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Abstract: Transportation electrification has become an important issue in recent decades 

and the large scale deployment of electric vehicles (EVs) has yet to be achieved. The smart 

coordination of EV demand addresses an improvement in the flexibility of power systems 

and reduces the costs of power system investment. The uncertainty in EV drivers’ 

behaviour is one of the main problems to solve to obtain an optimal integration of EVs into 

power systems. In this paper, an optimisation algorithm to coordinate the charging of EVs 

has been developed and implemented using a Genetic Algorithm (GA), where thermal line 

limits, the load on transformers, voltage limits and parking availability patterns are taken 

into account to establish an optimal load pattern for EV charging-based reliability. This 

methodology has been applied to an existing residential low-voltage system. The results 

indicate that a smart charging schedule for EVs leads to a flattening of the load profile, 

peak load shaving and the prevention of the aging of power system elements. 
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1. Introduction 

Transportation electrification has become an important issue in recent decades mainly because of 

the potential for reducing energy consumption [1]. It should be noted that in Spain 41% of total energy 
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produced is consumed by the transportation sector [2]. Several targets related to greenhouse emission 

footprints, oil dependence and costs and integration of renewable energy must be reached by 

incorporating EVs [3]. Moreover, improvements in battery technology and significant reductions in 

EV costs have led to an increase in the number of EVs incorporated into systems [4,5]. 

EVs are treated as a new moving load (grid-to-vehicle, or G2V) with storage availabilities  

(vehicle-to-grid, or V2G) in power distribution networks [6]. These moving demands have significant 

influence on power networks even if large scale EV demand is not accommodated in a suitable way [7,8]. 

An EV can be considered a flexible load that can be charged throughout the day instead of following a 

rigid charging schedule [9,10]. The flexibility of the EV demand will improve the operation of power 

systems in terms of flattening the load curve on main substation transformers, providing, in addition, 

peak shaving services, reduced power system losses, reduced aging of transformers and lines, and 

increased renewable energy penetration [11] as well as providing financial support [9–18]. In an 

uncontrolled, or “dumb”, scenario, EVs should be charged when the owner arrives at his home [16,19]; 

however, potential problems such as sudden peak demand or sudden overloading could be shaped or 

flattened by using a smart charging schedule for the EV’s batteries [20]. Moreover, the optimal 

scheduling of EV battery charging could allow high EV penetration without requiring any upgrades to 

the existing electricity infrastructure [21] (cables and transformers), thereby reducing investment 

expenses. Optimal scheduling also offers the possibility of managing EVs as V2G [19,22–24], 

providing ancillary services to network operators [25]. The optimisation of EV charging is a  

demand-response strategy that must be incorporated into Demand-Side Management (DSM) and 

implemented by a EV aggregator to improve the flexibility of the distribution network [9]. 

A number of studies were performed on the impact of EV integration into power systems [26–29].  

A study shown in article [27] attempted to maximise the amount of energy that can be delivered to all  

the EVs in a fixed period of time taking into account network technical limits and using a linear 

programming methodology. However, the behaviour of electric vehicle users is not considered in the 

formulation of the problem. In reference [28], a direct load control management technique is developed 

to maximise the net energy supplied to the batteries and simultaneously minimise the total energy cost by 

incorporating charging patterns of a plug-in electric car; however, the technical network limits are not 

included in the problem formulation. In [29], the authors use the coordination of EV charging by 

considering EVs as distributed energy resources to smooth the load profile. Although they include  

a mobility pattern in their study, it should be noted that the mobility profile is not a realistic one and 

simply leads to theoretical results. Another research study [14] developed a smart load management 

framework for plug-in electric vehicles (PEVs) based on peak demand shaving, obtaining, concurrently, 

an improvement in the voltage profile and minimising power losses. The study was performed by taking 

into account the PEV owner’s preferred fixed charging periods. The authors of reference [12] 

coordinated the charging of EVs to maximise the use of renewable energy in the transportation sector. 

Furthermore, they consider stochastic driving patterns and employ simple linear programming. 

In [16], a GA drives the charging process to minimise the impact on peak load avoidance, parking 

availability and the charging control. Shaaban and Saadany [30] implemented the optimal charging of 

EVs using GAs and incorporated only light-duty fleet users’ behaviours without considering peak load 

shaving in their formulation. In this paper, a different EV charging optimisation will be used to fill 

existing gaps such as the necessity to consider realistic driving patterns as well as the various charging 
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characteristics and different vehicle penetration levels into low-voltage networks. The objective of this 

study is to utilise the EV demand to smooth the load profile and to reduce and prevent the aging of 

transformer substations and distribution lines. The main contributions of the paper are as follows: 

• The application of a novel optimisation method based on GAs for the demand side 

management of EVs in low-voltage distribution networks from a Spanish electricity 

distribution company (Unión Fenosa Distribución, Madrid, Spain). 

• A model of a 24-hour electric vehicle charge pattern obtained from a Spanish survey of vehicle 

drivers’ behaviour. 

First, different EV penetration scenarios into low-voltage residential networks have been considered 

to address the impact of EVs on distribution networks. Second, electric vehicle user behaviour 

constraints that are based on real-world driving mobility in Spain are considered in the optimisation 

algorithm. Third, the potential to charge EVs during non-consecutive hours, throughout the period 

permitted for charging the EVs, by means of interrupted charging are included in the optimisation 

process to develop a more comprehensive approach. Finally, a GA, implemented in MATLAB® 

(Natick, MA, USA), is used to develop the smart schedule for EV charging instead of using 

deterministic models that are widely used [18]. Many optimisation problems can be solved by linear 

programming and other deterministic algorithms. However, when the dimension of the problem 

becomes large, linear programming algorithms cannot address the problem in a reasonable amount of 

time, and in many cases such as the one discussed in this paper, it is not an appropriate approach [31]. 

The structure of the paper is as follows: mobility patterns are developed in Section 2 according to 

Spanish users’ behaviour. Section 3 focuses on the EV charging model. The smart charging 

methodology and the GA implementation are developed in Section 4. Studies and results of the smart 

charging model for low-voltage topologies are presented in Section 5. Finally, the conclusions are 

given in Section 6. 

2. Electric Vehicle User Behaviour 

One of the main problems related to EV integration into distribution power networks is predicting 

the mobility behaviour of the EV, which depends on each individual EV driver [30]. To meet the total 

EV charging demand in a way that enhances the load profile, it is necessary to develop a parking 

availability pattern that lets the smart grid aggregator determine the possible scheduling of EV charging. 

In this study, a survey of vehicle user behaviour, MOVILIA (Encuesta de Movilidad de las 

Personas Residentes en España) [32] carried out by the Spanish Ministry of Industry (Madrid, Spain) is 

used to determine the parking patterns of vehicles for each topology of this study. MOVILIA provides 

information about the type of trip (trips to work, for shopping, leisure, etc.) and the duration of the trip. 

The MOVILIA results focus attention on periods related to work that correspond to the majority of  

the trips. 

MOVILIA distributes the trips in a typical day into eight categories: trips from/to home, movements 

from/to work, leisure trips, shopping trips, accompany trips, trips to/from school or study centres, 

visiting friends/family and others. By extracting the trips suitable for the residential topology (trips 

from/to home), it becomes possible to estimate the periods of the day that the EV is plugged-in at 
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home. Figure 1 shows the hourly statistical distribution for the first and last trip from/to home. 

According to Figure 1, it should be noted that Spanish vehicle users leave home between 8:00 and 

10:00 in the morning (first trip of the day), which corresponds to the beginning of business activity, 

and return home between 19:00 and 24:00 (last trip of the day). In Figure 2, all the vehicle trips during 

a working day are shown. Taking into account the previous data, Figure 3 shows the number of hours 

that vehicles are parked at home during the day. As shown, 18% of EVs are parked at home and 

connected to the grid for 12 h, and only 2% of EVs are parked 24 h per day. Finally, the number of 

EVs parked at home and available to be charged hourly, or the parking pattern, is shown in Figure 4. 

These results show that that 98% of EVs are parked at home at 2:00, whereas only 2% of EVs are 

parked at home at 10:00. Comparing the first and last hour of the day, Figure 4 shows that at 24:00, 

only 96% of EVs have returned home, which means that the last trips of 2% for EVs take place 

between 24:00 and 1:00. The parking pattern of a residential low-voltage network can be obtained by 

taking into account the percentage of EVs that could be parked at home for each of the 24 h in a day, 

which is related to the total number of available EVs connected to the network. EVs are mainly parked 

at home between 19:00 and 7:00, and it should be noted that EVs finish arriving home at 1:00 instead 

of at 24:00. 

Figure 1. First and last trip hour distribution. 

 

Figure 2. Trips from/to home during a working day. 
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Figure 3. Parking hours of vehicles. 

 

Figure 4. Residential parking pattern. 

 

3. Electric Vehicle Battery Charging 

The electrification requirements of the transportation sector are not very significant at the moment. 

For this reason, we use 2020 as the target year because this is when the number of EVs on the road is 

expected to be higher [17]. 

EVs can be modelled as mobility loads whose main characteristics are charging time, power 

demand and the rate of charge [33,34]. In a dynamic analysis, such as EV control, dynamic models of 

the EV batteries must be considered [16] where EV batteries can be approximated by a voltage source 

VOC in series with an equivalent constant resistance of the battery cell Ri in which the active power 

characteristic of the EV battery represents the charging process. However, for planning and scheduling 

purposes, we consider that the EV aggregator manages the EVs’ distributed storage batteries to provide 

DSO the required flexibility of services. To accomplish this, the EV aggregator receives the 

information on the initial State-Of-Charge (SOCinitial) of the EV batteries for each of the 24 h in a day. 

It is assumed that the SOC of each battery must be between a maximum (SOCmax) and minimum level 

(SOCmin). In this paper, it is considered that EV aggregator performs the optimal scheduling using the 

following data from the EV charging station: time of connection; initial state of charge; actual state of 
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charge (SOC); final state of charge; type of vehicle and customer charging mode as it is defined in  

the Standard ISO/IEC 15118 [35]. Additionally, a typical value of battery charger efficiency of 90% is 

considered in the EV energy demand from the grid. 

For each of the charging periods, a PEV charges until its desired state of charge (SOC) is reached 

Equation (1): 

SOC = SOC୧୬୧୲୧ୟ୪ +෍SOC(ℎ)ு
௛ୀଵ  (1)

where SOC (h) is the state of charge at any instant of time and H is the last hourly time period in the 

battery charging process. 

Several EV charging infrastructures (currents and grid connection types) are described in the 

International Standard IEC 61851-1 [36] as shown in Table 1. Charging Mode 1 is the most preferred 

charging infrastructure followed in residential distribution networks mode, which corresponds to  

a slow charging rate of 3.7 kW, mainly because EV drivers have enough time for a slow charge  

(four to eight hours, depending on the charge level) [15], and it is the most suitable method for 

domestic environments [32]. 

Table 1. Standard charging power levels [36]. 

Connection Mode Grid connection AC voltage AC current Type of charge 

Mode 1 (AC) 
1 phase 230 V 16 A Slow 

3 phase 400 V 16 A Slow 

Mode 2 (AC) 
1 phase 230 V 32 A Slow 

3 phase 400 V 32 A Slow 

Mode 3 (AC) 
1 phase 230 V 32 A Slow 

3 phase 690 V 250 A Medium 

Mode 4 (DC) – 600 V 400 A Fast 

4. Smart Charging Scheme: Problem Formulation 

The scheduling of EV load demand is an important issue for current power networks [37,38]. 

Several charging schemes have been developed during recent years that can be classified into four 

categories: dumb charging schemes (the EVs charging starts just when they are plugged-in at home), 

conventional controlled charging schemes (the charging process is time-delayed to avoid peak demand 

periods), smart charging schemes (a G2V charging scheme is determined by an intelligent algorithm to 

improve the operation of the power network) and V2G-G2V charging schemes (the charging and 

discharging of EV batteries are controlled to optimise power system operation). 

This study focuses on an optimal EV charging strategy to flatten the load profile of the transformer 

substation of the distribution network; in addition, peak demand shaving and technical network limits 

are considered. To achieve this goal, it must be considered that all the EV load requirements must be 

supplied according to the parking patterns developed in Section 2 and must take into account technical 

network constraints, such as thermal limits of cables and voltage violations at buses. 

A 24-hour load demand profile of a residential network and the low-voltage network topology are 

used as input data in the optimisation problem. The decision parameters are the EV charging demand 
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that might be used for each of the 24 h. In this study, a slow charging connection is considered because 

it is the normal charging infrastructure installed in residential power networks. The result of the study 

is a 24-hour optimal EV batteries power charging schedule. 

4.1. Objective Function 

The goal of the optimisation problem is to obtain the daily optimal scheduling of EV demand to 

flatten the loading profile of the transformer substation. The loading profile at the transformer 

corresponds to the addition of a residential load demand for each house connected to the network and a 

total EV hourly demand. To level the load profile of the whole system and avoid the deviation of the 

load between consecutive hours, it is necessary to develop an optimal schedule of EV charging to fill 

the gaps of the residential load profile during periods of lower load demands and avoid charging EVs 

during peak load hours. To achieve this, the objective function is given as a measure of main 

transformer load profile deviation between consecutive hours Equation (2): 

min F(ݔ) = ෍(ܵ௛ − ܵ௛ିଵ)ଶଶସ
௛ୀଵ  (2)

where ܵ௛ represents the main transformer loading at hour h. 

4.2. Constraints 

The constraints of the optimisation problem are organised into several categories. 

4.2.1. Parking Patterns 

The optimal scheduling of EV battery charging must utilise the availability of the EVs at the 

Customer Point Of Connection (CPOC) Equation (3). The parking patterns developed in Section 2 

show the possible hours of connection for EVs to be charged. Every hour, the parking availability of 

the EV must be checked to assess the available EV demand: EV	charging௛ ≤ EV parking available௛ (3)

4.2.2. EV Demand 

The energy demand of EVs that must be accommodated in the study’s framework depends on the 

number of EVs connected to the power system, the size of the battery, SOCmax and the SOC of the 

battery when the user arrives at home from the last trip (SOCinitial) Equation (4). The SOCinitial is 

transferred from the EV to the CPOC and is subsequently registered by the EV aggregator. It is 

considered that all the energy demand of the EV batteries must be covered throughout the 24 h 

charging process: 

EV	demand(topology) = ܥ ∗ ෍ (SOC௜.୫ୟ୶ − SOC௜,୧୬୧୲୧ୟ୪)୬୳୫ୠୣ୰ ୭୤ ୉୚
௜ୀଵ  (4)

where C is a constant that represents the number of EVs charging simultaneously; if C = 0, then no 

EVs are connected, and if C = 1, all the EVs are charging simultaneously. 
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Moreover, the SOC of the battery of each EV must be within the limits in every step of the 

simulation Equation (5): SOC௜,୫୧୬ ≤ SOC௜(ℎ) ≤ SOC௜,୫ୟ୶ (5)

When the SOCmax is reached, the EV charging is complete. SOCmin is limited by the maximum 

Depth of Discharge (DOD). Under normal operating conditions optimum DOD should not be 

discharge above 80% of the rated battery size (typically SOCmin ≈ 0.2). 

4.2.3. Power-Flow Constraints 

Basic equality constraints correspond to the power-flow equations for every bus Equations (6)–(9): 

௚ܲ௜ − ௟ܲ௜ − ௜ܲ = ∆ ௜ܲ (6)ܳ௚௜ − ܳ௟௜ − ܳ௜ = ∆ܳ௜ (7)

௜ܲ = ௜ܸ෍ ௞ܸே
௜ୀଵ ௜௞ܩ) cos θ௜௞ + ௜௞ܤ sin θ௜௞) (8)

ܳ௜ = ௜ܸ෍ ௞ܸே
௜ୀଵ ௜௞ܩ) sin θ௜௞ − ௜௞ܤ cos θ௜௞) (9)

where: 	∆ ௜ܲ, ∆ܳ௜ correspond to bus active and reactive power mismatch equations; ௜ܲ, ܳ௜ are the active 

and reactive power injections at bus ݅௧௛; ௚ܲ௜,	ܳ௚௜ active and reactive power of generators at bus ݅௧௛ 

which corresponds to the available variable injection of EV working as V2G (EVgeneration୚ଶୋ	), ௟ܲ௜, ܳ௟௜ active and reactive power demand at bus ݅௧௛. Power demand is considered as the sum of residential 

power demand and the variable EV charging demand as G2V (EVdemandୋଶ୚). 
4.2.4. Charging Constraints 

To improve the power system operation, the peak transformer substation load demand must not be 

exceeded after adding EV charging/discharging Equation (10) energy to the residential electricity 

demand. Dumb, conventional controllable charge and smart charging approaches are included as 

constant power loads in the power flow and correspond to EVdemandୋଶ୚	(ℎ)	 in Equation (10).  

G2V + V2G options add a new term in Equation (8) that corresponds to the energy injected to the 

network by EV(EVgeneration୚ଶୋ	(ℎ)): home	electricity	demand	(ℎ) + EVdemandୋଶ୚ (ℎ) − EVgeneration୚ଶୋ	(ℎ) +power	losses	(ℎ) ≤ Peak transformer substation load demand(ℎ)  (10)

4.2.5. Network’s Technical Limits 

• The voltage levels in buses are not allowed to fall outside the maximum and minimum limits 

according to the grid voltage regulation Equation (11): 

௜ܸ,୫୧୬ ≤ ௜ܸ௛ ≤ ௜ܸ,୫ୟ୶ (11)
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• The thermal limits of network components corresponding to the ratio of the apparent power 

flowing though the lines and the main transformer substations must be taken into account 

during the optimisation process. These constraints are summarised in Equations (12) and (13): ܫ୪୧୬ୣୱ௛ ≤ ୫ୟ୶ (12)ܫ

୲ܵ୰ୟ୬ୱ୤୭୰୫ୣ୰ ୱ୳ୠୱ୲ୟ୲୧୭୬௛ ≤ ܵ୬୭୫୧୬ୟ୪ (13)

4.3. GA Implementation 

In recent decades, intelligent algorithms have been applied to address complex, real-world power 

system optimisation, which involves a large number of possible solutions [39,40]. The application of 

evolutionary algorithms, such as GAs, has received considerable attention because of the difficulty of 

extending conventional optimisation techniques to those types of problems [32] and assessing the 

problem in near real time. For this reason, GAs appear to be an acceptable algorithm for smart 

charging scheduling of PEV [37,41]. 

Genetic algorithms (GA) are a family of computational optimisation models developed by Holland [42] 

and first implemented by Hopgood and Goldberg [43] to solve both constrained and unconstrained 

optimisation problems. GAs are based on natural evolution processes, which can be deduced from the 

employed operators that are clearly inspired by natural sequences and from the main driver of the GA, 

which would be defined as a biological selection. One of the main advantages of GAs is that they work 

with a set of possible solutions, called the population, that will be modified at each stage (generation) 

of the algorithm based on a genetic operator. The algorithm evolves to a new generation of individuals 

by executing reproduction, mutation and crossover operations among the individuals of this 

population. The main advantages offered by GAs over conventional optimisation algorithms are as 

follows [44]: 

• GAs do not require initial information about the system to begin the searching process because 

they work only with coding (chromosomes), which will be optimised according to the objective 

functions and the proper constraints. 

• The algorithms can explore various regions in the search space simultaneously by using 

multiple points of the population and iterative characteristics. This represents one of the most 

important distinctions from traditional optimisation algorithms, where only one direction in the 

search space can be followed. 

• The best individuals are selected among parents and offspring generations, making the process 

more likely to converge to a global optimum. 

The choice of the optimization algorithm depends on different aspects, such as: the required quality 

of solutions, the computing time, the selection of the objective functions or the problem’s constraints. 

Some deterministic algorithms can be very fast but in many cases they can only be applied for small 

size problems where only a single objective function is required and the number of constraints is 

reduced. In this paper, GA has been selected because they offer great flexibility to consider multi-objective 

functions and they are able to work, simultaneously, with several constraints. Moreover, GAs have 
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proved to be robust optimization techniques [39] dealing with non-linear and non-convex problems as 

the one shown in this paper. 

The objective of the present study is to minimise the load profile deviation by means of EV optimal 

charging. Variables used in the optimisation problem are the hourly demands. Using this approach, the 

GA chromosome is composed of 24 genes (Load demand1, Load demand2, Load demand3, … , Load 

demand24). Genes are encoded by real numbers that correspond to hourly total demands according to 

Equation (14). The hourly load demand involves the hourly home electricity demand, hourly electricity 

demand using a G2V scheme and the hourly EV power production using a V2G scheme as is shown in 

Equation (14): loadୢୣ୫ୟ୬ୢ(ℎ) = home	electricity	demand (ℎ) + EVdemandୋଶ୚ (ℎ) − EVgeneration୚ଶୋ (ℎ) (14) 

The engine of the GA is the Fitness Function (FF) (2), which assigns a goodness value to each 

individual of the population and is employed to drive the evolution process. In this study, the FF must 

fulfil the charging requirements of all the EVs connected at each hour and minimise the deviation of 

the load profile of the main transformer (residential electricity demand or pre-load profile + EV load 

profile + power losses). The GA determines the optimal EV load demand during each hour. A scheme of 

the algorithm is given as follows (see Figure 5): 

• The GA implementation begins with the encoding. The 24-hour parking pattern developed in 

Section 2, 24-hour day-ahead EV demand and the 24-hour load demand are used as boundaries to 

determinate the feasible solution space of the population. A large population size (100 

individuals) is selected as the initial population to increase the convergence rate to the global 

solution. The selection of the population size is a critical factor in the GA implementation 

because large values increase the convergence rate to the global solution, but this also increases 

the computation time. 

• When the initial population is created, information about the low-voltage grid topology is 

considered in the evaluation process. The feasibility of each individual in terms of the FF (2), 

considering network constraints (3)–(13), is evaluated using a power flow. 

• After the evaluation and scaling of each individual, the population evolves through genetic 

operators to a new population. The roulette method approach is used for the selection operator, 

and a rate of 50% is assigned to the crossover operators. 

• To improve the evolution of the GA process, a mutation rate of 50% is selected. Two elitism 

children are maintained at each generation to ensure the best solution throughout the process. 

• The process continues until the stopping criteria have been reached. In this study, a convergence 

tolerance of 10−6 and 100 maximum generations are used as the stopping criteria. 

• Finally, the result of the GA shows the optimal management of EV charging. The optimal 

solution corresponds to the pre-operational load plus the EV contribution and power losses 

calculated in the power flow. 
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Figure 5. GA optimization process. 

 

5. Study and Results 

5.1. Grid Topology 

The optimised EV charging schedule shown in this paper has been applied to low-voltage 

distribution networks from a Spanish electricity distribution company (Unión Fenosa), which is shown 

in Figure 6. The residential distribution network corresponds to an existing low-voltage network with a 

main substation transformer that provides electricity for N = 100 individual customers connected to 

several feeders. Grid data are detailed in the Appendix. Figure 7 shows one of the parking charge 

points available at the network. 

Figure 8 shows the EV parking infrastructure of a multiple charge point location of a distribution 

system equivalent to the system under study. The daily baseline load profile measured at the main 

substation transformer is shown in Figure 9. It is assumed that each individual house can have one or 

two EVs; consequently, the EV population connected to the network can be considered to be 1.5 N. 

In this study, it is assumed that the charging process corresponds to a slow charge and that the EV 

batteries are fully charged throughout the day: continuously during the fixed time duration (for 

example, 3 h) or discontinuously throughout the day. The charging rate at the CPOC is 16 A, which 

corresponds to an AC voltage of 250 V based on Mode 1 of the IEC 61581-1 standard. It is considered 

that the state of charge (SOC) at the end of the last trip of the day is 20%. It is also assumed that the 

CPOC is equipped with technology to control the charge of the battery of the EV by using signals from 

the smart grid aggregator. 
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Figure 6. Low-voltage distribution network. 

 

Figure 7. Residential EV charge point. 

 

Figure 8. EV parking infrastructure. 
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Figure 9. Daily main substation transformer load profile without EVs. 

 

5.2. Studies 

The optimal scheduling strategy described in previous sections has been implemented in the 

residential network. Three EV penetration scenarios have been considered: a low penetration level 

(5%), medium penetration level (20%) and a high penetration level (50%). Four different types of EV 

charging processes (dumb, conventional, smart G2V and smart G2V + V2G) have been applied to the 

residential network. 

5.2.1. Dumb Charging Strategy 

For the dumb charging strategy, electric vehicles are charged as soon as the EV is plugged-in at 

home. In this case, the charging process is performed using a slow charge. Based on the vehicle user 

behaviour study MOVILIA [32], it is considered that the EVs are connected to the network, and 

consequently charged, during the following periods: 

• 85% of the EVs arrive at home between 18:00 and 20:59, and they are supposed to be plugged 

into the electricity network immediately. This period of time occurs during the peak load 

demand on the substation transformer, which is called the peak period. 

• 5% of the EVs are connected to the network between 24:00 and 2:59, which coincides with the 

valley load demand. 

• 10% of the EVs are plugged-in and charged between 21:00 and 23:59. 

Figure 10 shows the percentage of the load of the main transformer of the residential networks,  

for a dumb EV charging schedule, where the three EV penetration levels and time frames are analysed. 

It should be observed that with dumb charging, the main transformer substation is overloaded at  

the peak periods for a high penetration level, which corresponds to an overloading of 140% occurring 

at 20:00. Figures 11–13 show the voltage profile of the main branches for feeders 1, 2 and 3, 

respectively, under different EV penetration levels, considering the maximum loading hour (20:00).  

It should be noted that the bus voltages remain under the allowable limits for the most overloaded 

hour, and the bus voltages vary between 0.97 p.u and 1.03 p.u. 
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Figure 10. Daily main substation transformer load profile using EV dumb charging scheduling. 

 

Figure 11. Voltage profile of Feeder 1 for hour h = 20:00 using dumb charging scheduling. 

 

Figure 12. Voltage profile of Feeder 2 for hour h = 20:00 using dumb charging scheduling. 
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Figure 13. Voltage profile of Feeder 3 for hour h = 20:00 using dumb charging scheduling. 

 

To determine the capacity of the residential network to assess the EV demand, an analysis of the 

power system capacity was performed. The maximum number of EVs that could be charged within 

network limits is shown with a blue line in Figure 14. Moreover, Figure 14 shows an hourly comparison 

between the number of EVs that are parked at home and therefore are available to be charged using the 

parking pattern described in Section 2, for each penetration level (represented by low, medium and high 

parking areas), and for the EV charging pattern provided by the GA (low, medium and high penetration 

columns). It should be noted that during peak hours, the amount of EV charging exceeds the maximum 

load capacity of the main substation transformer; therefore, this dumb charging strategy produces an 

overload of the main transformer from 19:00 to 21:59 for high EV penetration. 

Figure 14. Dumb EV charging schedule. 

 

5.2.2. Conventional Controlled Charging 

In this situation, the EV is plugged into the electricity network as soon as the driver arrives home. 

However, the charging process is controlled by the smart grid aggregator based on the time frame.  

The charging periods considered by the aggregator are the following: 
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• 85% of EVs are charged during the valley load period, and the charging process is initiated at 

1:00, considering slow charging and continuous charge duration (for example, 3 h). 

• 5% of EVs are charged during the peak load periods (19:00–21:59). 

• 10% of EVs are charged during the remaining hours of the day. 

Figure 15 represents the final loading (%) at the substation transformer. It should be noted that the 

final loading only exceeds network capacity during the first hour of the day and for high penetration 

levels. Because the controlled charging scheme only considers the time delay and initiates the EV 

charging at the same moment in time, the peak demand is displaced from 21:00 (without EVs) to 24:00 

(with EVs). Voltage profiles for the three main feeders are shown in Figures 16–18 for different EV 

penetration levels and for the hour h = 0:00. 

Figure 15. Daily main substation transformer load profile using the conventional 

controlled charging. 

 

Figure 16. Voltage profile of Feeder 1 for hour h = 0:00 using the conventional controlled charging. 
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Figure 17. Voltage profile of Feeder 2 for hour h = 0:00 using the conventional controlled charging. 

 

Figure 18. Voltage profile of Feeder 3 for hour h = 0:00 using the conventional controlled charging. 

 

Figure 19 provides the following information: 

- Blue solid line represents the maximum number of EV that could be charged considering 

network limits. 

- Stacked bar graph represents the number of EVs charging hourly for low, medium and high 

penetration levels. 

- Colored area represents the number of EVs parked at home and available to be charged based 

on the parking patterns for low, medium and high penetration levels. 
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Figure 19. Conventional controlled EV charging schedule. 

 

5.2.3. Smart Management G2V 

In this section, the smart G2V load management technique is applied to the residential low-voltage 

network. Smart management is based on the GA developed in Section 4.3. In this case, two periods of 

time are considered for fully charging EVs throughout the day: during the daylight period (7:00–18:59) 

10% of parked EVs are charged, and 90% of EVs are charged during the night timeframe (19:00–6:59). 

As shown in Figure 20, the smart G2V EV load management technique improves the post-operation 

load profile of the main transformer. In this case, the peak load of the main transformer is not exceeded 

during any hour. It can be observed that the electricity demand for the high EV penetration level is 

spread throughout the night so that no overload takes place. Figure 21 shows an EV pattern connection 

for the different penetration levels and compares it with the availability parking pattern and the 

maximum number of EVs for the overload. The GA charging pattern does not exceed the maximum 

number of EVs for overload or the parking pattern in any case. 

Figure 20. Daily main substation transformer load profile using the smart G2V 

management technique. 
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Figure 21. Number of EV connected in residential topology using the smart G2V 

management technique. 

 

5.2.4. Smart Management G2V + V2G 

The Smart G2V + V2G load management technique is applied to the low-voltage power system 

under study. In this case, the EVs are assumed to be equipped with technology capable of providing 

energy stored in the battery to the grid (V2G) when they are parked at home; therefore, EVs can act as 

loads and generators. This new capability enables EVs to offer ancillary services, such as spinning 

reserves and regulation, to the system operators by working as flexible energy storage resources [13]. 

Smart scheduling with a combination of G2V and V2G offers the possibility of managing EVs as V2G 

to the smart grid aggregator, offering peak savings. In addition, they can be used as G2V providers, 

offering the service of valley filling. Moreover, EVs capable of acting as flexible storage units could 

be managed in terms of energy demand requirements for movements of daily trips and energy storage 

required as a producer based on the DSM. The storage capacity could lead to greater integrations of 

distributed energy resources by assessing their energy fluctuations. EVs with V2G technology could be 

charged, discharged or disconnected during each hour of the day. For this reason, the scheduling 

management of V2G must optimise the charging and discharging of the batteries to improve the 

operations of power systems, reducing the necessity of installing additional new reactive power 

resources or generation sources. In smart V2G management, it is assumed that a percentage of the 

energy stored in EV batteries could be delivered to the grid during several hours in a day. It is 

considered that the V2G exchange is possible only when EVs are plugged-in at home; therefore, two 

timeframes are considered: daylight (7:00–18:59), when 10% of the V2G stored energy can be injected 

into the network, and during the night, when 90% of the EVs are plugged-in at home and are capable 

of delivering part of their stored energy to the grid. According to the 2020 forecast of EV penetration 

levels [16], a smart G2V + V2G analysis has been developed for a medium penetration level of EVs in 

the network. As shown in Figure 22, the smart G2V + V2G load management technique (green 

columns) improves the post-operation load profile of the smart G2V main transformer. A brief 

reduction of the load demand on the power network throughout the day is possible because of the V2G 
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capability of the EV; therefore, the load profile is reduced by 20% between 24:00 and 6:00 compared 

to the total load demand at the main transformer for the G2V scheme. As in the previous case, it should 

be noted that the smart G2V+V2G technique avoids main transformer overload and respects parking 

patterns. Figure 23 shows the power profile in feeder number 3 where EVs are connected for different 

charging strategies: Dumb charging; conventional charging; Smart management G2V; Smart G2V + V2G 

management technique. It can be noted that power flowing across feeder’s lines is fairly constant 

throughout the day by using smart charging. Smart G2V + V2G management technique prevents the 

aging of distribution feeder elements. 

Figure 22. Post-operational load profile of the main transformer for the residential 

topology using the smart G2V + V2G management technique. 

 

Figure 23. Power profile of feeder 3 for different charging strategies. 
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6. Conclusions 

This paper develops a smart scheme for EV battery-charging management. The realistic behaviour 

of drivers has been used to obtain the mobility patterns and parking availability aspect of EVs to 

improve the charging and discharging process. EV integration into power systems has been carried out 

based on peak shavings and valley filling services. In addition, the reduction of substation transformer 

aging has been proved. A comparison between dumb, conventional, smart G2V and smart G2V + V2G 

battery management techniques in an existing residential network has also been performed. 

The problem is solved using GAs and focuses on an authentic residential low-voltage topology. The 

formulation of the problem takes into account network constraints, which are related to voltage limits, 

lines and transformer thermal limits, as well as battery models. Moreover, the availability connection 

patterns have been incorporated as inequality constraints. The result of the GA is the optimal schedule 

for charging EV batteries throughout the day, taking into account drivers’ behaviour. 

Four different management techniques have been tested in the power system. The first corresponds 

to uncontrollable, or dumb, management in which EVs charge their batteries as soon as they arrive 

home. It should be noted that under this scheme, the peak load increases and exceeds the thermal limits 

of the substation transformer accelerating the aging of the transformers. The second schedule 

corresponds to conventional management in which EVs are charged in a new time frame that 

corresponds to valley hours. In this case, the load profile has a new peak demand during the night 

hours, and in high EV penetration level, the substation transformer is overloaded. The third and fourth 

schemes correspond to smart management techniques. The G2V management technique improves  

the load profile of the daily demand, and the substation transformer is not overloaded in any case.  

A combination of smart G2V and V2G EV charging techniques improves the load profile as well, and 

it should be noted that in this smart charging scenario, the total load demand of the main transformer 

during valley frame hours is smaller than in the G2V scenario. This is caused by the capacity of the 

EVs to discharge their batteries and provide this energy to the power system, thus reducing the stress 

on the transformer. Focusing on the last management scheme, EVs could be treated as loads or 

generators depending on the necessities of the DSO. This flexibility in the behaviour of EVs offers a 

number of advantages to DSOs in terms of assessing the load demand of power systems and flattening 

the load profile as has been demonstrated in this paper and reducing transformer aging. Furthermore, 

V2G technology can be used to address distributed energy resource generation oscillations and allows 

EVs to be treated as new generators in the electricity generation portfolio. 
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Nomenclature 

Bik Susceptance of branch between nodes ith and kth 
CPOC Customer Point of Connection 
DOD Depth of Discharge 
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DSM Demand Side Management 
DSO Distribution System Operator 
EV Electric Vehicles 
FF Fitness Function 
G2V Grid to Vehicle 
GA Genetic Algorithm 
Gik Conductance of branch between nodes ith and kth 
Ii  Thermal loading of line ith 
Ii, max  Maximum Thermal loading of line ith 
PEV Plug in Electrical Vehicles 
Pi Active power injection at node ith 
Qi Reactive power injection at node ith 
Snominal Nominal power of substation transformer 
SOC  State of Charge SOC௜,୫ୟ୶ Maximum State of Charge of EV ith SOC௜,୫୧୬ Minimum State of Charge of EV ith 
Sh Hourly distribution transformer load 
SSubstation transformer Thermal loading of Substation transformer 
V2G Vehicle to Grid 
Vi RMS Node voltage at bus ith 
Vi, max Maximum Voltage at bus ith 
Vi, min Minimum Voltage at bus ith 
Θij Voltage angle difference between node ith and jth 

Appendix 

Table A1. Low voltage power system data. 

Branch Line R (p.u.) Line X (p.u.) Branch Line R (p.u.) Line X (p.u.) 

1 0.714 0.452 18 2.962 1.872 
2 0.712 0.450 19 1.339 0.194 
3 1.829 1.156 20 2.499 1.580 
4 5.851 3.698 21 1.332 0.193 
5 11.030 1.600 22 13.322 2.078 
6 1.431 0.904 23 0.260 0.164 
7 1.652 1.044 24 1.776 0.277 
8 5.647 3.569 25 1.776 0.277 
9 1.784 1.128 26 0.346 0.219 
10 1.674 1.058 27 0.346 0.219 
11 1.332 0.193 28 1.776 0.258 
12 1.675 1.059 29 1.776 0.258 
13 1.332 0.193 30 1.776 0.258 
14 1.443 0.912 31 1.776 0.258 
15 1.332 0.193 32 1.776 0.258 
16 0.368 0.233 33 1.776 0.258 
17 1.333 0.194 34 1.776 0.258 
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Table A1. Cont. 

Branch Line R (p.u.) Line X (p.u.) Branch Line R (p.u.) Line X (p.u.) 

35 1.776 0.258 79 3.297 2.084 
36 3.688 2.331 80 4.461 2.820 
37 1.335 0.194 81 3.009 1.902 
38 3.581 2.263 82 1.997 1.262 
39 1.332 0.193 83 1.295 0.188 
40 1.824 1.153 84 3.743 2.366 
41 1.332 0.193 85 1.332 0.193 
42 1.848 1.168 86 2.823 1.784 
43 2.123 1.342 87 1.332 0.193 
44 1.332 0.193 88 1.332 0.193 
45 1.336 0.194 89 3.398 2.148 
46 1.776 0.258 90 1.776 0.258 
47 1.776 0.258 91 1.776 0.258 
48 1.776 0.258 92 1.776 0.258 
49 1.776 0.258 93 1.776 0.258 
50 1.776 0.258 94 2.327 1.471 
51 1.776 0.258 95 1.327 0.193 
52 1.776 0.258 96 5.825 3.681 
53 1.776 0.258 97 1.340 0.194 
54 1.776 0.258 98 0.378 0.239 
55 1.776 0.258 99 1.310 0.190 
56 3.243 2.050 100 4.588 2.899 
57 1.332 0.193 101 1.332 0.193 
58 4.950 3.129 102 1.776 0.258 
59 1.332 0.193 103 1.776 0.258 
60 3.712 2.346 104 3.659 2.313 
61 1.330 0.193 105 1.332 0.193 
62 0.346 0.219 106 2.315 1.463 
63 0.346 0.219 107 1.332 0.193 
64 1.776 0.258 108 0.564 0.356 
65 1.776 0.258 109 1.332 0.193 
66 1.776 0.258 110 2.651 1.675 
67 1.776 0.258 111 0.260 0.164 
68 1.776 0.258 112 1.776 0.258 
69 1.776 0.258 113 1.776 0.258 
70 1.984 1.254 114 1.776 0.258 
71 3.583 0.520 115 1.776 0.258 
72 2.376 1.502 116 1.776 0.258 
73 0.712 0.450 117 1.776 0.258 
74 2.390 1.510 118 4.883 3.086 
75 1.332 0.193 119 0.497 0.314 
76 0.976 0.617 120 1.207 0.763 
77 1.331 0.193 121 1.332 0.193 
78 0.194 0.123 122 5.718 3.614 
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Table A1. Cont. 

Branch Line R (p.u.) Line X (p.u.) Branch Line R (p.u.) Line X (p.u.) 

123 1.332 0.193 165 1.776 0.258 
124 1.559 0.986 166 1.776 0.258 
125 1.332 0.193 167 1.776 0.258 
126 1.564 0.988 168 1.776 0.258 
127 1.332 0.193 169 1.776 0.258 
128 1.564 0.989 170 1.776 0.258 
129 1.332 0.193 171 1.776 0.258 
130 1.563 0.988 172 1.776 0.258 
131 1.332 0.193 173 1.776 0.258 
132 6.533 4.129 174 1.776 0.258 
133 1.332 0.193 175 1.776 0.258 
134 1.646 1.040 176 1.776 0.258 
135 1.332 0.193 169 1.776 0.258 
136 1.647 1.041 170 1.776 0.258 
137 1.332 0.193 171 1.776 0.258 
138 1.623 1.026 172 1.776 0.258 
139 1.332 0.193 173 1.776 0.258 
140 0.625 0.395 174 1.776 0.258 
141 1.776 0.258 175 1.776 0.258 
142 1.332 0.193 176 1.776 0.258 
143 1.329 0.840 177 1.776 0.258 
144 1.776 0.258 178 1.570 0.993 
145 1.776 0.258 179 1.332 0.193 
146 1.332 0.193 180 1.574 0.995 
147 1.617 1.022 181 1.332 0.193 
148 1.332 0.193 182 1.572 0.994 
149 1.332 0.193 183 1.332 0.193 
150 1.610 1.018 184 1.332 0.193 
151 1.332 0.193 185 1.831 1.157 
152 1.862 1.177 186 1.776 0.258 
153 0.346 0.219 187 1.776 0.258 
154 0.346 0.219 188 0.346 0.219 
155 1.776 0.258 189 0.346 0.219 
156 1.776 0.258 190 1.776 0.258 
157 1.776 0.258 191 1.776 0.258 
158 1.776 0.258 192 1.776 0.258 
159 1.776 0.258 193 1.776 0.258 
160 1.776 0.258 194 1.776 0.258 
161 1.776 0.258 195 1.776 0.258 
162 1.776 0.258 196 1.776 0.258 
163 1.776 0.258 197 1.776 0.258 
164 1.776 0.258 
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