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Abstract: Motivated by the fact that the real driving NOx emissions (RDE) of conventional
diesel vehicles can exceed the legislation norms by far, a concept for the control of RDE with
a diesel parallel hybrid electric vehicle (HEV) is proposed. By extending the well-known
equivalent consumption minimization strategy (ECMS), the power split degree of freedom
is used to control the NOx emissions and the battery state of charge (SOC) simultaneously.
Through an appropriate formulation of the problem, the feedback control is shown to be
separable into two dependent PI controllers. By hardware-in-the-loop (HIL) experiments,
as well as by simulations, the proposed method is shown to minimize the fuel consumption
while tracking a given reference trajectory for both the NOx emissions and the battery SOC.
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1. Introduction

Light-duty diesel vehicles are known for their low fuel consumption, as compared to gasoline vehicles.
However, due to legislative restrictions, vehicle manufacturers continuously have to make considerable
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efforts to reduce the pollutant emissions of diesel vehicles. Although the legislative limits have been
continuously reduced over the last decade, the real driving emissions, which are the emissions emitted
during every-day driving, can far exceed the legislative limits, even for Euro 6 certified light-duty
vehicles, as shown in several studies [1–5]. One reason is that the homologation of the vehicles is
performed on well-defined, but unrealistic driving cycles. The manufacturers unavoidably focus the
optimization effort on such types of vehicle operating conditions. To reduce the discrepancy between
the certified and the real-world pollutant emissions, the European commission is currently discussing
measures to limit real driving emissions [5].

One option to cope with such a radical change would be to continuously monitor and control the
pollutant emissions by an appropriate exhaust aftertreatment system. Another option is provided by
electric hybridization of the vehicles, which not only offers a reduction of pollutant emissions, but also
a simultaneous reduction of the CO2 emissions. Since hybrid electric vehicles (HEVs) have an additional
degree of freedom for the control of the energy flows in the powertrain, the trade-off between fuel
consumption and pollutant emissions can be further influenced.

Some studies can be found in the literature about the control of pollutant emissions for HEVs.
For example, the authors of [6] propose a real-time rule-based strategy to optimize both fuel economy
and pollutant emissions, taking into account cold-start emissions, by minimizing an overall normalized
impact function. Similar approaches have been presented in [7–11], where an instantaneous optimization
algorithm, with a similar structure to the well-known equivalent consumption minimization strategy
(ECMS) [12,13], is built. In that case, the target is to minimize a weighted sum of multiple factors,
for example fuel consumption and NOx, CO and CO2 emissions, while guaranteeing charge-sustaining
conditions for various driving cycles. The weighting factors between the various components of the
target cost function are constant and considered to be tuning parameters. For a diesel HEV equipped with
a selective catalytic reaction (SCR) system, a noncausal extended ECMS is proposed in [14], including
the minimization of tailpipe emissions, while considering the cold start behavior. A control framework
with three state variables arises from the energy management extended with emissions management;
these are the energy stored in the battery, the SCR catalyst temperature and total NOx tailpipe mass,
resulting in a controller with an unstable co-state, which can be used in a fixed time window only.

Dynamic programming (DP) has also been applied to address the problem of building a supervisory
control system for the fuel and emission reduction. Examples are given in [15,16] for a parallel HEV,
where the gearshift strategy and the engine start/stop decision are optimized along with the torque split
factor and, in [17], considering the power split as the only control input. In both studies, constant
weighting factors for the multiple emission sources have been applied.

A general approach based on optimal control theory is proposed in [18], with a description of several
possible extensions of the basic framework of ECMS. The authors describe how to include different
pollutant components for an HEV, possibly taking into consideration thermal effects and aftertreatment
systems. The authors claim that the solution of such a general problem is not available yet. Emissions
can also be included in map-based ECMS approaches, as suggested in [19]. An experimental validation
of a method based on a constant weighting factor for NOx emissions has been provided in [20] by means
of hardware-in-the-loop (HIL) experiments.
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Other studies focus on the control of transient emissions, especially regarding hybrid powertrains
relying on a diesel combustion engine. An optimal energy management strategy is provided by the
authors of [21] with a DP approach for constant weighting factors related to NOx and particulate
emissions. A key idea for the energy management strategy of a diesel HEV is to use the electric motor
for torque phlegmatization during transients, for example by adopting heuristic methods, as presented
in [22,23], or model-based frameworks, as reported in [24–26].

However, a control strategy that includes online adaptation of the weighting factors for the objective
pollutant emission, to take into account real-world driving conditions and a possible modification of the
emissions target level, has not been demonstrated yet. Therefore, in this paper, an energy management
strategy that allows for the tracking of a specific NOx emission level to respect real driving emission
constraints is presented. Under these conditions, the strategy is constructed to minimize the fuel
consumption while sustaining the battery state of charge (SOC).

The paper is structured as follows: after explaining the vehicle model in detail in Section 2; the energy
management strategy, which takes into account the real driving emissions, is derived in Section 3;
then, Section 4 presents an experimental validation of the method proposed, as well as a simulation case
study that quantifies the fuel savings potential compared to a standard method not accounting for real
driving emissions.

2. Vehicle Model

The vehicle under investigation is a fictitious executive class sedan. The powertrain architecture is of
the pre-transmission parallel type, as illustrated in Figure 1. The powertrain consists of a seven-step
automatic gearbox, a 40 kW electric motor, the power electronics, a 2 kW h battery, a clutch and
a 170 kW diesel engine. For the simulation of the vehicle behavior, only the longitudinal dynamics
of the vehicle are of interest, since the consideration of these dynamics is sufficient for energetic
considerations [27]. The longitudinal dynamics are simulated using a so-called forward approach, in
which the physical causality is respected. By contrast, for the energy management of the powertrain,
a model-based approach is chosen, in which the powertrain behavior is predicted by a so-called backward
approach, where the physical causality is inverted [27].

Figure 1. A hybrid electric vehicle (HEV) architecture considered in this paper:
pre-transmission parallel HEV.

EngineGearbox Motor
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More details on the modeling of the vehicle are given in the following. All the values needed to
parameterize the model are listed in Table 1.

Table 1. Nominal data of the vehicle and of the powertrain components. SOC: state
of charge.

Parameter Symbol Value

Wheel radius rw 0.32 m
Air density ρair 1.24 kg/m3

Effective frontal area cd ·A 0.60 m2

Rolling friction coefficient cr 0.012
Gravitational constant ag 9.81 m/s2

Total vehicle mass mv 1827 kg
Total inertia of the wheels Θw 4.78 kg m2

Inertia of the motor Θm 0.0435 kg m2

Gear ratios ig [10.8, 7.1, 4.7, 3.4, 2.5, 2.0, 1.8]
ηg,0 0.95

Gearbox efficiency parameter ηg,1 0.02 1/(rad/s)
ωg,1 400 rad/s

Nominal motor power - 40 kW
Maximum motor speed ωm,max 628 rad/s
Nominal engine power - 170 kW
Minimum engine speed ωe,min 105 rad/s
Maximum engine speed ωe,max 471 rad/s

Maximum battery capacity Q0 7.64 A h
Open circuit voltage Voc 263 V

Battery internal resistance Ri 0.24 Ω

Minimum battery current Ib,min −166 A
Maximum battery current Ib,max 229 A

Minimum SOC SOCmin 0.20
Maximum SOC SOCmax 0.80

Auxiliary power demand Paux 400 W

2.1. Longitudinal Dynamics

The equation for the longitudinal dynamics of the vehicle is described by [27]:

dv(t)

dt
=

1

m(t)
·
(Tw(t)

rw
− 1

2
ρaircdAv

2(t)− crmvag cos(γ(t))−mvag sin(γ(t))
)

(1)

with:

m(t) = mv +
Θw

r2
w

+
ΘEMi

2
g(t)

r2
w

(2)

where v denotes the vehicle speed; Tw denotes the wheel torque; rw denotes the wheel radius; ρair denotes
the air density; cd denotes the aerodynamic drag coefficient; A denotes the frontal area of the vehicle;
cr denotes the rolling friction coefficient; mv denotes the nominal vehicle weight; Θw and ΘEM denote the
inertia of the four wheels and the electric motor, respectively; ag denotes the gravitational acceleration;
and γ denotes the road slope.
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2.2. Gearbox Model

The rotational speed of the gearbox input shaft,ωg, is given by:

ωg(t) =
v(t)

rw
· ig(t) (3)

where ig is the gear ratio of the gear engaged, g ∈ {1, . . . , 7}. The gear engaged, g, is decided by the
gear decision variable, ug, defined by the energy management. For simplicity, the gearshifts are assumed
to occur instantaneously without any delays.

The torque delivered to the wheels, Tw, is calculated by:

Tw(t) = Tg(t) · ig(t) ·
(
ηg,0 −

ηg,1

ωg,1

·ωg(t)
)sign(Tg(t))

(4)

with Tg being the input torque of the gearbox; and ηg,0,ηg,1,ωg,1 being the parameters to model the
speed-dependent gearbox losses, which account for the increased friction at higher gearbox input
speeds [28]. The values for the efficiency parameters are chosen based on expert knowledge.

The input torque of the gearbox is:

Tg(t) = Tm(t) + uc(t) · Te(t) (5)

where Tm is the motor torque; Te is the engine torque; and uc is the clutch state command determined by
the energy management. The value uc = 1 means that the clutch is closed, and the value uc = 0 means
that the clutch is open. The clutch command is assumed to be realized instantaneously.

2.3. Electric Motor Model

The desired torque for the electric motor, determined by the energy management, is assumed to
be realized instantaneously without any delays. The power of the electric motor, including the power
electronics, is given by a steady-state efficiency map, depicted in Figure 2, so that:

Pm(t) = fm

(
ωm(t), Tm(t)

)
(6)

Figure 2. Efficiency map (in %) of the electric motor, including the inverter losses. The
underlying measurement data were obtained for a 25-kW electric motor. The torque axis
was then scaled linearly with the nominal power [29,30].
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The minimum and maximum torque values for the electric motor, as well as the minimum and
maximum speeds are defined by:

0 ≤ ωm(t) ≤ ωm,max (7)

Tm,min(ωm(t)) ≤ Tm(t) ≤ Tm,max(ωm(t)) (8)

2.4. Engine Model

The desired torque of the engine is determined by the energy management. However, the rate of
change of the engine torque is limited by 100 N m/s in order to prevent the formation of excessive soot
and NOx emissions during transients [23,31].

The rotational speed of the engine,ωe, is defined by (for brevity, the notation of time is omitted):

ωe =


0 if ue = uc = 0,

ωe,idle if (ue = 1 and uc = 0) or if (ue = uc = 1 andωg < ωe,idle)

ωg if (ue = uc = 1 andωg ≥ ωe,idle) or if (ue = 0 and uc = 1)

(9)

where ue is the engine on/off command, with 0 standing for “off” and 1 standing for “on”; and uc is the
clutch state command, with 0 standing for “open” and 1 standing for “closed”.

The mass flow rate of the fuel consumed,
∗
mfuel, and NOx emissions,

∗
mNOx , are calculated using

measured steady-state maps in the form of:
∗
mfuel (t) = fe,fuel

(
ωe(t), Te(t)

)
(10)

∗
mNOx (t) = fe,NOx

(
ωe(t), Te(t)

)
(11)

The map for the fuel efficiency and the map for the NOx emissions are shown in Figure 3.

Figure 3. Experimental data for the fuel efficiency and the NOx emissions of the diesel
engine. The torque is artificially limited at 300 N m, due to the test bench limitations, while
the actual maximum torque is 540 N m. The data covers a speed range of 1000–3000 rpm;
higher speeds are not considered. (a) Measured normalized fuel efficiency of the diesel
engine; and (b) measured normalized NOx emissions of the diesel engine (g/kW h

g/kW h ).
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At all times, the engine is only allowed to operate within its limits, defined by maximum torque and
speed range conditions, i.e.,

ωe,min(t) ≤ ωe(t) ≤ ωe,max (12)

0 ≤ Te(t) ≤ Te(ωe(t)) (13)

2.5. Battery Model

The battery is modeled as an equivalent circuit with a constant open-circuit voltage, Voc, in series with
a constant internal resistance, Ri [27]. Since the battery is assumed to be of the LiFePO4 type [32,33],
the assumption of a constant open-circuit voltage is a valid approximation for the typical operating range
of the battery [34–36].

The equation of the dynamics of the battery SOC, ξ, is given by:

dξ(t)

dt
= −Ib(t)

Q0

(14)

with:

Ib(t) =
Voc(ξ(t))−

√
V 2

oc(ξ(t))− 4Ri(Pm(t) + Paux)

2 ·Ri(ξ(t))
(15)

where Ib is the battery current, and Paux is a constant power consumed by electric auxiliary units.
Although in this paper, Voc and R are assumed to be constant, the notation for the dependency on the SOC
is preserved to keep the following derivation of the causal controller more general.

The battery current and the battery SOC are constrained to:

Ib,min ≤ Ib(t) ≤ Ib,max (16)

ξmin ≤ ξ(t) ≤ ξmax (17)

respectively.

2.6. Driver

The driver model consists of a proportional-integral (PI) controller. The output of the model is a
preliminary throttle position, θ̃, calculated by:

θ̃(t) = kp,D · (vref(t)− v(t)) +
1

Ti,D
·
∫ t

0

(vref(τ)− v(τ)) dτ (18)

with kp,D and TI,D being the proportional and integral controller parameters with the manually tuned
values of 0.9 and 11 s, respectively. The final throttle position, θ, is then obtained by saturating the
preliminary throttle signal as follows:

θ(t) =


100 if θ̃(t) > 100

θ̃ if − 100 ≤ θ̃(t) ≤ 100

−100 if θ̃(t) < −100

(19)
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Due to the saturation and the integral control part of the driver model, an anti-windup scheme
is implemented [37].

The mapping of the throttle position, θ, to a desired torque command, Treq, is designed, such that:

• θ = 100% corresponds to the maximum possible traction torque provided by both the engine and
the motor at the current vehicle speed;

• θ = 0% corresponds to a zero torque request; and
• θ = −100% corresponds to the maximum possible brake torque.

The intermediate torque commands are obtained by linear interpolation of the throttle position.

2.7. Energy Management

The energy management defines the set points for the gear number to be engaged, ug, the clutch
open/closed state, uc, the engine on/off state, ue, and the torque split, uts, between the engine and
the motor.

The gear command, ug, is determined by a lookup table of the form:

ug(t) = fg

(
v(t), θ(t)

)
(20)

as shown in Figure 4. The figure shows the upshift and downshift lines depending on the vehicle
velocity, v, and the throttle position, θ. For comfort reasons, after every gear change, the new gear
has to remain in its state for at least 3 s before another gear can be engaged. This time-based hysteresis
can only be overruled in the case the throttle is fully depressed.

Figure 4. Heuristic gearshift table.
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The clutch command, uc, is defined as follows: if the engine is off, the clutch is assumed to be open.
If the engine is on and the desired engine torque is larger than zero, the clutch is closed. Otherwise, if the
engine is on and the desired engine torque is equal to zero, the clutch is open, and the engine is assumed
to be running idle.
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The torque split, uts, is defined as the ratio of the motor torque and the requested torque from
the driver:

uts =
Tm

Treq
(21)

Then, the torques of the motor and the engine are obtained by:

Tm = Treq · uts (22)

Te = Treq · (1− uts) (23)

Recharging during standstill is not considered here; however, this feature could be implemented easily.
The commands for the engine on/off, ue, and the torque split, uts, are determined by an online

optimization method commonly known as the ECMS [12,13,34]. To account for the diesel exhaust
emissions, the standard approach has been extended, as shown in Section 3 below.

3. Controller

This section presents a detailed description of the controller developed to optimize the fuel
consumption of a diesel hybrid vehicle under a constraint for the NOx emissions. The description of
the control system is given in Section 3.1, while the solution of the control problem, derived by means
of optimal control theory, is provided in Section 3.2. Then, Section 3.3 proposes a derivation of a
causal online controller. To implement such a controller, the dependency between the co-states must be
identified, which is illustrated in Section 3.6. The final structure of the controller is shown in Section 3.7,
and the assignment of the corresponding reference signal trajectories is described in Section 3.8.

3.1. System Description

The hybrid vehicle system can be described by a system of first-order ordinary differential equations:

d
dt
x(t) = f(x(t), u(t)) (24)

where x is the state vector and u the control input vector. The state and the control input vector are:

x(t) =

[
ξ(t)

mNOx(t)

]
, u(t) =

[
ue(t)

uts(t)

]
(25)

where ξ is the battery SOC, mNOx the cumulated NOx emissions, ue the engine on/off command and
uts the torque split command, as previously introduced in Section 2.7. The control input for the gear
number, ug, is decided independently of x and u, and the control input for the clutch state, uc, is defined
by a known function of ue. Therefore, ug and uc are not subject to optimization and, hence, not included
in u.

Notice that the vehicle speed is not considered to be a state variable, because the speed is assumed
to be perfectly tracked. Based on the actual vehicle speed and the driver’s torque request, the required
torques and the shaft speeds can be determined using a backwards calculation [27].
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Using these definitions, the model for the system dynamics is derived based on the description
presented in the previous section. The state dynamics equations become:

d
dt
x(t) = f(x(t), u(t)) =

[
d
dtξ(x(t), u(t))

d
dtmNOx(x(t), u(t))

]
=

[
− Ib(ξ(t),u(t))

Q0∗
mNOx (u(t))

]
(26)

The choice for the integral of the emissions as a state variable has an advantage compared to the
specific emission level, as defined in legislation as:

mNOx =
mNOx

d
(27)

with d being the distance driven. The derivative of the latter expression would be:

d
dt
mNOx =

d
dtmNOx · d−mNOx · v

d2

=
1

d
·
( d

dt
mNOx −mNOx · v

)
(28)

with v being the vehicle speed. The derivative of the absolute cumulated emissions, mNOx , is:

d
dt
mNOx =

∗
mNOx (29)

where
∗
mNOx denotes the NOx mass flow rate. The following properties hold:

∂
(

d
dt
mNOx

)
∂mNOx

= −v

d
6= 0 (30)

∂
(

d
dt
mNOx

)
∂mNOx

= 0 (31)

These properties play a role in the following derivation.

3.2. Solution Using Pontragin’s Minimum Principle (PMP)

According to the general methodology introduced in [38], the problem can be defined as an optimal
control problem with partially constrained final states. The problem is formulated as:

min
u

{
J(u) =

∫ T

0

∗
mfuel (u(t)) dt

}
(32)

such that:

x(0) = x0 (33)
d
dt
x(t) = f(x(t), u(t)) for all t ∈ [0, T ] (34)

x(T ) ∈ S (35)

The closed final-time set, S, describes the constraints for the final state vector: mNOx has an upper
constraint, since it has to be below a certain emission level, while ξ has to satisfy the charge-sustaining
condition for the battery.
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The optimal solution is found using Pontryagin’s minimum principle (PMP) [38,39]. By defining the
Hamiltonian function as:

H(x(t), u(t), λ(t)) =
∗
mfuel (u(t))− λT (t) · f(x(t), u(t)) (36)

with λ denoting the co-state vector, the optimal solution (denoted by o) must satisfy the
following conditions:

x(0) = x0 (37)
d
dt
xo(t) = ∇λH|o = f(xo(t), uo(t)) (38)

d
dt
λo(t) = −∇xH|o

= −∇x
∗
mfuel (uo(t))−

[∂f
∂x

(xo(t), uo(t))
]T
· λo(t) (39)

The co-state vector must stay within the normal cone, T ∗, of the target set, S, at the final time
for xo(T ):

λo(T ) ∈ T ∗(S, xo(T )) (40)

The Hamiltonian of the system must be minimized for all times with respect to all admissible inputs u,
such that:

H(xo(t), uo(t), λo(t)) ≤ H(x(t), u(t), λ(t)) (41)

The dynamics of the co-states can be rewritten, separating the battery SOC and the cumulated NOx

co-states, as follows (where the dependencies on the inputs and the states are omitted):[
d
dt
λoξ(t)

d
dt
λoNOx

(t)

]
=

 −∂
∗
mfuel
∂ξ
−
[
∂f
∂ξ

]T
· λo(t)

− ∂
∗
mfuel

∂mNOx
−
[

∂f
∂mNOx

]T
· λo(t)

 (42)

Since the fuel mass flow and the NOx emissions do not explicitly depend on the battery SOC,
the equations hold:

∂
∗
mfuel (u(t))

∂ξ
= 0 (43)

∂f(x(t), u(t))

∂ξ
=

[
− ∂

∂ξ
Ib(ξ(t),u(t)

Q0

0

]
(44)

Moreover, since neither the system dynamics nor the fuel mass flow depend explicitly on the cumulated
NOx emissions, the following expressions hold:

∂
∗
mfuel (u(t))

∂mNOx

= 0 (45)

∂f(x(t), u(t))

∂mNOx

=

[
0

0

]
(46)
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Combining Equations (43)–(46) with Equation (42) leads to the following rewritten expression for
the co-states dynamics: [

d
dtλ

o
ξ(t)

d
dtλ

o
NOx

(t)

]
=

[
∂
∂ξ

Ib(ξ(t),u(t)
Q0

· λξ(t)
0

]
(47)

The importance of the choice of cumulated emissions is here demonstrated, since the term, ∂f
∂mNOx

,
would not have vanished with the choice of specific NOx emissions as a state variable Equation (30).
Further, considering Equation (47) and that λoNOx

(T ) ≥ 0, we have that:

λoNOx
= const. = λNOx ≥ 0 (48)

The Hamiltonian in Equation (36) can be rewritten, having defined λNOx:

H(·) =
∗
mfuel (u(t))− λT (t) · f(x(t), u(t))

=
∗
mfuel (u(t)) + λNOx·

∗
mNOx (u(t))− λξ(t) ·

Ib(ξ(t), u(t))

Q0

=: H̃(·) (49)

The latter new expression for the Hamiltonian in Equation (49) leads to a new Hamiltonian, H̃ ,
for the system for the minimization of a weighted sum of fuel and emissions. This leads to a new
problem definition:

min
u

{
J̃(u) =

∫ T

0

( ∗
mfuel (u(t)) + λNOx·

∗
mNOx (u(t))

)
dt
}

(50)

such that:

ξ(0) = ξ0 (51)

d

dt
ξ(t) = −Ib(ξ(t), u(t))

Q0

for all t ∈ [0, T ] (52)

ξ(T ) = ξ0 (53)

For the reformulated optimization problem, λNOx is not a co-state but a weighting factor
and, therefore, a given parameter. It quantifies the fuel equivalent of a given amount of NOx

emissions, in a new Lagrangian reformulation. For this reason, the authors of [40] have defined
the Equations (50)–(53) equivalent emissions minimization strategy (EEMS). The equivalence of
the minimization Equations (50)–(53) to the previous Equations (32)–(35) is guaranteed, since the
eliminated state does not appear in any of the other equations, and it is introduced only to enforce the
limit on cumulated emissions with a final-state constraint. As a consequence, if the constant equivalence
factor is known, the same optimal results will be achieved for the redefined problem. As a matter of fact,
such value is not known a priori. For this reason, a causal controller based on the online calculation of
the equivalence factor is proposed in the following section.
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3.3. Emissions and Charge-Sustaining Causal Control

The objective of this section is to present a feedback controller derived for online control of the
cumulative NOx emissions. Before deriving the proposed causal control framework, the cost functional

in Equation (50) is conveniently rearranged by introducing the normalized NOx mass flow rate,
∗̃
mNOx:

∗̃
mNOx(t) =

∗
mNOx (t) ·

∗
mNOx,MAX

∗
mfuelMAX

(54)

such that:

J(u) =

∫ T

0

( ∗
mfuel (u(t)) + λNOx ·

∗̃
mNOx(u(t))

)
dt (55)

where the normalization takes place using the maximum flow rates of fuel and NOx for the given
experimental maps of the combustion engine. By means of the rewritten cost functional in Equation (55),
the argument of the object function and the corresponding Hamiltonian are expressed by homogenous
measuring units.

To achieve the goal of generating a charge and emissions sustaining strategy, two terms can be added
to Equation (55) in order to penalize deviations from reference values for SOC, ξref, and deviations from
the reference values for the normalized cumulated emission, m̃NOx,ref, thus obtaining a new formulation
for the cost functional:

Ĵ(u) =

∫ T

0

L̂(x(t), u(t)) dt (56)

=

∫ T

0

(
∗
mfuel (u(t)) + µ ·

(
m̃NOx,ref(t)− m̃NOx(t)

∆m̃NOx,norm

)2q

+ β ·
(
ξref (t)− ξ(t)

∆ξnorm

)2p
)
dt (57)

The extended cost Equation (57) leads to the extended Hamiltonian:

Ĥ(u) =
∗
mfuel (u) + µ ·

(
m̃NOx,ref(t)− m̃NOx(t)

∆m̃NOx,norm

)2q

+ β ·
(
ξref(t)− ξ(t)

∆ξnorm

)2p

+ λT · f(x, u) (58)

which must be minimized by the optimal input sequence:

uo = argmin
(
Ĥ(u)

)
(59)

Since the additional terms of the extended Hamiltonian do not explicitly depend on the control inputs,
they will be minimized by the optimal policy, uo, as well.

To calculate the co-state dynamics, λ, the Hamilton–Jacobi–Bellman equations provide the following
expression [39] for the optimal co-states vector, λo:

λo(x, t) =
∂Ĉo(x, t)

∂x
(60)

where Ĉo(x, t) denotes the optimal cost-to-go function associated with the cost function, Ĵ(u).
The optimal cost-to-go function for the state, x, at the time, t, is given by:

Ĉo(x, t) = min
u

{∫ T

t

L̂(x(τ), u(τ))dτ |x(t) = x

}
(61)
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Since the optimal cost-to-go is not known a priori in a causal setting, the optimal cost-to-go function
is estimated by a sub-optimal time-invariant function, formed by the sum of different independent
cost indices, as follows [41]:

Ĉ(x) = Ĉ(ξ, m̃NOx) =

= Ĉf1,NOx(m̃NOx) + Ĉf1,ξ(ξ, m̃NOx) + C̃f2 + C̃ξ(ξ) + C̃m̃NOx
(m̃NOx) (62)

The five terms are explained in the following:

• Ĉf1,ξ(ξ, m̃NOx): the additional fuel consumption caused by compensating for the current
SOC deviation;

• Ĉf1,NOx(m̃NOx): the additional fuel consumption caused by bringing the cumulated NOx close to
the reference level;

• C̃f2: a fuel consumption that is supposed to be independent of both the current SOC and
the current emission level, needed to drive the rest of the driving mission with correct
reference values;

• C̃ξ(ξ): denotes the penalty for SOC deviations from the reference value;
• C̃m̃NOx

(m̃NOx): denotes the penalty of m̃NOx deviations from the reference value.

3.3.1. Cost of Sustaining the Battery SOC Ĉf1,ξ(ξ, m̃NOx)

Following the approach described in [41,42], the fuel energy used to compensate for the SOC
deviations from the target value can be approximated by first estimating the energy stored in the battery
at a certain ξ(t) with respect to the reference, ξref (t), as:

EBT,∆ξ = Q0

∫ ξref(t)

ξ(t)

Voc(ξ̃) dξ̃ (63)

Since in the future, this energy must be compensated for using the thermal path, a certain amount
of fuel will be saved/consumed to discharge/charge the battery. Such a quantity will clearly depend on
the future efficiencies of the engine and the electric path, which, in turn, depend on the future engine
operating points. Moreover, the used engine operating points will also depend on the cumulated NOx

emissions, since a second controller acts in parallel, modifying the choice of control inputs to track the
desired emissions level. As a consequence, the average future charging/discharging overall efficiency,
ηc, is a function of m̃NOx . The resulting cost to sustain the battery charge is:

Ĉf1,ξ(ξ, m̃NOx) ≈ EBT,∆ξ

ηc(m̃NOx) ·Hl

=
Q0

ηc(m̃NOx) ·Hl

·
∫ ξref (t)

ξ(t)

Voc(ξ̃) dξ̃ (64)

where Hl represents the lower heating value of the fuel.

3.3.2. Cost of Saving NOx Emissions Ĉf1,NOx(m̃NOx)

An expression for the additional fuel cost of saving NOx emissions can be found under the hypothesis
that the battery SOC, ξ, has a much smaller time constant than the time horizon considered to bring
the cumulated emissions to the reference value (e.g., minutes). If this holds, and the parameter,
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KFCN, identifies the relationship between fuel consumption and NOx emissions for the given engine,
the associated cost-to-go can be expressed as:

Ĉf1,NOx(m̃NOx) = ∆mfuel = KFCN ·∆m̃NOx = KFCN · (m̃NOx − m̃NOx,ref) (65)

3.3.3. Cost of the Emissions Deviation Penalty C̃m̃NOx
(m̃NOx)

The second term in Equation (57) stands for the costs for a future deviation of the actual NOx mass
from its reference value. Under the hypothesis that the NOx controller is able to diminish the error
between the actual and the reference value linearly with time, the cost of the emission penalty in the
future can be estimated. The future evolution of the error between the actual and the reference NOx

emissions at time τ ∈ [0, Th] is therefore calculated as:

m̃NOx,ref-fut(τ)− m̃NOx−fut(τ) = (m̃NOx,ref (t)− m̃NOx(t)) ·
(

1− τ

Th

)
(66)

The cost for the penalty is obtained by integrating this trajectory as follows:

C̃m̃NOx
(m̃NOx) =

∫ Th

0

µ ·
(
m̃NOx,ref-fut(τ)− m̃NOx-fut(τ)

∆m̃NOx,norm

)2q

dτ

=
µ · Th

2q + 1
·
(
m̃NOx,ref(t)− m̃NOx(t)

∆m̃NOx,norm

)2q

(67)

3.3.4. Cost of the SOC Deviation Penalty C̃ξ(ξ)

Similarly to the treatise in Section 3.3.3, the costs of the third term in Equation (57) can be expressed
by an equation equivalent to Equation (67). Here, the error between the actual SOC and the reference
SOC is assumed to linearly diminish within the time, Tk. This leads to the following cost for the
SOC deviations:

C̃ξ(ξ) =

∫ Tk

0

β ·
(
ξref-fut(τ)− ξfut(τ)

∆ξnorm

)2p

dτ

=
β · Tk

2p + 1
·
(
ξref(t)− ξ(t)

∆ξnorm

)2p

(68)

3.3.5. Total Cost and Equivalence Factors

The total sub-optimal cost-to-go Equation (62) can now be expressed using Equations (67) and (68) as:

Ĉ(x) = Ĉ(ξ, m̃NOx) =

=
Q0

ηc(m̃NOx) ·Hl

·
∫ ξref(t)

ξ(t)

Voc(ξ̃) dξ̃+ KFCN · (m̃NOx(t)− m̃NOx,ref(t)) +

+ C̃f2 +
β · Tk

2p + 1
·
(
ξref(t)− ξ(t)

∆ξnorm

)2p

+
µ · Th

2q + 1
·
(
m̃NOx,ref(t)− m̃NOx(t)

∆m̃NOx,norm

)2q

(69)
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Accordingly, the sub-optimal cost-to-go function is time-invariant, and so will be the sub-optimal
co-states, which are given by:

λ(x) =

[
λξ(x)

λNOx(x)

]
=

∂Ĉ(x)

∂x
=

[
∂
∂ξ
Ĉ(x)

∂
∂m̃NOx

Ĉ(x)

]
(70)

The partial derivatives of Equation (69) generate the following expressions for the two co-state
Equation (70):

λξ(x) =
∂Ĉ(x)

∂ξ
= − Q0 · Voc(ξ)

ηc(m̃NOx) ·Hl

− β̃ · (ξref(t)− ξ(t))2p−1 (71)

λNOx(x) =
∂Ĉ(x)

∂m̃NOx

= KFCN +
Q0

Hl

·
∫ ξref (t)

ξ(t)

Voc(ξ̃) dξ̃ · ∂

∂m̃NOx

(
1

ηc(m̃NOx)

)
+

+ µ̃ · (m̃NOx,ref (t)− m̃NOx(t))2q−1 (72)

where the following substitutions are adopted:

µ̃ =
−2qµTk

(2q + 1) ·∆m̃2q
NOx,norm

(73)

β̃ =
2pβTh

(2p + 1) ·∆ξ2p
norm

(74)

By analyzing Equations (71) and (72), the mutual relationship between the co-states is evident.
In more detail, the first two terms of Equation (72) are formed by a theoretically constant term, KFCN,
that instead depends on the operating points occurring in the period considered and another term that
we suppose to be negligible, under the hypothesis that the dynamics of the average charging/discharging
efficiency does not depend directly on the cumulated emissions. The simplified approach followed in
this section is to replace the constant equivalence terms by a factor, λNOx,0, and to add an integrator,
which is used to online adapt it during operation, to respect the average emissions target:

λNOx(m̃NOx) = λNOx,0 + µ̃ · (m̃NOx,ref(t)− m̃NOx(t))2q−1 +

∫ t

0

m̃NOx,ref(τ)− m̃NOx(τ)

Ti,NOx

dτ (75)

Equation (75) represents a PI controller for the cumulative emissions level, which in online
applications, will be measured by means of a dedicated sensor. The term, λNOx , can be directly
implemented in the cost functional in Equation (55) that solves the equivalent Equations (50)–(53).
Its corresponding Hamiltonian will be expressed by:

H(x, u, λ) =

[
∗
mfuel (u) + λNOx(m̃NOx) · ∗̃mNOx(u)− λξ(ξ, m̃NOx) · Ib(ξ, u)

Q0

]
(76)

Equation (76) can be be expressed in terms of power by multiplying the whole Hamiltonian with the
lower heating value, Hl, of the fuel to yield:

H(x, u, λ) =

[
Pfuel(u) + λNOx(m̃NOx) · P̃NOx(u)−Hl · λξ(ξ, m̃NOx) · Ib(ξ, u)

Q0

]
=
[
Pfuel(u) + λNOx(m̃NOx) · P̃NOx(u) + s∗(ξ, m̃NOx) · Pb(ξ, u)

]
(77)
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with Pb representing the inner electrochemical battery power and the electrical energy equivalence
factor [34]:

s∗(ξ, m̃NOx) = −λξ(ξ, m̃NOx) ·Hl

Voc(ξ) ·Q0

(78)

The combination of Equations (71) and (78) leads to a reformulated expression for the electrical
energy equivalence factor, s∗:

s∗(ξ, m̃NOx) =
1

ηc(m̃NOx)
+

Hl

Voc(ξ) ·Q0

· β̃ · (ξref(t)− ξ(t))2p−1

= s∗0(m̃NOx , ξ) + β̃∗ · (ξref(t)− ξ(t))2p−1 (79)

Since the average conversion efficiency, ηc, will vary depending on the operating points of the
components involved (engine, electric motor, battery) and the operating points will vary as a function of
the driving cycle and of the NOx feedback controller already introduced, s∗0 has to be adjusted during
operation. The first adjustment depends directly on the actual normalized cumulative emission, m̃NOx ,
due to the action of the controller that online adapts λNOx , which will be clarified in the next section.
The second adaptation is achieved using an integrator with integration time Ti,ξ as follows:

s∗(ξ, m̃NOx) = s∗0 (λNOx(m̃NOx)) + β̃∗ · (ξref(t)− ξ(t))2p−1 +

∫ t

0

ξref(τ)− ξ(τ)

Ti,ξ

dτ (80)

Such a PI controller for the electrical energy equivalence factor was also proposed by the authors
of [42,43].

Equations (75) and (80) represent the structure of the desired online causal emission and the battery
charge controller. It is formed by two feedback PI controllers, linked together by a relationship between
the constant values of the co-states, s∗0 (λNOx(m̃NOx)). Since both PI controller outputs can be saturated,
the controllers are extended with an anti-windup scheme [37,44].

The final structure of the controller is presented in Section 3.7. Since the controller is able to control
the real driving NOx emissions (RDE) and since it is based on the ECMS, the controller is referred to as
the RDE-ECMS.

3.4. Normalization of the Emissions Co-State

By normalizing the Hamiltonian function in Equation (77) by dividing H(.) by (λNOx + 1), the
co-state, λNOx , is turned into a weighting factor, αNOx , to yield:

H̊(x, u, λ) =
1

(λNOx + 1)
·
[
Pfuel(u) + λNOx · P̃NOx(u) + s∗0(λNOx) · Pb(ξ, u)

]
=

1

λNOx + 1
· Pfuel(u) +

λNOx

λNOx + 1
· P̃NOx(u) +

s∗0(λNOx)

λNOx + 1
· Pb(ξ, u)

= αNOx · Pfuel(u) + (1− αNOx) · P̃NOx(u) + s0(αNOx) · Pb(ξ, u) (81)
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The introduction of the reformulated weighting factor, αNOx , for NOx emissions leads to the following
possible cases:

αNOx(t) =


0 NOx optimal

0 < αNOx(t) < 1 NOx-fuel tradeoff

1 fuel optimal

(82)

The proportional gains of the PI controllers then become:

kp,ξ =
β̃∗

λNOx + 1
(83)

kp,NOx =
µ̃

λNOx + 1
(84)

3.5. Preventing Frequent Engine Starts and Stops

To prevent excessively frequent engine starts and stops that can arise due to the application of optimal
control-based methods [12,13], a penalty, δ, for changing the engine on/off state is introduced [45,46]:

H(x, u, λ) =αNOx · Pfuel(u) + (1− αNOx) · P̃NOx(u) + s0(αNOx) · Pb(ξ, u) + δ · Ie(x, u) (85)

The function, Ie, denotes an indicator function detecting a change request for the engine on/off state.
If a change is requested, the indicator function is one and zero otherwise. By manual tuning, a value
for the penalty, δ, of 0.1 × 10−3 kg × 43 MJ/kg proved to yield a reasonable performance. However,
a penalty alone cannot ensure a minimum engine on/off dwell time, which is desired for comfort and
emissions considerations.

Therefore, an additional heuristic engine on/off comfort function is implemented similarly to the one
presented in [47]. In this comfort function, the desired engine on/off change request signal from the
extended ECMS is not realized instantaneously. Instead, it has to remain in the same state, either on or
off, for at least 1 s until it is transferred to the next level of a series of checks. At the next level, an engine
on/off change request is only realized if the previously realized engine on/off state has remained for at
least 5 s in its state. As such, the engine is either on or off for at least 5 s. This hysteresis can only be
overruled if the throttle is fully depressed.

Due to these measures, the average number of engine starts and stops, on the four here considered
driving cycles, could on average be reduced to a reasonable amount of 2.1 starts per minute compared to
4.6 starts per minute without any measure to prevent frequent starts and stops. The loss in fuel economy
due to this comfort function amounts on average to 3.8% compared to a theoretical value for the fuel
consumption obtained without any comfort function. The minimum engine on/off dwell time amounts
to 5 s in almost any case for the driving scenarios considered.

3.6. Equivalence Factors Dependency Identification

The goal of this section is to describe the methodology applied to identify the dependency of s0

on αNOx . The key idea is to apply an optimal control method to the optimization problem described by
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the Hamiltonian function in Equation (85), such as, for example, DP or PMP with constant values for
the weighting factors, αNOx and s0. In this case, PMP is adopted, since it is more suitable for the present
application of a forward-facing vehicle model, including many input and state variables. This procedure
is applied for several different values of αNOx , in order to identify, for each value, the corresponding
unique constant equivalence factor, s0, that ensures a charge sustaining condition.

The methodology is applied to various driving scenarios, in this case to the four well-known
driving cycles, New European Driving Cycle (NEDC), Federal Test Procedure 75 (FTP-75), Worldwide
Harmonized Light Vehicles Test Procedure (WLTP) and California Unified Cycle (LA92). The
simulation results of the identification procedure are depicted in Figure 5a. The relationship between
αNOx and s0 is almost linear. However, a linear fit can lead to s0-values, which yield considerable
deviations of the final SOC when simulating the vehicle on certain driving cycles without feedback. A
quadratic fit, as indicated by the black dashed line, turned out to be more adequate for generating a
unique relationship between the equivalence factors for the driving cycles considered.

Figure 5b shows the trade-off between fuel consumption and NOx emissions, using charge-sustaining
s0-values for each αNOx ∈ {0, 0.25, 0.5, 0.75, 1}. For each driving cycle, the corresponding curve
represents the optimal trade-off for the approach presented using Equation (85). Any causal method
based on Equation (85) cannot yield results that are to the left or below the corresponding trade-off for a
specific driving cycle.

Figure 5. Relationship between the equivalence factors and the trade-off between the fuel
consumption and NOx emissions simulated for the New European Driving Cycle (NEDC),
Federal Test Procedure 75 (FTP-75), and California Unified Cycle (LA92) driving cycles:
(a) relationship between the equivalence factors, αNOx and s0; and (b) trade-off between the
fuel consumption and NOx emissions as a function of αNOx .
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3.7. Controller Structure

Based on the mathematical derivation of the controller presented in the previous sections, the desired
controller, to be tested in simulation and experimental tests in the following sections, is illustrated
in Figure 6.
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Figure 6. Controller structure.
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3.8. Calculation of SOC and mNOx Reference Trajectories

The two PI controllers of Figure 6 require a proper definition of the reference trajectories for the
respective controlled variables. The reference value for the SOC, ξref(t), could simply be a constant
value representing the desired final SOC, which also coincides with the initial value, ξ0, to enforce
a charge-sustaining constraint. Alternatively, the reference value can take into account that the current
kinetic and potential energy of the vehicle can be recuperated in the future and stored as electrical energy
with certain efficiencies, ηc,K, ηc,P, resulting in the following expression [48,49]:

ξref(t) = ξ0 −
(
ηc,K ·

1
2
m(t) · v2(t)

Q0Voc(ξ0)
+ ηc,P ·

m(t) · g · (h(t)− h0)

Q0Voc(ξ0)

)
(86)

where h(t) − h0 is the height difference between the current altitude and some reference altitude. The
numerical values for ηc,K and ηc,P are both 0.65, which were obtained by manual tuning.

The reference cumulative emissions can be computed in a simple way by defining a specific emission
level, mNOx , Equation (27) expressed in units of mg/km:

mNOx,ref (t) =

∫ t

0

mNOx · v(τ) dτ (87)

The value for mNOx can reflect a potential limit imposed by legislation. However, since the controller
is purely causal, the controller cannot guarantee to keep the NOx emissions below the limit. Therefore,
a value for mNOx should be chosen that is below the actual limit value issued, for example, by legislation.

Further, Equation (86) can easily be extended to account for the characteristics of plug-in HEVs.
In this case, the constant, ξ0, can be replaced by a driving distance-dependent reference trajectory,
as proposed by the authors of [50]. Another possibility for both charge-sustaining and plug-in HEVs
is to use predictive information to calculate a reference trajectory for the SOC [42,51], as well as
for the NOx emissions. Even further, predictive methods could be applied to directly optimize the
Equations (32)–(35). However, the application of these ideas to the problem at hand is left for
future research.
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4. Results

First, an experimental validation of the models and of the methodology, as presented in
Sections 2 and 3, is shown. Then, a case study is presented in which the benefit of using an RDE-ECMS
compared to an ECMS with a constant emission-related equivalence factor, αNOx , is analyzed.

4.1. Experimental Validation

The goal of this subsection is first to show that the RDE-ECMS presented in Section 3 works also
in practice, and second, that the quasi-static modeling for the fuel consumption and the NOx emissions
is sufficient.

4.1.1. Experimental Setup

For the experimental validation of the RDE-ECMS, the method presented in Section 3 was applied
both in simulation and in HIL experiments. In the HIL experiments, only the engine was used in real
hardware. The longitudinal dynamics, as well as the vehicle components were simulated on a computer.
This setup allowed for the measurement of the real fuel consumption and the real NOx emissions without
requiring the physical presence of the entire vehicle. For more details on HIL experiments, interested
readers are referred to the literature [52–54].

In the HIL experiments here, the desired torque command, which is calculated by the energy
management controller, is sent to the electronic control unit (ECU) of the engine, while the desired
engine speed command is sent to the dynamometer of the engine test bench. The NOx emissions are
measured using a VDO/NGK UniNOx sensor manufactured by Continental AG, Hanover, Germany.
This sensor is likely to be employed also in real vehicles, due its low price and due to its ability to
additionally measure the air-to-fuel ratio. The fuel consumption is taken by the ECU-internal estimation.

4.1.2. Experimental Results on the WLTP

We used the following setup to compare the simulation results to the results obtained with the
HIL experiments:

• driving cycle: WLTP (Class 3 Cycle);
• NOx reference signal: as presented in Equation (87) with mNOx = 1;
• SOC reference signal: 60% plus a correction as shown in Equation (86);
• initial condition for the emission-specific equivalence factor αNOx(0) = 0;
• controller parameters kp,ξ = 2, Ti,ξ = 480, p = 1, kp,NOx = 0.1, Ti,NOx = 75,000, q = 1, for which

the values were obtained by an appropriate optimization explained in the simulation case study in
Section 4.2.

Figure 7 shows the vehicle speed, the battery SOC, the normalized specific NOx emissions, the normalized
specific fuel consumption and the equivalence factors, αNOx and s, for both the NOx emission and the
battery power.
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Figure 7. Comparison of results obtained with the simulation and with the
hardware-in-the-loop (HIL) experiment on three repetitions of the Worldwide Harmonized
Light Vehicles Test Procedure (WLTP).
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4.1.3. Comparison of the Simulation Results to the HIL Experiments

As can be seen from the figure, the vehicle speed trajectories of the simulation results and the HIL
results are identical. The SOC trajectories of the simulation and the HIL results are similar; both are
charge-sustaining at around the same SOC reference level. Furthermore, the NOx trajectories of both are
very similar; after an initial transient phase, the trajectories become more stable, and they approach the
desired reference level. A similar behavior is observed for the specific fuel consumption that, in addition,
exhibits a visible offset that is explained below. Further, the dynamics of the equivalence factor, αNOx ,
are also similar for both the simulation and the HIL experiment. They both start from a value of zero
and converge towards a value of one until the specific NOx emissions approach the reference level. Due
to the highway part, which requires the engine to be used a lot, the equivalence factor, αNOx , is reduced
to save NOx emissions. In the subsequent city driving part, αNOx again approaches a value of one until
the next highway part, where the value of αNOx is reduced once more. Furthermore, the trajectories for
the equivalence factor, s, are close to each other. The preliminary conclusion from the comparison of
the simulation results to the experimental results is that in practice, the RDE-ECMS works the same as
in the simulation.
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However, as can be seen from the figure, the RDE-ECMS cannot guarantee maintaining the NOx

emissions below the reference level since: (i) the strategy is purely causal; and (ii) the reference level
can be too low for the controller to have a sufficient influence on the control action. Therefore, the
reference trajectory has to be designed carefully.

The offset of the trajectories of the simulation and the HIL results is a consequence of some of
the neglected dynamics in the engine model of the simulation. For example, the thermal dynamics are
not considered in the simulation, although in practice, they can have an influence on the formation of
pollutant emissions. In fact, such effects influence the behavior of the SOC and the NOx control, such
that the trajectories of the SOC, NOx emissions, etc., become different for the results obtained with
the simulation and the experiment. However, the offset between the trajectories is not a direct measure
to quantify the modeling errors, because the trajectories show the actual, “uncorrected” emissions and
the actual, “uncorrected” fuel consumption. For example, an offset of 5% in the trajectories for the fuel
consumption does not mean that the true fuel consumption is 5% different, since there is also a certain
offset in the SOC trajectories. Typically, a higher SOC means a also higher fuel consumption and also
higher NOx emissions. For a fair comparison, the equivalent NOx emissions and the equivalent fuel
consumption have to be calculated.

To make a fair comparison between the simulation and the experimental results, the NOx emissions
and the fuel consumption have to be corrected to take into account the different levels of the SOC. Here,
the correction is made based on the following equations:

• mfuel,eq denotes the distance specific, battery charge equivalent fuel consumption:

mfuel,eq =
1

mfuel,norm
·

( ∫ T

0

∗
mfuel (t) dt + ∆mfuel,eq

)
∫ T

0
v(t) dt

(88)

where mfuel,norm stands for a normalization value;

• mNOx,eq denotes the distance specific, battery charge equivalent NOx emissions:

mNOx,eq =
1

mNOx,norm
·

( ∫ T

0

∗
mNOx (t) dt + ∆mNOx,eq

)
∫ T

0
v(t) dt

(89)

where mNOx,norm stands for a normalization value;

• ∆mfuel,eq and ∆mNOx,eq are the equivalent fuel mass and the equivalent NOx mass as a function of
the final battery charge, respectively [34]:

∆mfuel,eq =


∆Eb
Hl
· 1

η
(d)
b ·η

(d)
m ·ηe

if ∆Eb ≥ 0

∆Eb

Hl
· η

(c)
b ·η

(c)
m

ηe
if ∆Eb < 0

(90)

∆mNOx,eq =

∫ T

0

∗
mNOx (t) dt∫ T

0

∗
mfuel (t) dt

·∆mf,eq (91)

with ηb,ηm,ηe denoting the averaged efficiencies of the battery, the motor and the engine, while
the superscript, (c) denotes “charging phase” and (d) denotes “discharging phase”.
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• ∆Eb is the amount of net energy stored in the battery at the end of the driving cycle:

∆Eb = Q0

∫ ξ(T )

ξ(0)

Voc(ξ̃) dξ̃ (92)

Figure 8 shows a comparison of the SOC-corrected equivalent NOx emissions and corrected specific
fuel consumption on the two driving cycles, NEDC and WLTP, for each, considering the two cases of
a constant αNOx and a variable αNOx . The case with the constant αNOx-value refers to a simulation
without feedback control of the NOx emissions. Instead, a constant αNOx = 0 is used throughout the
simulation. By contrast, the case with a variable αNOx represents the case of the RDE-ECMS.

Figure 8. Comparison of the simulation results to the hardware-in-the-loop (HIL)
experiments. The equivalent NOx emissions (mNOx,eq) and the equivalent fuel consumption
(mfuel,eq) take into account the correction based on the SOC deviation between the initial and
the final SOC. (a) NEDC, αNOx = 0; (b) NEDC, αNOx = var.; (c) WLTP, αNOx = 0; and
(d) WLTP, αNOx = var.
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According to the figure, the results obtained with the simulation underestimate the results obtained
with the HIL experiments. The error in all the simulations compared to the experimental data is well
below 5%. Therefore, quasi-static models for the fuel consumption and the NOx emissions can be
considered to be accurate enough for the simulation on the NEDC and WLTP driving cycles.

4.2. Simulation Case Study

By now, it was shown that the RDE-ECMS can simultaneously control the SOC and the NOx

emissions. To show in addition that the RDE-ECMS yields a lower fuel consumption than a non-adaptive
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ECMS, these two strategies are compared on four different driving cycles, namely the NEDC,
the FTP-75, the WLTP and the LA92.

Assume that the RDE have to be lower than a specific value, say 1.02 or 102% for the specific
NOx emissions in this case. Two causal strategies are considered, which respect this NOx limit:
(1) a non-adaptive PI-controlled ECMS, which is the RDE-ECMS, but with a fixed value for αNOx;
and (2) the RDE-ECMS presented in Section 3 with a specific NOx reference value of 1.0.

The non-adaptive ECMS was tuned to respect the NOx emission limit on the worst case driving
cycle, which, here, is LA92, while giving the lowest possible fuel consumption on all driving cycles.
The optimized parameters of the non-adaptive PI-controlled ECMS are kp,ξ = 2, Ti,ξ = 480, p = 1 and
αNOx = 0. For comparison, the parameters of the RDE-ECMS are kp,ξ = 2, Ti,ξ = 480, kp,NOx = 0.1,
Ti,NOx = 75,000, q = 1 and αNOx(0) = 0. Note that, for simplicity, the values for the parameters, kp,ξ
and Ti,ξ, of the RDE-ECMS were taken from the non-adaptive ECMS. The two other parameters, kp,NOx

and Ti,NOx , were optimized on the NEDC and the WLTP driving cycles to yield an acceptable reference
tracking, namely neither a too fast nor a too slow tracking. To ensure a fair comparison, the initial value
for αNOx was chosen to be equal to that of the non-adaptive ECMS.

These two strategies were applied on each of five repetitions of the four different driving cycles,
NEDC, FTP-75, WLTP and LA92. Figure 9 shows the normalized specific equivalent fuel consumption,
the relative fuel consumption difference of the RDE-ECMS compared to the non-adaptive ECMS and
the normalized specific equivalent NOx emissions for both the non-adaptive ECMS (“αNOx = 0”) and
the RDE-ECMS (“αNOx var.”, where “var.” stands for “variable” in the meaning of “not fixed”).

Figure 9. Comparison of the results obtained with the non-adaptive equivalent consumption
minimization strategy (ECMS) (“αNOx = 0”) and the real driving emissions (RDE)-ECMS
(“αNOx var.”) on each of five repetitions of the NEDC, FTP-75, WLTP and LA92
driving cycles: (a) normalized fuel consumption mfuel,eq; (b) relative excess fuel consumption
rmfuel,eq of the RDE-ECMS over the non-adaptive ECMS; and (c) normalized NOx

emissions mNOx,eq.
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As seen from Figure 9b, the fuel savings of the RDE-ECMS amount to 0%–7% compared to the
non-adaptive ECMS. On all driving cycles, both strategies respect the NOx emission limit, indicated as a
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red line in the plot on the right-hand side. In the case of the LA92 driving cycle, the RDE-ECMS behaves
the same as the non-adaptive ECMS, which is the reason that there are practically no fuel savings.
On all other driving cycles, the RDE-ECMS provides a lower fuel consumption than the non-adaptive
ECMS, since the RDE-ECMS increases the emission-related equivalence factor, αNOx , to move along
the optimal NOx-fuel trade-off.

Figure 10 shows the performance of the RDE-ECMS and the non-adaptive ECMS in relation to
the optimal trade-off between the fuel consumption and NOx emissions already shown in Figure 5b.
The non-adaptive ECMS (“diamond marker”) achieves practically identical performance as the optimal
non-causal solution for αNOx = 0 in terms of fuel consumption and NOx emissions. The RDE-ECMS
(“star marker”) achieves a performance close to the optimal trade-off curve for the driving cycles,
FTP-75, WLTP and LA92. For the NEDC, there is still a potential to reduce the fuel consumption
by about 1.6% for the same amount of NOx emissions as calculated with the non-causal ECMS.

Figure 10. Performance of the RDE-ECMS and the non-adaptive ECMS compared to the
non-causal optimal trade-off.
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Overall, the RDE-ECMS proved to minimize the fuel consumption, while tracking a reference NOx

emission level and sustaining the battery charge.

5. Conclusions

This paper presents an energy management strategy to account for NOx RDE of a diesel HEV.
The method is based on the ECMS, which is extended with a state accounting for the NOx emissions.
As demonstrated in simulation, as well as in HIL experiments, the strategy is able to minimize the fuel
consumption, while following given reference trajectories for the NOx emissions and the battery SOC.
By simulation, the strategy is shown to optimally adjust the trade-off between the fuel consumption and
NOx emissions during operation. Compared to a conservative non-adaptive strategy, the advantages in
terms of fuel consumption amount to more than 7% in favor of the proposed method. The strategy can be
employed also in plug-in HEVs, without the need of adjusting the controller structure, by only modifying
the reference trajectory for the battery SOC.
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So far, the presented RDE-ECMS has been applied to warm engine conditions. A future evolution of
this strategy will be to investigate the control of tailpipe NOx emissions for a diesel HEV equipped with
a SCR system. This will require a model of the reduction efficiency of the aftertreatment system as a
function of an additional state, represented by the thermal state of the SCR system. Moreover, a further
potential is seen in the optimal design of the reference trajectories for the SOC and the NOx emissions.
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