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Abstract: Accurate forecasting tools are essential in the operation of electric power 

systems, especially in deregulated electricity markets. Electricity price forecasting is 

necessary for all market participants to optimize their portfolios. In this paper we propose a 

hybrid method approach for short-term hourly electricity price forecasting. The paper 

combines statistical techniques for pre-processing of data and a multi-layer (MLP) neural 

network for forecasting electricity price and price spike detection. Based on statistical 

analysis, days are arranged into several categories. Similar days are examined by 

correlation significance of the historical data. Factors impacting the electricity price 

forecasting, including historical price factors, load factors and wind production factors are 

discussed. A price spike index (CWI) is defined for spike detection and forecasting. Using 

proposed approach we created several forecasting models of diverse model complexity. 

The method is validated using the European Energy Exchange (EEX) electricity price data 

records. Finally, results are discussed with respect to price volatility, with emphasis on the 

price forecasting accuracy. 

Keywords: data mining; neural network; price volatility; short term electricity price 

forecasting; forecasting techniques; spot market; electricity price 
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1. Introduction 

During the last twenty years, the traditional vertically integrated electric utility structure has been 

deregulated and replaced by a competitive market. The deregulated power market is an auction market 

with market clearing prices. Companies that trade in the electricity market today make extensive use of 

price prediction techniques to stay competitive. Along with forecasting electricity prices, producers 

and traders can develop bidding strategies to maximize profits and minimize risks and allocate 

purchases between long term bilateral contracts and spot prices. 

Electricity today is not storable in economically significant quantities and as a result electricity 

prices are volatile. Aside from volatility (elaborated in detail in Section 4), liquidity is another major 

market parameter. Market liquidity is an asset’s ability to be sold without causing a significant change 

in the price and with minimum loss of value [1]. The essential characteristic of a liquid market is  

that there are available willing buyers and sellers at all times. In a non-liquid market, the accuracy of  

a price forecasting procedure can significantly vary depending on the position of the dominant player. 

Without knowing its position or the parameters affecting it, it is very challenging to forecast electricity 

prices in such market [2]. 

The European Energy Exchange (EEX) is the most important energy exchange in central Europe 

which provides a spot market for power derivatives and emission trading in Germany, France, Austria 

and Switzerland. EEX is a highly liquid market affected by domestic and regional power system 

factors. Due to the importance and regional influence of the price of the EEX, it is important to find  

a suitable model for electricity spot market price forecasting [3]. The proposed methodology will be 

tested on the EEX price history data. Many attempts have been made to predict electricity prices, 

ranging from traditional time series approaches to artificial intelligence, such as fuzzy systems and 

artificial neural networks (ANN) [4]. Auto regressive integrated moving average [5], dynamic 

regression and transfer function [6,7] and generalized auto regressive conditional heteroscedasticity [8,9] 

are the most widely used time series algorithms. Time series techniques exhibit good performances, 

however due to the use of linear modelling most of them have difficulties in predicting the hard nonlinear  

behaviors and rapid changes of the price signal [10–12]. ANN has been extensively used by many 

researches on similar problems. In problems with adequate data for ANN training and straight-forward 

selection of input-output samples, ANN are a powerful and flexible tool for forecasting and provide 

more accurate results than time series models. For example in [13] the ANN approach for weekly price 

forecasts has outperformed the time series ARIMA technique and the native procedure in all of  

the observed weeks. 

Accuracy of a certain method can be evaluated by mean absolute percentage error (MAPE). 

Although the concept of MAPE sounds very simple and convincing, it has two major drawbacks in 

practical applications. If there are zero values (which can happen as EEX allows prices in the range 

from ‒500 € to 3,500 €), a division by zero will occur. On a perfect fit, however, MAPE will be zero. 

With regard to its upper level, MAPE has no restriction. When calculating an average MAPE for 

multiple time series, a few numbers in the series that have a very high MAPE might distort  

a comparison between averages MAPE of time series fitted with different methods [14]. 

Our goal is to reuse existing methods for price forecasting to create a hybrid price forecasting model 

which combines advantages of existing techniques to cover specificity of electricity price movements. 
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Initially data is processed and filtered using statistical methods resulting with a data model of similar 

days. This model is then improved by using a multi-layer (MLP) neural network or price spike 

detection and forecasting. We validated our approach using the EEX electricity price history data, and 

evaluated our results by applying several measures of accuracy (MAPE, MAE and RMSE). In addition 

we emphasized the problem of price volatility by showing how price volatility affects the accuracy of 

each forecasting method. 

The rest of the paper is organized as follows. Section 2 describes price forecasting framework. 

Section 3 is devoted to the proposed forecasting methodology while Section 4 describes price 

volatility. Section 5 provides our simulation results. Finally, Section 6 concludes the paper. 

2. Price Forecasting Framework 

Most of the existing studies of electricity price forecasting use only historical price and 

consumption data to forecast electricity prices over various time spans [3–6,8,10,13]. We found it 

important to include wind power production history data as it is the resource with the most volatile 

production ratio. During the last decade, wind power generation has experienced a powerful 

breakthrough due to incentives, preferential price, Kyoto Protocol commitments and technical 

achievement, as well as other renewable energy resources. In Europe, Nordic consumers benefit 

financially from the presence of Danish wind on the power market [15]. In recent years, Germany also 

has a high penetration of wind power (Figure 1) [16]. However, high volatility of the wind power can 

cause price drops on the power exchange to below zero values, further increasing price volatility. For 

example, the minimum price of ‒500.02 € has occurred on 10 April 2009 [17,18]. 

Figure 1. Wind power capacity and generation in Germany. 

 

The proposed hybrid price forecasting model has both linear (similar day-SN) in Case 1 and 

nonlinear (ANN) forecasting capabilities in Case 2. In addition in Case 2 if possibility of price spikes 

(PS) are detected price is forecasted as price spike. Time horizon is day-ahead and the price is 

forecasted for every hour. 
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The price forecasting framework and methodology are presented in Figure 2. As model input, 

historical data for prices, consumption and wind production from Point Carbon web service [19] were 

used. Day-ahead forecasted consumption and wind production data were taken as additional input for 

increased performance. 

Figure 2. Flow chart of the hybrid electricity price forecasting model. 

 

Daily price history data is processed with data mining technique which defines: 

I. Similar day types. 

II. Relevant history horizon for similar days—H(T). 

III. Hourly correlation time horizon—H(T)h. 

Day type can be divided in three categories: working days (Monday-Friday), Saturdays and 

Sundays/Holidays. Days before or after holidays also reveal distinct behavior, but due to the negligible 

influence on forecasting performance, these cases are ignored and not performed. 

To define the relevant history horizon for similar days—H(T) we performed a historical price data 

analysis on an annual base, and have selected a significant hourly price correlation coefficient of 0.85. 

Our analysis showed that this correlation coefficient corresponds to a time period D = 28 days,  

in average (Figure 3): 

[ ]DTTTH −−∈ ,1)(  (1) 
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Figure 3. Daily price correlation for D nearest neighbor. 

 

Prior to performing the forecast, an hourly horizon is defined by applying Equations (1) and (2). 

Hourly horizon k+ and k− (“significant neighbors” shown in green in Figure 4) are different for every 

forecasted price p(T)h but generally two nearest neighbors always have the highest correlation.  

In some cases the maximum correlation coefficient between neighboring hours is 0.80. Therefore we 

decided to use this value as minimum correlation coefficient for defining the hourly horizon. Detailed 

preview of the hourly price correlations is shown in Figure 4, where correlations higher than 0.80 are 

marked in green. 

[ ])(,)()( Tp
ktTp

ktTH h +−−−∈  (2)

Figure 4. Correlation matrix of EEX hourly data averages for the period from  

20 November 2010 to 20 July 2011. 
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3. Price Forecasting Methodology 

Our approach of using hybrid forecasting model, based on similar-day analysis, improved by neural 

network and price spikes detection and forecasting is shown in Figure 2. Data set is filtered using a 

data mining technique described in Section II. Each hour is observed separately and then forecasted as 

price spike or normal price using a neural network. We defined the hourly price p(T)h for day T as a 

cumulative value of linear and non-linear (neural network and price spike) components: 

( ) h h hhp T N SL= + +  (3)

where: 

Lh—linear hourly component; 

Nh—neural network hourly component; 

Sh—hourly price spike component. 

The hybrid forecasting model consists of:  

3.1. Similar Days Methodology 

Electricity price forecasting methods based on similar day’s methodology were presented by Paras 

Mandal et al., in numerous works, such as [20–22]. Similar price days are selected based on a 

Euclidian norm. Euclidian norm with weighted factors was used in order to evaluate the similarity 

between forecasted days and similar days [1]. Due to a high correlation between consumption and 

price for observed market, these two parameters are chosen for day-ahead price forecasting [1]: 
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where: 

Lt—load for forecasted day; 

Pt—price for forecasted day; 
Lpt

—load on similar day in past; 

Ppt
—price on similar day in past; 

ΔLt—the load deviation between forecasted day and similar days; 

ΔPt—the price deviation at time t; 

ω—weighted factor is determined using least square method based on regression model constructed 

by using historical load and price data. 
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Input data for the proposed method includes consumption and wind forecast data taken from the Point 

Carbon web service [23] (underlying techniques used for consumption and wind forecasts are out of the 

scope of this paper). Similar days with realized prices are examined by consumption and wind production 

data mining method. The result of this process is the linear price component from Equation (2) defined as: 

( ) δ+= ht TpL  (9)
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h
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where: 

N—number of similar days; 

δ—average hourly difference between forecasted hours. 

The linear price component can be observed as independent because it represents a starting point for 

the forecasting model which can be improved by neural network and price spikes component. 

3.2. Neural Network Architecture 

Neural networks are applied widely for solving different problems which in general are difficult to 

solve by humans or conventional computational algorithms. In power systems the ANN’s have been 

used to solve problems such as load forecasting, unit commitment, power system topology recognition, 

and safety analysis, price forecasting etc. [24]  

For hourly neural network component used in our approach, a multi-layer feed-forward neural 

network is proposed as shown in Figure 5. This neural network is used to forecast hourly deviation 

from the similar days function with regards to a forecasted day. The neural network is composed of 

one input layer, one hidden and one output layer. Figure 6 shows how a relevant data set for 

forecasting the price deviation in hour h is defined. We have defined input variables for the ANN to be 

load forecast, wind forecast and hourly price, wind and load deviation from average values on similar 

days. The deviation is defined as: 
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where: 

kh
i
+Δ —deviation from average value on similar days; 

h—forecasted hour; 

Nii ,∈ —number of similar days; 
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+−∈ kki , —number of similar hour before (k−) and after (k+) forecasted hour h. 

The neural network is trained on 70% randomly chosen cases from the data set and tested on the 

remaining 30%. 

Figure 5. Proposed ANN model for hourly neural network component forecasting. 

 

Figure 6. Defining the data set for the forecasted hour h. 

 

Due to the fact that there is no efficient way for storing electric energy, all electricity produced has 

to be consumed forthwith. Imbalances between consumption and production lead to electricity price 

jumps (i.e., price spikes) which can be several times higher or lower than the regular price.  

One possible cause of imbalance are weather conditions which have an effect on consumption, 
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production from renewable energy sources, unexpected outages and reductions of cross-border 

capacities. Some of these events like outages or capacity reductions happen rarely and cannot be 

predicted with confidence. 

In the proposed forecasting model we categorize prices as either regular (normal) or price spikes.  

It is important to find how consumption and wind production affect the price spikes. An index was 

created which unifies consumption and wind production changes to create a signal, which detects 

possibility of price spikes. Consumption and wind index (CWI) proposed in our approach consists of 

two components where CC refers to the relative degree of forecasted consumption with the initial 

consumption on similar days and CW refers to forecasted wind production with the initial wind 

production on similar days: 

CWCCCWI ×=  (12)
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where: 

Ch—consumption in hour h; 

Csd—average consumption on similar days; 

Wh—wind production in hour h; 

Wsd—average wind production on similar days; 

N—number of similar days; 

Applying the CWI to the whole data set indicates that high price deviations happen for lower value 

of the coefficient (Figure 7). If the error of forecasted wind production and consumption is lower  

than 1.0, a price spike may happen in the observed hour. 

After calculating the CWI index of a possible price spike, the hourly price spike component Sh 

Equation (3) can be calculated. Since price spikes happen rarely, we experienced a lack of data to be 

used for the neural network calculation. Therefore Sh was calculated using a linear approximation with 

two variables; wind and consumption. 
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Figure 7. Correlation of CWI and standard deviation for observed hours. 

 

Importance of short-term price forecasting on one hand and its complexity on the other hand led 

researchers to propose various methods. Among these methods, there are three widely used 

approaches; time series models, artificial neural network (ANN) and hybrid methods. 

4. Price Volatility 

Volatility refers to unpredictable fluctuations of a process observed over time. In finance, volatility 

is a measure for variation of a price of a financial instrument over time [20]. Past volatility is derived 

from a time series of the past market prices. It is a criterion to study the risk associated with holding 

assets when there is an uncertainty in the future value of the assets. 

In [25] past volatility is calculated as standard deviation of arithmetic and logarithmic return over a 

time window T. If pt is a spot price for a commodity at the time t, arithmetic return over time period h 

is defined as: 
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When returns are small, the arithmetic and logarithmic returns are approximately equal: 

RR
p

p
r htht

ht

t
ht ,,, )1ln(ln ≈+== 








−
 (19)

0

1

2

3

4

5

6

7

-250 -150 -50 50 150 250

CW
I

CWI/deviation



Energies 2014, 7 3314 

 

 

Given the return values, the estimated value of past volatility can be calculated as: 
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where: 

σh,T—the estimated value of past volatility; 

N0—the number of rt,T observations; 

rhT—the average over the time window T. 

For this study volatility is calculated as a standard deviation of arithmetic return over a time 

window T because EEX prices can be negative. When the prices are negative, the logarithmic return 

cannot be calculated as in Equation (20). 

It is interesting to observe the volatility fluctuation on EEX over the last eight years in dependence 

with traded volume. Figure 8 shows much higher volatility values occurring between 2005 and 2013. 

This period coincides with the growth of wind power production (Figure 1) so it can be concluded that 

for some time market prices were under influence of renewable energy production. It can also be 

concluded that price volatility depends on traded energy volume, as from 2010, with an increase in 

trade volume the price, the volatility is lower than in previous years. 

Figure 8. Volatility fluctuations and traded volume show that volatility jumps were more 

severe on lower levels of EEX spot market liquidity. 

 
5. Case Study 

We tested our approach for electricity price forecasting on the EEX price history data from a time 

period 20 November 2010–20 July 2011. Data was processed in Microsoft Excel with Palisade 

Decision Tool and Visual Basic. Three cases were observed: 
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I Forecasting with similar days (SD); 

II Forecasting with similar days and neural network (SD + NN); 

III Forecasting with similar days, neural network and price spikes detection (SD + NN + PS). 

Our results are presented in Table 1. below. 

Table 1. Performances of the proposed hybrid model for hourly electricity price forecasting. 

Month 
Forecasting  

Model 
MAPE MAE RMSE Volatility 

Number of  
Price Spikes 

December-2010 

SD 12.81% 7.48 9.38 

18.30 100 SD + NN 8.50% 7.32 10.43 

SD + NN + PS 6.79% 6.45 10.42 

January-2011 

SD 11.36% 6.00 7.44 

15.95 86 SD + NN 12.20% 7.33 9.53 

SD + NN + PS 10.39% 6.89 9.08 

Febuary-2011 

SD 19.12% 9.38 8.91 

14.22 101 SD + NN 7.84% 5.48 7.24 

SD + NN + PS 5.87% 4.59 6.55 

March-2011 

SD 4.88% 4.84 6.05 

9.67 59 SD + NN 3.73% 4.01 5.31 

SD + NN + PS 3.62% 3.89 4.51 

April-2011 

SD 10.86% 5.69 6.98 

11.73 119 SD + NN 7.52% 5.29 6.91 

SD + NN + PS 5.03% 4.58 6.31 

May-2011 

SD 7.51% 5.85 6.55 

12.01 141 SD + NN 6.96% 5.45 6.10 

SD + NN + PS 6.11% 5.12 5.95 

June-2011 

SD 13.05% 5.49 6.41 

13.20 74 SD + NN 12.90% 5.55 6.81 

SD + NN + PS 5.55% 4.30 5.50 

Average 

SD 10.63% 5.90 7.14 

14.05 681 SD + NN 8.49% 5.75 7.08 

SD + NN+PS 6.20% 5.26 6.92 

Model performance was evaluated with MAPE where yt is a realized value at time t and ft is 

forecasted value at time t in the time period T: 


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Price spikes brought outliers in results and that was the reason for including two additional error 

measures: MAE and RMSE. For example, in December price distribution was scattered and there were 

a large number of price spikes which increased MAPE: 


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Simulation results show that similar day’s method with neural network and price spikes detection 

gives the best results. Price volatility is a dominant factor affecting the forecast model accuracy.  

In case of low price volatility, such as March 2011, simple models such as similar days gave adequate 

results with forecasting error similar to advanced models with neural network and price spikes 

detection. In case of high volatility, such as December 2010, advanced models gave better results. 

Therefore it is very important not only to evaluate the forecasting model against the forecast error but 

also to analyze the complexity of the result distribution, in this case defined by price volatility. 

6. Conclusions 

The main difference between the proposed model and other existing methods for short-term 

electricity price forecasting is in its data utilization approach. In the proposed approach, the data is  

pre-processed by statistical methods prior to each analysis. Forecasting results obtained by a 

combination of methods: similar days method (SD), neural network forecasting (NN) and price spikes 

(PS) in the following combinations; SD, SD + NN, SD + NN + PS were presented; each, respectably, 

proving to be more accurate. Price volatility has a significant influence on the forecasting results. 

Simple forecasting models produced satisfactory results in cases of low price volatility. Our method 

proved robust enough, even in cases of high price volatility. 

Acknowledgments 

This work has been supported in part by the European Community Seventh Framework Programme 

under grant No. 285939 (ACROSS). Part of this research was discussed at the 9th International 

Conference “European Energy Market” held in Florence, Italy on 10–12 May 2012. 

Author Contributions 

This work is part of Marin Cerjan’s doctoral research for which Marko Delimar provides scientific 

supervision and guidance. Marin Cerjan and Marko Delimar have contributed to the development of 

the ideas, formulation of the problem and the design of the model presented in this work. Marin 

Cerjan, Marin Matijaš and Marko Delimar have been involved in implementation and analysis of  

the results. All the authors have been involved in the preparation of the manuscript. 

Conflicts of Interest 

The authors declare no conflicts of interest. 

References 

1. Hachmeister, A. Informed Traders as Liquidity Providers: Evidence from the German Equity 

Market; Springer: Wiesbaden, Germany, 2007; Volume 66, p. 179. 



Energies 2014, 7 3317 

 

 

2. Andor, M.; Flinkerbusch, K.; Janssen, M.; Liebau, B.; Wobben, M. Negative Strompreise und  

der Varrang Erneurbarer Energien. Z. Energiewirtsch 2010, 34, 91–99. (In German) 

3. European Energy Exchange. Available online: http://www.eex.com (accessed on 10 October 2011). 

4. Abraham, A.; Baikunth, N.; Mahanti, P.K. Hybrid Intelligent Systems for Stock Market Analysis. 

In Computational Science—ICCS 2001; Alexandrev, V.N., Dongarra, J.J., Juliano, B.A.,  

Renner, R.S., Kenneth Tan, C.J., Eds.; Springer-Verlag: Berlin, Germany, 2001; pp. 337–345. 

5. Contreras, J.; Espínola, R.; Nogales, F.J.; Conejo, A.J. ARIMA models to predict next-day 

electricity prices. IEEE Trans. Power Syst. 2003, 18, 1014–1020. 

6. Nogales, F.J.; Contreras, J.; Conejo, A.J.; Espínola, R. Forecasting next-day electricity prices by 

time series models. IEEE Trans. Power Syst. 2002, 17, 342–348. 

7. Zhao, J.H.; Dong, Z.Y.; Xu, Z.; Wong, K.P. A statistical approach for interval forecasting of  

the electricity price. IEEE Trans. Power Syst. 2008, 23,267–276. 

8. Garcia, R.C.; Contreras, J.; van Akkeren, M.; Garcia, J.B.C. A GARCH forecasting model to 

predict day-ahead electricity prices. IEEE Trans. Power Syst. 2005, 20, 867–874. 

9. Huisman, R.; Huurman, C.; Mahieu, R. Hourly Electricity Prices in Day-ahead Markets.  

Energy Econ. 2007, 29, 240–248. 

10. Pindoriya, N.M.; Singh, S.N.; Singh, S.K. An adaptive wavelet neural network-based energy price 

forecasting in electricity markets. IEEE Trans. Power Syst. 2008, 23, 1423–1432. 

11. Amjady, N.; Dareaeepour, A. Design of input vector for day-ahead price forecasting of electricity 

markets. Expert Syst. Appl. 2009, 36, 12281–12294. 

12. Unsihuay-Villa, C.; Zambroni de Souza, A.C.; Marangon-Lima, J.W.; Balestrassi, P.P.  

Electricity demand and spot price forecasting using evolutionary computation combined with 

chaotic nonlinear dynamic model. Int. J. Electr. Power Energy Syst. 2010, 32, 108–116. 

13. Catalão, J.P.S.; Mariano, S.J.P.S.; Mendes, V.M.F.; Ferreira, L.A.F.M. Short-term electricity 

prices forecasting in a competitive market: A neural network approach. Electr. Power Syst. Res. 

2007, 77, 1297–1304. 

14. Shahidehpour, M.; Yamin, H.; Li, Z. Market Operations in Electric Power Systems: Forecasting, 

Scheduling, and Risk Management; Wiley-IEEE Press: New York, NY, USA, 2002; p. 552. 

15. Haugom, E.; Wesgaard, S.; Solibakke, P.B.; Lien, G. Realized volatility and the influence of 

market measure on predictability: Anaysis of Noed Pool forward electricity data. Energy Econ. 

2011, 33, 1206–1215. 

16. Data of Historical Electricity Prices from European Energy Exchange. Available online: 

http://www.eex.com/en/Download (accessed on 2 July 2011). 

17. Zareipour, H.; Bhattacherya, K.; Canizared, C.A. Electricity market price volatility: The case of 

Ontario. Energy Policy 2007, 35, 4739–4748. 

18. Urllich, C. Realized Volatility and Price Spikes in Electricity Markets: The Influence of 

Observation Frequency. Available online: http://www.efa2009.org/papers/SSRN-id1342586.pdf 

(accessed on 13 May 2014). 

19. Data of Historical and Forecasted Consumption and Wind Production. Available online: 

http://www.pointcarbon.com/trading/pmteex/resources/downloads/latest/ (accessed on 3 July 2011). 

20. Širjaev, A.N. Essentials of Stochastic Finance Facts, Models, Theory; Advanced Series on 

Statistical Science and Applied Probability; World Scientific: Singapore, 1999; Volume 3, p. 834. 



Energies 2014, 7 3318 

 

 

21. Mandal, P.; Senjyo, T.; Urasaki, N.; Funabashi, T.; Srivastava, A.K. A novel approach to forecast 

electricity price for PJM using neural network and similar days method. IEEE Trans. Power Syst. 

2008, 22, 2058–2065. 

22. Mandal, P.; Seoul, Y.U.; Senjyu, T.; Yona, A.; Park, J.W.; Srivastava, A.K. Sensitivity Analysis 

of Similar Days Parameters for Predicting Short-Term Electricity Price. In Proceedings of the 39th 

North American Power Symposium (NAPS’07), Las Cruces, NM, USA, 30 September–2 October 

2007; pp. 568–574. 

23. Effect of Wind Energy on Electricity Market Prices. Available online: http://www.ewea.org/ 

index.php?id=1640 (accessed on 15 October 2011). 

24. Mileta, D.; Simic, Z.; Skok, M. Forecasting prices of electricity on HUPX. In Proceedings of the 

2011 8th International Conference on the European Energy Market (EEM), Zagreb, Croatia,  

25–27 May 2011; pp. 204–208. 

25. Areekul, P.; Senjyu, T.; Toyama, H.; Yona, A. A Hybrid ARIMA and Neural Network Model for 

Short-Term Price Forecasting in Deregulared Market. IEEE Trans. Power Syst. 2010, 25, 524–530. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


