detection sensitivity is increased. Extensive TFDI attack 

cases are simulated in the Institute of Electrical and Electronics Engineers (IEEE) 14-, 39-, 

118- and 300-bus systems. Simulation results show that the detection precision of the 

EDSE-based method is much higher than that of the traditional method, while the proposed 

method significantly reduces the associated computational costs. 

Keywords: smart grids; security; false data injection (FDI); bad data detection; 

extended distributed state estimation (EDSE) 
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Nomenclature: 

psub
 The number of subsystems after decomposition 

subsys_k The label of subsystem after decomposition (1 ≤ k ≤ psub)
 

N The number of buses in a power system 

M The number of transmission lines in a power system 

MTIE The number of tie lines 

Nk The number of buses in subsys_k 

 The number of buses in subsys_k after extension 

Mp The number of transmission lines in subsys_k 

 The number of transmission lines in subsys_k after extension 

busi Load bus/generators in power system, labeled according to the definition in 

the Institute of Electrical and Electronics Engineers (IEEE) standard case 

(1 ≤ i ≤ N) 

Li,j The transmission line connecting busi and busj 

Pi,j The active line power flow from busi to busj, observed on busi 

x State variables in power system, 1 2[ , ,..., ]T
nx x x x=  

z Measurements in power system, 1 2[ , ,..., ]T
mz z z z=  

e Measurements noise e = [e1, e2, …, em]T 

R The diagonal measurement covariance matrix 

h(x) The nonlinear function relating measurements z to state variables x 

o The degree of freedom in power system 

To,p The threshold of o degree of freedom corresponding to a detection 

confidence with probability p 

xk States variables in subsys_k, 1 2[ , ,..., ]k k k k T
nx x x x=  

zk Measurements in subsys_k, 1 2[ , ,..., ]k k k k T
mz z z z=  

hk(xk) The nonlinear function relating measurements zk to states variables xk  

in subsys_k 

ok The degree of freedom in subsys_k 

ak The false data injection attack (if exists) in subsys_k 

G The graph model for given smart grid 
k
id  The extension status of i th tie-line in subsys_k 

IDL Injected data levels, the relative injected error against the original value 

of measurement 

 

1. Introduction 

In smart grids, information techniques are applied to provide a desirable infrastructure for real-time 

measurement, transmission, decision and control. For this purpose many sensors are deployed across 

millions of buildings and streets. They are connected to the information network, raising the issue of 

how to protect the system against false data injection (FDI) attacks, which are launched by 
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hijacking and tampering with communication, or illegal access and control of electrical devices [1]. 

Moreover, FDI attacks are quite attractive to hackers, since the data in smart grid can be easily 

monetized (e.g., hackers can manipulate their energy costs by modifying the smart meter readings). 

The false data may also mislead the control center to take erroneous actions, which can be extremely 

dangerous for smart grids. 

Power system state estimation (SE) has been believed to be a good solution to process the bad data, 

since the pioneering work of Schweppe in 1970 [2]. It is applied in supervisory control and data 

acquisition (SCADA) systems to reduce the observation errors, detect bad data and estimate the 

electrical states of power systems through processing the set of real-time redundant measurements, 

typically bus voltage magnitudes and phase angles. 

It is believed the bad data detection methods, such as energy conservation test, the Chi-squares test 

and normalized residuals test [3], can protect the smart grids against the FDI attacks. While relatively 

effective against random noises, these detectors lack the ability to detect specialized and highly 

structured false data that conforms to the network topology and some particular physical laws. 

Recent works [4–10] have demonstrated that an adversary, armed with knowledge about the 

network’s configuration, can successfully construct undetectable FDI attacks on SE avoiding detection. 

However, there are still some obstacles to launch such attacks. First, the attacker has to know the 

configuration of the power system, which is in general not easy to obtain. Second, the attacker has to 

access a sufficient number of smart meters. Some smart meters are protected by different mechanisms. 

It is almost impossible to get access to every meter. Third, some smart meter readings such as 

active power, reactive power and voltage are read-only. The attacker can only falsify some writable 

configuration parameters like the current transformer (CT) ratio and time. Finally, even when the 

above conditions are satisfied, the attacker still has to solve a non-deterministic polynomial (NP)-complete 

problem to find such a sparse attack vector, which has a high computational cost. Simulation results 

indicate that the attacker may need to compromise almost 80% of all meters to ensure finding an attack 

vector for targeted FDI attacks (unconstrained case) in the Institute of Electrical and Electronics 

Engineers (IEEE) 118-bus system [8]. The authors of [11] presented a “generic FDI”, which could 

bypass the bad data detection and did not require solving the NP-complete problem. However, to launch 

such an attack, the attacker has to know all sensor measurements and state values of the power system. 

In our work, it is shown that light-weight false data can bypass traditional bad data detection methods, 

exploiting their tolerance of observation errors. In experiments, when we injected false data into each 

bus in the IEEE 14-, 39-, 57-, 118- and 300-bus standard systems, a relative low detection precision is 

achieved by the Chi-squares test. These attacks exploit the detector’s tolerance of normal cumulative 

random noises and hide among normal measurement errors. This kind of attack is named as tolerable 

false data injection (TFDI) in this paper. Compared with the strict conditions required by the 

undetectable FDI attack, the TFDI only requires the attacker to manipulate meters on target 

transmission lines. It is a relatively easy and practicable approach for attackers to falsify some specific 

measurements with limited knowledge about the system configuration and restricted access to 

smart meters. 

Various advanced methods are proposed to detect the false data. Many researchers have studied 

how to find the important meters in FDI attacks, and investigated various security strategies to 

protect the important measurements, such as independent verification [11] and data encryption [12,13]. 
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These methods would require extra investments on system implementation. Phasor measurement 

units (PMUs) have become increasingly deployed in power systems, providing accurate, synchronous, 

and secure sampling of the system states. How to economically deploy PMUs to best facilitate the state 

estimator to detect FDI attacks has become an interesting problem [6,14]. In addition, many smart 

algorithms are applied to detect the false data, such as geometrically-designed residual filter [15], 

and the adaptive cumulative sum (CUSUM) test [16]. Zonouz et al. [17] presented a security-oriented 

cyber-physical state estimation (SCPSE) system, in which the suspicious nodes in the cyber network 

are removed and the SE is applied to detect the false data with the remaining measurements, but the 

observability of the remaining measurements is a big problem for the SCPSE [17]. In the fully 

distributed power system, the distributed state estimation (DSE) is applied to detect false data, 

which is a two-level process: the local level is in charge of filtering the local bad data and the 

coordination level is applied to detect boundary bad data [18,19], but the coordination level SE faces 

constraints on observability. 

In this paper, we propose a bad data detection method based on an extended distributed state 

estimation (EDSE). With this method, a power system is decomposed into several subsystems using 

graph partition algorithms. For each subsystem, buses are classified into three groups: internal bus, 

boundary bus and adjacent bus. Each subsystem is extended outward to include the adjacent buses and 

tie lines, and generate the extended subsystem. The SE and Chi-squares test are applied to detect 

whether there is any false data in each extended subsystem. Through decomposition, the false data will 

stand out from normal observation noises and the detection sensitivity will be improved. To verify the 

effectiveness of the EDSE-based method, extensive TFDI attack cases are designed to inject false data 

into the IEEE 14-, 39-, 118- and 300-bus systems. These TFDI attacks exploit the detector’s tolerance 

of normal cumulative random noises and hide among normal measurement errors. They keep the test 

statistics lower than the threshold to bypass the Chi-squares test. Through decomposition, false data do 

not have enough space to hide behind normal measurement errors. They will stand out prominently 

and the detection sensitivity will be increased. The IEEE 14-bus system is selected to illustrate how the 

attack is constructed and how the EDSE-based false data detection method works. The IEEE 39-, 118- 

and 300-bus systems are used to carry out the simulations to discuss the detection performance, 

computation complexity and tunable parameters. Simulation results demonstrate that the detection 

accuracy of the EDSE-based method is much higher than the traditional bad data detection method 

on average, and the computation cost is reduced by over 90% in the IEEE 300-bus system. 

To summarize, the contributions of this work are as follows: 

(1) The possibility of random TFDI attack construction, which is much easier to launch than the 

well-known FDI method in [8], is proved; 

(2) Several cases are initially designed and numerically analyzed to show how the TFDI attacks 

bypass the traditional bad data detection method, and to demonstrate their potential risks; 

(3) A new method is proposed to detect the injected false data. The graph model is introduced to 

automatically decompose the smart grid, instead of manual power system partition based on 

the grid topology and geographical information in the power system DSE. Its detection 

accuracy is proved to be much higher than traditional methods and its computation complexity 

is significantly lowered. 
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The rest of this paper is organized as follows: the background of SE and bad data detection is given 

in Section 2; the TFDI attack is introduced in Section 3; in Section 4, a TFDI attack scenario is 

demonstrated to explain how to bypass the bad data detection, and prove the potential motivations 

and risks; the methodology of EDSE is presented in Section 5; in Section 6, the proposed method 

is tested with IEEE standard systems, and the results and analysis are also shown in this section; 

the concluding remarks and future work are given in Section 7. 

2. Preliminaries 

2.1. SE 

Power system SE is widely used to ensure the safety and economy of operation of power system. 

The state variables are related to the measurements as shown in Equation (1): 

( )z h x e= +  (1)

where x is the state variables; z is the meter measurements; h(x) = [h1(x1, x2, …, xn), …, hm(x1, x2, …, xn)]
T, 

where hI(x1, x2, …, xn) is a function of x1, x2, …, xn; and e = [e1, e2, …, em]T is the measurement error. 

For a well-proofreading system, these errors can be considered to follow the Gaussian distribution of 

zero mean [3]. 

In the SE, measurements are usually the values that can be observed easily, such as the line power 

flow, bus power injections, bus voltage magnitudes, and line current flow magnitudes, etc. The state 

variables are usually complex phasor voltages which cannot be measured conveniently. Both the 

measurements and state variables follow the same constraints, such as power balance theory and 

the Kirchhoff’s Law, etc. When using the polar coordinates for a system containing N buses, the state 

vector will contain (2N − 1) elements, N bus voltage magnitudes and (N − 1) phase angles. In general, 

measurements are more than state variables (m > n), since there are more lines than buses and more 

kinds of measurements than state variables. 

Essentially, power system SE is a process which uses real-time redundant measurements to improve 

data accuracy and automatically excluded from the error message caused by random interference. 

The objective is to find an estimate x^  of x that is the best fit of the measurement z according to 

Equation (1). The problem is usually solved by the weighted least squares (WLS) algorithm [3]. The SE 

can be formulated as a quadratic optimization problem: 
1min ( ) min[ ( )] R [ ( )]T

x x
J x z h x z h x−= − −  (2)

where R−1 is the measurement inverse covariance matrix. The Newton’s method can be applied to 

solve the quadratic optimization problem. The increment can be calculated by: 
( ) ( ) 1 ( ) 1 ( )( ) ( ) [ ( )]k k T k kx G x H x R z h x− −Δ = ⋅ ⋅ −  (3)

where 
( )

( ) ( )
( )

( ) k

k

x x

h x
H x

x =

∂=
∂

 is the Jacobi matrix; and G(x(k)) = HT(x(k)) R−1 H(x(k)) is the gain matrix. 

The convergence criterion is the following: 

max( ) εk
xxΔ < (4)

where εx is a predefined threshold. 
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2.2. Bad Data Detection 

Sensor measurements might be inaccurate because of device misconfiguration, device failures, 

malicious actions or other errors. The Chi-squares test is a common approach for detecting bad data 

according to the measurement residuals: 

  2

2
1

( ( ))
( )

σ

m
i i

i i

z h x
J x

=

−=  (5)

Assuming that all state variables are mutually independent and the sensor errors follow a normal 

distribution, the measurement residuals ( )J x  follows a chi-squared distribution 2
( )χ m n−  with m − n 

degrees of freedom. The steps of the Chi-squares test are as follows: 

(1) Solve the WLS estimation problem and compute the measurement residuals ( )J x . 

(2) The threshold χ2
(m−n),p is determined through a hypothesis test with a significance level p. 

There is a trade-off between false positive rate and false negative rate. A high threshold 

may lead to a high false alarm rate. According to [4], p = 95% is an empirical value. 

(3) If  2
( ),( ) χ m n pJ x −≥ , then bad data will be suspected. Else, the measurements will be assumed to be 

free of bad data. 

3. TFDI 

Most researches on the FDI construction follow the same idea: the attackers find an attack vector, a, 

to be equal to Hc. Then the manipulated measurement za = z + a can pass the bad data detection and 

identification of direct-current (DC) SE [8,9]. Thus, the measurement residual is: 

 ( )( )( )
( )

 ( ) 

-1-1 -1- -

-

- -

when

T T
aa a az H x z H H R H H R z

z a H x c

z H x a Hc z H x

a Hc

=

= + +

= + − =

=

 

                 
 (6)

From the perspective of the attacker, it is almost an unattainable mission to find an attack vector 

a in the real world. Firstly, the topology of the power system is one of the top secrets of most 

power companies. It is difficult to obtain the measurement matrix H. Secondly, solving the a = Hc, 

which in real systems is an ultra-high dimensional equation is difficult. It would be a NP-hard problem, 

when the attackers want to inject a specific data with limited compromised meters. Moreover, if the 

system topology is changed, the FDI attack would trigger bad data detection. 

Subject to the constraints of invisible observation errors and the false alert rate, the tolerance mechanism 

for measurement errors in SE is necessary. Instead of solving the problem in Equation (6), the attacker 

can construct a TFDI below the threshold of estimated residuals: 

  2
2
( ),2

1

( )

( ( ))
. . ( ) χ

σ

a

m
i i

m n p
i i

z z a h x e a

z h x
s t J x −

=

= + = + +

−  = <
 (7)
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Moreover, there is a high probability that the false data could not be detected when the attackers 

manipulate the data on both sides of the same transmission line. There are four power flow measurements 

per line. In each direction, there is a pair of active powers and reactive powers. Since the active power 

is related to economic interests, it is more attractive for attackers to falsify. On the transmission line Li,j 

(between the bus i and j), Pi,j denotes the active power from busi to busj, observed on busi, and Pj,i 

denotes the active power from busi to busj, observed on busj. The original active power from bus i to j 

,
org

i jP  and ,
org
j iP  are changed by same times to be ,

inj
i jP  and ,

inj
j iP  simultaneously to guarantee the balance of 

line power flow. 

Injected data levels (IDL) is defended to present the relative injected errors against the measurements: 

, ,

,

100%
inj org

i j i j

org
i j

P P
IDL

P

−
= ×  (8)

Comparing with the strict conditions required by the undetectable FDI attack, the TFDI only needs 

the attacker to manipulate meters on target transmission lines. Moreover, from [8], it can be seen that 

the probability of finding an attack vector for a target FDI (unconstrained case) in an IEEE 300-bus 

system is about 20%, even if the attacker can compromise 60% of all smart meters. In experiments, 

traversal attacks are conducted in IEEE 57- and 300-bus systems. The probabilities to construct a TFDI 

are shown in Table 1. It can be seen that the possibility to construct a TFDI attack is much higher than 

for an undetectable FDI. 

Table 1. Success probability to find a tolerable false data injection (TFDI) attack.  

IDL: injected data levels; and IEEE: the Institute of Electrical and Electronics Engineers. 

System 
Success probability with different IDL (%) 

25% 50% 75% 100% 125% 150% 175% 200% 

IEEE 57 67 60 56 53 48 44 37 31 
IEEE 300 72 66 61 58 55 52 47 41 

In addition, we modify the active power on each bus in IEEE 39-, 57- and 118-bus systems with 

different IDL. A relative low detection precision is performed by the Chi-squares test, as shown in 

Table 2. Furthermore, with the scale of the power system grows, the tolerance of measurement errors is 

accordingly increased. We can see from Table 2 that it is easier for the attackers to bypass the 

detection in the larger system. 

Table 2. Detection precision of the Chi-squares test against TFDI attacks. 

IEEE 39-bus system IEEE 57-bus system IEEE 118-bus system 

IDL Detection precision IDL Detection precision IDL Detection precision 

10% 67% 120% 51% 150% 75% 
20% 76% 150% 56% 200% 82% 
30% 89% 200% 69% 250% 86% 
40% 96% 300% 76% 300% 88% 
50% 100% 400% 79% 350% 93% 
60% 100% 500% 85% 400% 94% 
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It should be noted that the attackers construct the TFDI according to their limited information and 

constrained access to smart meters. They do not care about the observability of the system. TFDI attacks 

exploit the detector’s tolerance of normal cumulative random noises and hide among normal 

measurement errors. It just falsifies some measurements of smart meters and has no influence on the 

system observability. The TFDI scheme mentioned above is compatible both in alternating current (AC) 

models and DC models and easy to achieve, therefore, the TFDI is an easy and practicable attack, 

of which power engineers and security people should be aware. In this paper, we will discuss the 

countermeasures against such attack scheme. 

4. Attack Case and Potential Risks 

4.1. Smart Meter Intrusion 

Cyber techniques are the foundation of the FDI. The basic target for cyber-attacks is to obtain the 

authorization to make invalid operations on smart meters or network communications. For most 

smart meters, the communication protocol is Modbus/TCP or DNP 3.0/TCP. The port of Modbus/TCP 

is 502 and the port of DNP3.0/TCP is 20,000 by default. The attacker can first scan all hosts in the 

network segment, trying to find devices with opened 502 or 20,000 ports. Next, special hosts are found 

and marked to be suspicious. The attack can further communicate with these devices to obtain their 

product types and make sure they are smart meters. 

Two strategies can be used to access smart meters: (1) Password cracking is the traditional method 

to intrude into devices. The modification of smart meter settings often requires authentication. 

However, considering the limited computational resource and storage, smart meters are not equipped 

with complex password mechanisms. For smart meters in this simulation, the password is made up of 

four numerical digits and only several seconds are needed to crack it; (2) Plaintext transmission is 

another vulnerability which can be used to access smart meters. Some smart meters are equipped with 

complex password mechanisms. However, for most smart meters, the communication protocol used is 

Modbus/TCP or DNP 3.0/TCP, in which information is transmitted as plaintext. Attackers can monitor 

the traffic flow to identify critical operations on smart meters requiring authentication, such as 

modifications of system time, IP addresses and firmware updates. If the package including authentication 

information is identified, attackers can seize the password and obtain access to smart meters. 

With successful intrusion, the attacker can change measurement values. For most smart meters, 

measurement values such as active power and reactive power are read-only. However, some settings 

such as time and CT ratio are writable. A CT is used for measurement of alternating electric currents. 

The CT ratio K is defined as: K = I1/I2, where I1 is the primary current and I2 is the secondary current. 

The values of active power and reactive power will increase or decrease in proportion to the change of K. 

The attacker can change the CT ratio to manipulate the power flow measurements. 

4.2. A TFDI Attack on IEEE 14-Bus System 

A simulation case is constructed to inject false data into the IEEE 14-bus system as shown in 

Figure 1. Measurements of active power are changed by falsifying the CT ratio of smart meters. 

This attack case is illustrated to demonstrate how to bypass traditional bad data detection through 
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hiding the injected data among the normal observation errors, and analyze the potential risks of 

TFDI attacks. 

Figure 1. An attack case on IEEE 14-bus system. 

 

The original loads on bus5 and bus4 are 7.60 MW and 47.80 MW, respectively. The power flow on 

the transmission line L5,4 is 61.16 MW. In the attack case, the hacker tries to move 60.96 MW of power 

load from bus5 to bus4. Thus, the load on bus5 and bus4 and the power flow on the transmission line 

L5,4 are modified to −53.56 MW, 108.96 MW and 122.32 MW, respectively, to maintain the power 

balance of these buses. The revised data is analyzed with the SE and J(x^ ) is equal to 67.5471 by 

solving Equation (5), which is less than the threshold 72.1532. This shows that the traditional bad data 

detection method is inadequate and unable to detect this attack, and measurements will be assumed to 

be free of false data. 

The result provided by SE is the basis for the energy management system (EMS). EMS is a system 

of computer-aided tools used by operators of electric utility grids to monitor, control, and optimize the 

performance of the generation and transmission system. Some adverse consequences will occur if the 

EMS is misled. Two potential risks are as follows: 

Risk 1: Energy Theft 

Energy theft is the most common and attractive motivation for hackers to launch TFDI attacks. 

In this case, the hacker tries to reduce the measurement of active power on bus5. Then, a TFDI attack is 

launched and 60.96 MW of power load is moved from bus5 to bus4. According to the current tariff 

published by the Pacific Gas & Electric Corporation [20], the electricity price is 0.18590$/kW h. If this 

attack lasts for one day, customers on bus5 may see their costs unjustly lowered by $272,871. It should 

be noted that the load on bus5 is changed to −53.56 MW. Generally, it seems ridiculous to change the 

load from a positive value to a negative value. However, this is quite normal under the smart grid 

paradigm. Demand response plays an indispensable role in the smart grid. For some energy-intensive 

industries, such as iron, steel and cement enterprises, captive power plants and energy storage devices 



Energies 2014, 7 1526 

 

 

are intrinsic [21]. When sufficient energy exists for production, these enterprises can participate in the 

demand side bidding and feed power back to the grid for their economic benefits. It may drive these 

energy-intensive enterprises to falsify the value of the smart meter and mislead the power company to 

believe that electrical energy is being fed back into the power grid. 

Risk 2: Cracking Economic Dispatch 

Economic dispatch is the short-term determination concerning the optimal output of a number of 

electricity generation facilities, which is to minimize the overall operating cost while satisfying the 

power load of system in a robust and reliable manner. To achieve economic dispatch, the optimal 

power flow (OPF) is applied to solve the load flow and determine a new set of values for generator’s 

output that reduces the generation cost [22]. The cost of each generator is usually considered to be 

quadratic in power generation: 
2Cost( )p ap bp c= + +  (9)

where p is the generator’s output; and a, b and c are the parameters determined by the property  

of generators. 

We calculate the OPF of this region with MATPOWER, a toolbox developed by the Cornell 

University [23]. The result shows that if the attack illustrated in Figure 1 is launched, the loads of bus4 

and bus5 and the power flow on the line will change. The value of injected power on bus5 is negative 

after the modification. Thus bus5 pretends to feed energy back to the power grid, and will mislead the 

control center to reduce the generation output on bus1, bus2 and bus3 and increase the generation output 

on bus8 to meet the increased demand on bus4. Output of each generator will be adjusted to pursue the 

lowest generation cost [24]. In any normal situation, the optimal total generation cost is 8081.5$/h. 

After the hacker launches the attack, the output of bus8 rises sharply and the optimal total generation 

cost of the system increases by 5%. 

5. EDSE-Based Bad Data Detection 

As shown in Section 2.2, the threshold of the Chi-squares test is set to tolerate unpredictable and 

inevitable measurement noises. The attackers can elaborately construct TFDI attacks hidden in normal 

measurement noises. When the number of measurements grows, the Chi-square test has to tolerate larger 

cumulative normal observation errors from each measurement. If the large system can be reasonably 

decomposed, false data will not have enough space to hide among normal measurement noises. Based 

on this idea, an EDSE-based bad data detection method is proposed to handle TFDI attacks. 

5.1. Power System Decomposition 

Setting a smart grid with n buses and m transmission lines, the weighted-undirected graph model 

of power system can be established as G = {V, E}, where V is a set of vertex representing load buses 

or generators, and E is the set of edges representing the transmission lines in smart grids. The adjacency 

matrix of the graph is denoted by A = {ai,j}, i,j = 1, 2, …, n. The element ai,j is non-zero when bus i and 

bus j are directly connected and it also indicates the physical properties between the two buses. For the 

modeled graph, the weight of the branch can be determined as the following ways: 
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• The basic topology of the power system (ai,j = 1 if bus i and bus j are connected); 

• The impedance of transmission lines; 

• The line power flow at each sampling time. 

In this paper, we use the impedance (Z = R + jX) of transmission lines as weight of edges, which reflects 

the electrical distance between each bus. R is the resistance and is X reactance of the transmission line. 

Comparing with X, the value of R is very small. Therefore, the absolute value of line reactance |X| 

is chosen to be the weight of edge. The large graph is divided into several subgraphs using 

clustering algorithms, such as the L-bounded Graph Partition Method (LGPM) [25], the K-Medoid [26], 

and Chameleon [27], etc. In this paper, the LGPM method is applied to graph decomposition, since it 

is relatively stable and not affected by the choice of initial clustering centers. The main process of 

LGPM is illustrated in Table 3. 

Table 3. Work flow of the L-bounded Graph Partition Method (LGPM) algorithm. 

Algorithm 1 LGPM 

Data The adjacency matrix ,{ }i jA a=  for graph G; the number of subgraphs N 

Result 

Subgraphs 1, 2, ,iG i N ( = )  
1. Normalize a nonnegative symmetric matrix A' from A and make it doubly stochastic; 
2. Spectural Partition: Calculate the N largest eigenvectors ( 1, 2, , )iU i N=  ; 

3. A general clustering algorithm (k-means or EM) using { }iU  and N as input s is adopted 

to get the attribution of each vertices; 
4. Generate the adjacency matrix for each subgraphs. 

5.2. Subsystem Extension 

After the graph partitioning, the power system graph is decomposed into several sub-graph. 

Accordingly, the power system is decomposed into a specific number psub of non-overlapping 

subsystems connected with each other by tie lines. Let MTIE denote the number of tie lines. In the 

subsystem k (described by subsys_k (k = 1, ..., psub)), there are Nk buses and Mk lines. Let nk denote 

the number of state variables and mk denote the number of measurements, they should satisfy the 

following equations: 
sub sub

TIE

1 1

, 2 1, 4
p p

k k k k k k
k k

N N M M M n N m M
= =

=    = +    = −    = ，  (9)

It should be noted that a sufficient redundancy of measurements must be ensured in each subsystem 

to carry out the SE, i.e., mk > nk. For each subsystem, buses can be grouped into three categories as 

shown in Figure 2: 

(1) Internal Buses, all of whose directly connected buses belong to the subsystem; 

(2) Boundary Buses, whose neighbors are this subsystem’s internal buses and at least one bus from 

another subsystem; 

(3) Adjacent Buses, which are a boundary bus of another subsystem with a connection to at least 

one boundary bus in this subsystem. 
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Figure 2. Decomposition of a power system. 

 

Tie-lines connect the boundary buses of each subsystem. According to the result of decomposition, 

the tie-lines will not be included into any subsystems. False data injected into the measurements on 

tie-lines will not be detected. If there are measurements on tie-lines, the subsystem should be extended 

to contain the adjacent buses, which help to identify attacks on tie lines between original subsystems. 
Let TIE

kM  denote the number of tie-lines directly connecting to subsys_k. The extension status of 

tie-lines can be determined by a binary set { }k
id  (i = 1, …, TIE

kM ). If the i-th tie-line is included into 

subsys_k, 1k
id = , otherwise, 0k

id = . Thus, the number of buses and transmission lines in subsystem 

will be updated as follows: 
TIE TIE

1 1

,
k kM M

E k E k
k k i k k i

i i

N N d M M d
= =

= +  = +   (10)

where E
kN  denotes the number of buses; and E

kM  denotes the number of transmission lines after 

subsystem extension. In Figure 2, the solid line represents the first step decomposition. Then, the 

subsystem is extended to contain the adjacent buses. The dashed lines represent the boundaries of new 

subsystems after extension. 

5.3. Subsystem SE and Bad Data Detection 

In this paper, we adopt a “line-only” method [28] in which values of active and reactive power 

flow on all transmission lines are selected to be measurements. Each subsystem possesses its own 

state estimator. The state estimator of each subsystem can be run in parallel and separately with the 

respect to their own slack bus. The SE of subsys_k can be formulated as follows: 

( )k k k k kz h x e a= + +  (11)

where zk is the measurement vector, 1 2[ , ,...., ]
k

k k k k T
mz z z z= ; xk denotes state variables in the subsystem k 

and 1 2[ , ,...., ]
k

k k k k T
nx x x x= ; ( )k kh x is a non-linear vector function indicating the relationship between the 

measurements and the state variables in the subsystems k; ek is the random Gaussian error; and ak is a 

sparse vector of which the non-zero elements are injected attacking values on specific measurements. 

The Chi-squares test is carried out in each subsystem to detect bad data. Referring to Section 2.2, 
the local threshold ,

k
o pT  of bad data in subsys_k is determined by the local degree of freedom ok. 

The difference between the global and the local threshold is shown as below: 
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(12)

For SE, enough measurement redundancy must be ensured to eliminate random errors. It is obvious 

that 
1,

( ) 0
subp

j j
j j k

m n
= ≠

− > . In addition, a global system will be divided at most into m + 1 subsystems after 

m transmission lines are removed. Therefore, the upper bound of psub is less than MTIE + 1. Therefore, 

we can obtain: 
TIE TIE TIE TIE2 1 2 1 ( 1) 0subM p M M M+ − ≥ + − + = >  (13)

In addition, the upper bound of the number of extended tie-lines is TIE
kM . We can obtain: 

TIE

TIE TIE TIE

1

0
kM

k
i k

i

M d M M
=

− > − >  (14)

All the aforementioned discussion suggests that the local degree of freedom ok is obviously 

lower than the global one. The threshold of the Chi-squares test in each subsystem could be less 

than that in the entire system. Therefore, the threshold is reasonably reduced without changing the 

detection confidence. 

It should be noted that the EDSE-based method is also effective for other kinds of FDI, which exploit 

the detection threshold’s tolerance of normal observation noises. Since it is difficult to find an attack 

vector a, which strictly satisfies a = Hc, some researchers try to relax this condition. The authors of [11] 

proposed that the “generic FDI attack” would be a future direction for attackers to inject false data 

without being detected. Such attack does not require the strict condition a = Hc, as long as the attacker 

chooses his attack vector a, satisfying the following equation: 

 ( ) τz H x a Hc− + − ≤  (15)

where τ is the detection threshold. Then the attacker could still inject false data without being detected. 

Actually, the basic idea of EDSE method is to improve the detection accuracy by decomposing the 

system into several subsystems. Through decomposition, false data do not have enough space to hide 

behind normal measurement errors. They will stand out prominently and the detection sensitivity will 

be increased. Therefore, it will help defending this kind of attack. 

Comparing with other DSE papers [19,29,30], the features of the proposed method are as follows: 

(1) Although the system is divided into several subsystems, all subsystems’ SEs are conducted by 

the only computing center which has the knowledge of the global system’s estimate. 
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(2) Since this paper just focuses on the bad data detection in smart grids, it is not necessary to construct 

the aggregation level [30], which is required for each subsystem to achieve convergence of the 

entire power system’s states to those of the centralized estimation. The computational complexity 

is remarkably reduced. 

(3) In this paper, subsystems are overlapping, because each original subsystem is extended to 

contain the adjacent buses. After first-step decomposition, the tie-lines will not be included into 

any subsystems. False data injected into the measurements on tie-lines will not be detected. 

Subsystem extension helps to identify attacks on tie lines between original subsystems. 

(4) The clustering algorithm is introduced for system decomposition. Through the graph 

establishment, the configuration of power system is taken into consideration. It is suitable for 

systems which do not have obvious physical or geographic features. 

6. Experiments and Analysis 

In this section, the performance of the EDSE-based method is studied: in Section 6.1, three attack 

cases are simulated on the IEEE 14-bus system. Bad data detection based on EDSE is applied to detect 

these attacks; in Section 6.2, the IEEE-39 bus system is used to present a statistical comparison of 

detection performances between the traditional and EDSE-based methods; in Section 6.3, we discuss 

the some TFDI attacks which are not detected by the EDSE-based method; the evaluation of time 

complexity is shown in Section 6.4; and in Section 6.5, the proper number of subsystems is discussed. 

6.1. Attack Cases on IEEE 14-Bus Systems 

Three attack cases are constructed on the IEEE 14-bus system as shown in Figure 3. The decomposition 

of the IEEE 14-bus system is carried out by the LGPM. 

Figure 3. Attack cases on IEEE 14-bus system. 

 

As shown in Table 4, the IEEE 14-bus system is divided into two subsystems, “subsys_1” and 

“subsys_2”. L5,6, L4,7, L4,9 are tie lines. In subsys_1, there are 8 buses including adjacent buses: bus6, 
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bus7 and bus9. The number of state variables n1 is 15 and the number of measurements m1 is 40. 

The degree of freedom o1 in this subsystem is m1 − n1 = 25. According to the property of distribution, 

the threshold of bad data suspicion is 43.77. In subsys_2, there are 11 buses, 21 state variables, and 

52 measurements, and the threshold is 51.00. This indicates that the local threshold is much lower than 

the global one. 

Table 4. Decomposition of IEEE 14-bus system. 

System Bus n m o To,p 

Subsys_1 1,2,3,4,5,6,7,9 15 40 25 43.77 
Subsys_2 4,5,6,7,8,9,10,11,12,13,14 21 52 31 51.00 
Global All 27 80 53 72.15 

To test the performance of EDSE-based bad data detection, three attack cases are constructed as 

shown in Table 5. In Table 5, Li,j denotes the transmission line where the false data are injected. 

Pi,j denotes the active power from busi to busj, observed on busi. The active power Pi,j and Pj,i are 

modified at the same time to guarantee the balance of line power flow. The original measurements are 

simulated by MATPOWER and then the Gaussian noise is added. It should be noted that there is a tiny 

difference between ,i jP  and ,j iP . These two active power measurements are observed at each end of 

the transmission line. There is some power loss on the transmission line. For an attacker, it is not easy 

to change the active power to arbitrary values, because active power is usually read-only. As explained in 

Section 4.1, attackers can change the active power through falsifying the CT ratio. In Attack Case 1–3, 

they increase the CT ratio by 2 times, 3 times and 1.5 times, respectively. In Attack Case 1, false data 

is only injected into subsys_1. The P4,5 is modified from −61.16 MW to −122.32 MW and P5,4 is 

modified from 61.67 MW to 122.34 MW. In Attack Case 2, false data is only injected into subsys_2. 

The P6,13 is modified from 17.75 MW to 53.24 MW, and P13,6 is modified from −17.54 MW to 

52.61 MW. In Attack Case 3, the false data is injected into the tie line between subsys_1 and subsys_2. 

The P5,6 is modified from 66.13 MW to 99.20 MW, and P6,5 is modified from −66.13 MW to 99.20 MW. 

Table 5. TFDI attack cases on IEEE 14-bus system. 

Attack Case Modified measurement 
Pi,j (MW) Pj,i (MW) 

Original value Injected value Original value Injected value

Attack Case 1 L4,5 −61.16 −122.32 61.67 122.34 
Attack Case 2 L6,13 17.75 53.24 −17.54 −52.61 
Attack Case 3 L5,6 66.13 99.20 −66.13 −99.20 

As shown in Table 6, global values of J(x^ ) are 54.91, 66.04 and 54.73 in three attack cases, respectively. 

Obviously, they are lower than the threshold To,p(72.15). Thus, the injected false data cannot be 

detected. When we adopt EDSE-based method to deal with the Attack Case 1, we find that: in 
subsys_1, the J(x^ ) is 51.98, which is higher than the local threshold 1

,o p
T  (43.77); in subsys_2, the J(x^ ) 

is 25.22, which is below the local threshold 2

,o p
T  (51.00). It implies that there is false data in subsys_1. 

Similarly in Attack Case 2, the EDSE-based method can detect the false data in subsys_2. In Attack 
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Case 3, false data is detected in subsys_2. If the subsystem is not extended to include the adjacent buses, 

the FDI on tie-line L5,6 will not be found. 

Table 6. Detection results on IEEE 14-bus system. 

Attack Case 
Global Subsys_1 Subsys_2 

To,p J(x^ ) To,p J(x^ ) To,p J(x^ ) 

Attack Case 1 
72.15 

54.91 
43.77 

51.98 
51.00 

25.22 
Attack Case 2 66.04 13.11 59.05 
Attack Case 3 54.73 19.28 53.48 

6.2. Traversal Attacks on IEEE 39-Bus System 

In this section, we present the comparison of detection precision between the traditional and 

EDSE-based methods on the IEEE 39-bus system. The system consists of 39 buses and 46 transmission 

lines, therefore, the number of state variables is 77, represented by n, and that includes 39 bus voltage 

magnitudes and 38 bus voltage phase angles. There are 92 pairs of active/reactive power flow 

measurements on transmission lines. The topology of the IEEE 39-bus system after decomposition is 

shown in Figure 4 and the detailed data of each subsystem are listed in Table 7. 

Figure 4. Decomposition of IEEE 39-bus System. 

 

Table 7. Decomposition of IEEE 14-bus system. 

System N_bus n m o To,p 

Subsys_1 16 31 68 37 53.38 
Subsys_2 17 33 76 43 60.48 
Subsys_3 14 27 56 29 35.05 
Global 39 77 184 107 133.26 
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A slight modification of the original measurement is not worthwhile for attackers. Meanwhile, 

substantial falsification is easy to detect. We test the detection precision with the |IDL| from 10% to 

50%. For each transmission line, we modify the measurement of the active power on this line and then 

record the total number of successful detection after traversing all the transmission lines. The final 

detection precision of the Chi-squares test and EDSE-based method are illustrated in Figure 5. 

Figure 5. Comparison of detection precision. 

 

When IDL = −10%, 84.8% of injected data are detected by EDSE-method while the detection 

precision of Chi-squares test is only 63%. When IDL = +10%, the detection precision of the Chi-squares 

test and proposed method are 76.1% and 89.1%, respectively. The detection precision of the EDSE-based 

method is remarkably higher than that of the Chi-squares test for the lower IDL. With the increase of 

differences between original measurements and injected data, the performance of the Chi-squares 

comes to be closer to EDSE-based method. When IDL is higher than 50% or lower than −60%, all injected 

data can be detected by the proposed EDSE-based method and Chi-squares test. Overall, the detection 

precision is improved tremendously. 

It can be seen that the EDSE approach cannot detect all the TFDI attacks, especially when the IDL 

is very low. However, attackers construct the attack according to the configuration of the global system. 

They do not know the decomposition model and the testing threshold of subsystem. In addition, a very 

slight modification on the original measurements is very attractive for the attackers. The attackers are 

more likely to maximize the injection, so long as the attack does not trigger the detector of the 

global system. Therefore, the EDSE approach would achieve a better performance in practice than in 

the traversal attack simulation shown in Figure 5. 

6.3. Discussion of Undetected TFDI Attacks 

Although the EDSE-based method greatly improves the detection precision than tradition method, 

some TFDI with slight IDL cannot yet be detected, as shown in Figure 5. In this section, we perform 

further analysis on the conditions under which a TFDI can be detected or cannot be detected by the 

EDSE detector. 
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From the traversal attack simulation on an IEEE 39-bus system, we find that attacks on the 

transmission lines connected to bus6, bus16 and bus26 are more likely to trigger the detector, even with 

very low IDL. From the perspective of graph theory, these buses have high degree (the number of 

neighboring edges of the node). It means there are many transmission lines connected to these buses. 

Such lines have a close connection with the rest parts of the system. A slight modification on 

measurements will cause a relatively great change of ( )J x . 

The undetected lines are listed in Table 8. When the |IDL| is lower than 30%, the false data 

injected on L19,20, L19,33 and L20,34 cannot be easily detected by either the Chi-squares test or the 

EDSE-based method. Figure 4 shows that bus19, bus20, bus33 and bus34 form an “Isolated Island” 

out of the entire system. They are connected to other buses only by L16,19. The size of an “Isolated Island” 

is relatively small. Modification of the measurements in this “Isolated Island” is not strongly correlated 

with the rest. Therefore, the false data injected on these transmission lines cannot easily be detected. 

Table 8. Undetected lines of traditional test and extended distributed state estimation 

(EDSE)-based method. 

IDL 
Undetected lines 

Chi-squares Test EDSE 

−50% L19,20, L20,34, L22,35 None 
−40% L19,20, L19,33, L20,34, L22,35, L25,37 None 
−30% L19,20, L19,33, L20,34, L22,35, L23,36, L25,37 L19,20, L20,34 
−20% L10,11, L10,13, L10,32, L19,20, L19,33, L20,34, L22,35, L23,36, L25,37, L28,29,L29,38 L9,39, L19,20, L20,34, L22,35, L25,37 
+20% L10,32, L16,19, L19,33, L20,34, L22,35, L23,36, L25,37, L28,29 L19,20 
+30% L19,20, L20,34 None 

From the above discussion, two conclusions can be drawn: 

(1) EDSE has high detection sensitivity against the attacks on transmission lines which are connected 

to the high degree buses; 

(2) For some “Isolated Islands” which is not strongly correlated with the rest parts of the system, 

TFDI on these transmission lines cannot be detected easily. 

6.4. Time Complexity Analysis 

Four standard IEEE power systems: 14-, 39-, 118- and 300-bus, are selected to compare the 

complexity between the traditional and EDSE-based methods. We design the detection programs based 

on the MATPOWER4.1 software (Cornell University, Ithaca, NY, USA), and run the experiments 

on the same computer equipped with a 2.2 GHz CPU and 3 GB of memory. Since each subsystem 

is independent, the EDSE program can be conducted in both serial mode and parallel model. 

The result indicates a remarkable reduction in running-time as illustrated in Table 9. “EDSE (Serial)” 

means that bad data detection of each subsystem is conducted in sequence. “EDSE (Parallel)” means 

that bad data detection programs of all subsystems are conducted simultaneously. Computing time is 

decided by the largest subsystem. Taking the IEEE 14-bus as an example, the computation time drops 

from 14.7 ms to 11 ms when conducted in parallel. The running time in serial mode is higher than the 

traditional Chi-squares test since the IEEE 14-bus system is divided into two subsystems and the size 
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of subsys_2 is close to that of the original system. For larger systems, the performance is more obvious. 

For the IEEE 118-bus system, the computation time is 0.791 s with the traditional method, while it 

only takes 0.2074 s in serial, which is about 26.3% of the traditional method, and 0.084 s in parallel, 

about 1.3% of the traditional method. For the IEEE 300-bus system, the computation time with the 

EDSE-based method is 7.5 s in serial mode, which is only 1/16 of the time compared to that of the 

traditional method. Obviously, the complexity and computation time for detecting the bad data can be 

reduced dramatically by using the proposed EDSE-based method. Furthermore, if the detection can be 

conducted in parallel, more execution time can be saved. Furthermore, it is possible to carry out the 

online bad data detection in a real smart grid consisting of hundreds of buses and thousands of 

transmission lines with the EDSE-based method. 

Table 9. Running time comparison. 

IEEE standard system 
Running time (s) 

The Chi-squares test EDSE (Serial) EDSE (Parallel) 

14-bus 0.015 0.022 0.011 
39-bus 0.063 0.047 0.013 
118-bus 0.791 0.207 0.084 
300-bus 123.695 7.470 5.650 

6.5. Optimal Number of Subsystems 

In this section, we discuss the optimal number of subsystems in EDSE. We decompose the 

IEEE 39-bus system into different numbers of subsystems and then analyze the running time and 

detection precision. False data with IDL = 15% is injected to a pair of active power flow 

measurements each time. The detailed result is shown in Table 10. 

Table 10. Discussion on the number of subsystems. 

Number of 
subsystems 

Running time(s) 
Detection precision 

Number of buses in the 
largest subsystem EDSE (Serial) EDSE (Parallel) 

1 N/A 0.76 39 
2 0.0432 0.0309 0.83 28 
3 0.0379 0.0157 0.87 17 
4 0.0426 0.0153 0.91 17 
5 0.048 0.0138 0.93 15 
6 0.0522 0.0123 0.87 13 
7 0.0597 0.0122 0.87 12 
8 0.0624 0.0119 0.83 12 

At the very start, the detection precision increases with the number of subsystems. Then, the EDSE 

reaches the maximum detection precision (93.5%) when the power system is decomposed into five 

subsystems. The precision begins to decrease when the number of subsystems exceeds six because the 

original system will be divided into some “Isolated Islands” mentioned in Section 6.3. In addition, 

too much decomposition cannot ensure the observability. 
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For the IEEE 39-bus system, the optimal number of subsystems can be set to 3–5, which represents 

a compromise between the running time and detection precision. In practice, the number of subsystems 

is strongly associated with the topology of the power system, execution mode (parallel or serial) 

and response time. The optimal number of subsystems can be selected offline according to the 

practical requirements. 

7. Conclusions and Future Work 

In this paper, TFDI attack cases are designed to explain how hackers can modify the data in smart 

grids and evade the traditional bad data detection methods in power systems. These attacks make use 

of the tolerance of the Chi-squares testing threshold and hide in normal observation errors. We discuss 

the potential risks of such attacks in smart grids, and evaluate the losses by energy theft and cracking 

economic dispatch on the IEEE 14-bus system. 

To solve this problem, the EDSE-based method is proposed to detect TFDI attacks. The basic idea 

of this method is to improve the sensitivity of bad data detection by dividing a complex system into 

several subsystems. The EDSE-based method consists of the following steps: (1) decompose the power 

system into a certain number of subsystems using clustering algorithms; (2) extend each subsystem to 

include the adjacent buses; and (3) carry out SE and bad data detection in each subsystem. 

In simulations, extensive TFDI attack cases are simulated in the IEEE 14-, 39-, 118- and 300-bus 

systems. Results show that the detection precision of EDSE-based method is improved tremendously. 

Moreover, the EDSE presents a new idea for online bad data detection, since its computational 

complexity is greatly reduced, and its detection process could be further sped up by parallel analysis of 

all extended subsystems. 

Since FDI in smart grids is a cyber-physical attack which introduces interactive reactions both in 

the cyber network and power grid, the cyber-physical fusion strategy is considered as a better solution. 

In the future, we will further study a detection method which fuses the EDSE with the abnormality 

detection of traffic flow. Even though the EDSE does not detect the bad data, illegal access to smart 

meters will also trigger the alarms deployed in the communication network. 
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